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Abstract: The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a multi-center study assessing neuroimaging in 

diagnosis and longitudinal monitoring. Amnestic Mild Cognitive Impairment (MCI) often represents a prodromal form of 

dementia, conferring a 10-15% annual risk of converting to probable AD. We analyzed baseline 1.5T MRI scans in 693 

participants from the ADNI cohort divided into four groups by baseline diagnosis and one year MCI to probable AD  

conversion status to identify neuroimaging phenotypes associated with MCI and AD and potential predictive markers of 

imminent conversion. MP-RAGE scans were analyzed using publicly available voxel-based morphometry (VBM) and  

automated parcellation methods. Measures included global and hippocampal grey matter (GM) density, hippocampal and 

amygdalar volumes, and cortical thickness values from entorhinal cortex and other temporal and parietal lobe regions. The 

overall pattern of structural MRI changes in MCI (n=339) and AD (n=148) compared to healthy controls (HC, n=206) 

was similar to prior findings in smaller samples. MCI-Converters (n=62) demonstrated a very similar pattern of atrophic 

changes to the AD group up to a year before meeting clinical criteria for AD. Finally, a comparison of effect sizes for 

contrasts between the MCI-Converters and MCI-Stable (n=277) groups on MRI metrics indicated that degree of neurode-

generation of medial temporal structures was the best antecedent MRI marker of imminent conversion, with decreased 

hippocampal volume (left > right) being the most robust. Validation of imaging biomarkers is important as they can help 

enrich clinical trials of disease modifying agents by identifying individuals at highest risk for progression to AD. 

Keywords: Alzheimer’s disease neuroimaging initiative (ADNI), magnetic resonance imaging (MRI), mild cognitive  
impairment (MCI), hippocampus, cognition. 

INTRODUCTION 

 Alzheimer’s disease (AD) is the most common neurode-
generative illness associated with aging, accounting for 60-
70% of age-related dementia cases. In 2000, approximately 
25 million people over the age of 60 were diagnosed with 
dementia worldwide, and the number afflicted is expected to 
reach over 80 million by 2040 [1, 2]. Earlier diagnosis of AD 
is widely considered to be an important goal for researchers. 
Characterization of the earliest known clinical signs has led 
to the development of the classification of Mild Cognitive 
Impairment (MCI), which is thought to be a transitional  
stage between normal aging and the development of AD  
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[3]. Patients with MCI, specifically those with primary  
memory deficits or “amnestic MCI”, have a significantly 
higher likelihood to progress to probable AD, with a conver-
sion rate of 10-15% per year [4]. Therefore, MCI represents 
an important clinical group in which to study longitudinal 
changes associated with the development of AD. The detec-
tion of subtle changes in brain structure associated with di-
sease progression and the development of tools to detect 
those who are most likely to convert from MCI to probable 
AD is an important goal. 

 The Alzheimer's Disease Neuroimaging Initiative 
(ADNI) is a five-year public-private partnership to test  
whether serial magnetic resonance imaging (MRI), positron 
emission tomography (PET), other biological markers, and 
clinical and neuropsychological assessment can be combined 
to measure the progression of amnestic MCI and early proba-
ble AD [5-7]. One of the major goals of ADNI is to assess 
selected neuroimaging and analysis techniques for sensitivity 
and specificity for both cross-sectional diagnostic group 
classification and longitudinal progression of MCI and AD.  

 A powerful technique for analyzing high resolution struc-
tural MRI data is voxel-based morphometry (VBM), which 
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allows specific tissue classes (i.e., grey matter (GM), white 
matter (WM), or CSF) to be analyzed in an automated and 
unbiased manner [8-10]. VBM analyses, particularly compa-
risons of GM density between groups, have been used to 
examine diagnostic group differences in both cross-sectional 
and longitudinal studies of brain aging and AD [11-30]. In 
fact, VBM has been shown to accurately classify controls 
and AD patients and to predict conversion from MCI to AD 
and rate of progression in studies of brain aging [12, 13, 15, 
18, 20, 23]. However, the small sample size of these studies 
and minimal longitudinal monitoring has prevented VBM 
from being established as a conclusive biomarker for MCI to 
probable AD conversion. 

 Regions of interest (ROIs) and volumes of interest 
(VOIs) have also been effective in measuring local atrophy 
associated with AD and MCI and longitudinal monitoring of 
neurodegeneration in studies of brain aging. Numerous  
studies using manually defined ROIs have found that local 
hippocampal and total brain volume are significantly redu-
ced in AD and MCI patients relative to healthy elderly indi-
viduals [17, 24, 25, 28, 31-46]. Rates and amount of hippo-
campal, medial temporal lobe (MTL), and total brain atrophy 
have also been shown to correlate with MCI to AD conversi-
on [31-34, 37, 40-42, 44, 45, 47-52]. Recently, automated 
methods for extraction of specific regional volumes have 
been developed and found to provide similar reliability as 
manually traced ROIs in AD [53-56]. Automated parcellati-
on methods have also demonstrated reliable cortical 
thickness value estimations and decreased cortical thickness 
in AD [56, 57].  

 The goal of the present study was to perform group com-
parisons using the 1.5T T1-weighted structural scans obtai-
ned from ADNI participants at baseline. Using VBM as 
implemented in SPM5 (http://www.fil.ion.ucl.ac.uk/spm/), 
we examined cross-sectional GM differences between 
groups stratified by baseline diagnosis and one year conver-
sion from MCI to probable AD. Study groups included parti-
cipants diagnosed with AD at the screening, baseline, 6-, and 
12-month follow-up visits (AD), participants designated as 
healthy elderly controls at all four visits (HC), participants 
who were diagnosed with MCI at all four visits (MCI-
Stable), and participants who were diagnosed with MCI at 
baseline and converted from MCI to probable AD within the 
first year (MCI-Converters). We extracted bilateral hippo-
campal GM density values, hippocampal and amygdalar  
volumes, and entorhinal cortex, temporal lobe, and parietal 
lobe cortical thickness values for between-group compari-
sons. We hypothesized that patients with AD would show 
extensive GM reduction in medial and lateral temporal lobes 
and other neocortical regions, and that both of the MCI 
groups would demonstrate focal reduction in MTL structures 
compared to HC. We also hypothesized that MCI partici-
pants who converted to AD within one year would show a 
more extensive pattern of global GM reduction relative to 
HC, particularly in regions of the MTL, than participants 
with a stable diagnosis of MCI, but a less extensive pattern 
than AD participants. We predicted that MCI-Converters 
would show greater MTL and neocortical GM density reduc-
tions relative to MCI-Stable participants. Finally, we investi-
gated whether local hippocampal GM density and volume, 
amygdalar volume, and entorhinal, temporal, and parietal 

cortical thickness values would reflect the same pattern of 
group differences, and the relative ability of these MRI 
metrics to detect differences between MCI-Converter and 
MCI-Stable groups. 

METHODS 

ADNI 

 ADNI was launched in 2004 by the National Institute on 
Aging (NIA), the National Institute of Biomedical Imaging 
and Bioengineering (NIBIB), the Food and Drug Administ-
ration (FDA), private pharmaceutical companies, and non-
profit organizations. More than 800 participants, ages 55-90, 
have been recruited from 59 sites across the U.S. and Canada 
to be followed for 2-3 years. The primary goal of ADNI is to 
determine whether serial magnetic resonance imaging 
(MRI), positron emission tomography (PET), other biologi-
cal markers, and clinical and neuropsychological assessment 
can accurately measure the progression of MCI and early 
AD. The identification of specific biomarkers of early AD 
and disease progression will provide a useful tool for resear-
chers and clinicians in both the diagnosis of early AD and in 
the development, assessment and monitoring of new treat-
ments. For additional information about ADNI, see 
www.adni-info.org.  

MRI Scans 

 Baseline 1.5T MRI scans from 820 participants were 
downloaded from the ADNI public website (http://www.loni. 
ucla.edu/ADNI/) onto local servers at Indiana University 
School of Medicine between January and April 2008. The 
downloaded data initially included baseline scans from 229 
HC, 403 patients with MCI, and 188 patients with AD. 
Complete details regarding participant exclusion and catego-
rization are provided in Fig. (1). Scan data was acquired on 
1.5T GE, Philips, and Siemens MRI scanners using a magne-
tization prepared rapid acquisition gradient echo (MP-
RAGE) sequence that was selected and tested by the MRI 
Core of the ADNI consortium [5]. Briefly, two high-
resolution T1-weighted MRI scans were collected for each 
participant using a sagittal 3D MP-RAGE sequence with an 
approximate TR=2400ms, minimum full TE, approximate 
TI=1000ms, and approximate flip angle of 8 degrees (scan 
parameters vary between sites, scanner platforms, and soft-
ware versions). Scans were collected with a 24cm field of 
view and an acquisition matrix of 192 x 192 x 166 (x, y, z 
dimensions), to yield a standard voxel size of 1.25 x 1.25 x 
1.2 mm. Images were then reconstructed to give a 256 x 256 
x 166 matrix and voxel size of approximately 1 x 1 x 1.2 
mm. Additional scans included prescan and scout sequences 
as indicated by scanner manufacturer, axial proton density 
T2 dual contrast FSE/TSE, and sagittal B1-calibration scans 
as needed. Further details regarding the scan protocol can be 
found in [5] and at www.adni-info.org. Scans were collected 
at either screening (n=845) or baseline visits (n=184)  
between August 2005 and October 2007. If scans existed 
from both sessions for a single participant, the scan from the 
screening visit was used. Details of the ADNI design, parti-
cipant recruitment, clinical testing, and imaging methods, 
have been published previously [5, 6, 7, http://www.adni-
info.org/].  
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Image Processing  

 VBM: Analysis was performed using previously descri-
bed methods [8-10], as implemented in SPM5 (http://www. 
fil.ion.ucl.ac.uk/spm/). Briefly, scans were converted from 
DICOM to NIfTI format, co-registered to a standard T1 
template image, bias corrected, and segmented into GM, 
WM, and CSF compartments using standard SPM5 temp-
lates. GM maps were then normalized to MNI atlas space as 
1x1x1 mm voxels and smoothed using a 10 mm FWHM 
Gaussian kernel. In cases where the first MP-RAGE scan 
could not be successfully segmented we attempted to use the 
second MP-RAGE. This was successful for only 1 of 8  
cases.  

 Region of Interest: A hippocampal ROI template was 
created by manual tracing of the left and right hippocampi in 
an independent sample of 40 HC participants enrolled in our 
study of brain aging and MCI at Dartmouth Medical School 
[25, 58]. These ROIs were used to extract GM density values 
from smoothed, unmodulated normalized and modulated 
normalized GM maps for the ADNI cohort.  

 Automated Parcellation: VOIs, including bilateral hippo-
campi and amygdalar nuclei, were extracted using FreeSur-
fer V4 [56, 59-62]. FreeSurfer was also used to extract cor-
tical thickness values from the left and right entorhinal cor-
tex, inferior, middle, and superior temporal gyri, inferior 
parietal gyrus, and precuneus. 

 The final sample reported here passed site, ADNI MRI 
Core, and our internal quality control, and did not fail any 
step of the processing pipeline (Fig. 1).  

Demographic Data 

 Demographic information, ApoE genotype, neuropsycho-
logical test scores, and diagnosis were downloaded from the 
ADNI clinical data repository (https://www.loni.ucla.edu/ 
ADNI/Data/ADCS_Download.jsp). The “10-27-08” version 
of the ADNI clinical database was used for all analyses.  
Participants were initially classified into groups based on 
screening or baseline diagnosis as reported in the diagnosis 
and conversion/reversion database. 

VBM Statistical Analyses 

 Statistical analyses were performed on a voxel-by-voxel 
basis using a general linear model (GLM) approach imple-
mented in SPM5. A false discovery rate (FDR) adjustment 
was used where appropriate to control for multiple compari-
sons, and a minimum cluster size (k) of 27 voxels was requi-
red for significance. Age, gender, years of education,  
handedness, and total intracranial volume (ICV) were inclu-
ded as covariates, and an explicit GM mask was used to 
restrict analyses to GM regions. A one-way ANOVA was 
performed to compare the smoothed, unmodulated normali-
zed GM maps between groups to determine the effects of 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Flowchart of participant pool selection with group exclusion and inclusion criteria. 
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diagnosis and one year conversion from MCI to AD on GM 
density. The initial comparison was done using the entire 
available sample of 693 participants. A second comparison 
was completed using the same methods but with subgroups 
of matched participants to correct for unequal group sizes 
(n=248; 62 in each group). Matching was done on a case by 
case basis using the best available match on age, gender, 
education, and handedness, while preserving the relative 
proportion of ApoE4+ participants within each subgroup. 
After matching there were no significant group differences in 
age, gender, education, or handedness.  

 Finally, a third set of analyses were performed with the 
full available sample of 693 participants, adding a volume 
preserving modulation step to the VBM method, yielding an 
assessment of local GM volume differences instead of GM 
density. 

Other Statistical Analyses 

 Mean left and right hippocampal GM density, hippocam-
pal and amygdalar volumes, and cortical thickness values for 
all 693 participants were compared between groups using a 
one-way multivariate ANOVA in SPSS (version 16.0.1). 
Age, gender, education, handedness, and ICV were included 
as covariates in all ROI, VOI, and cortical thickness compa-
risons. One-way ANOVA and chi-square tests were used to 
determine between-group differences in age, gender distribu-
tion, ApoE genotype, education, handedness distribution, 
primary language distribution, and baseline global, functio-
nal, behavioral, neurological, neuropsychiatric, and neuro-
psychological test scores. All graphs were created using 
SigmaPlot (version 10.0). 

 Effect sizes for the comparison between MCI-Converters 
and MCI-Stable participants were also calculated for selected 
imaging biomarkers, including bilateral hippocampal GM 
density and volume from the VBM images, bilateral hippo-
campal, amygdalar, accumbens, ventral dorsal column, infe-
rior lateral ventricle, lateral ventricle, cerebral cortex, and 
cerebral white matter volumes extracted using automated 
parcellation, and cortical thickness values from bilateral  
entorhinal cortex, inferior, middle, and superior temporal 
gyri, inferior parietal gyrus, and precuneus, which were also 
extracted using automated parcellation. These values were 
assessed due to significant differences between MCI-
Converter and MCI-Stable groups on pairwise comparisons 
(p<0.05). Left and right adjusted means for each imaging 
measure, covaried for age, gender, education, handedness, 
and ICV, were averaged to give a bilateral estimate, and used 
to calculate effect sizes (Cohen’s d) in SPSS and Microsoft 
Excel (version 2007).  

RESULTS 

Sample Characteristics 

 Demographic information and mean baseline test scores 
for all groups are presented in Table 1. Mean participant age 
and handedness distribution did not differ across groups. 
Years of education and percent of participants with either 
one or two ApoE 4 alleles (ApoE4+) were significantly 
different between diagnosis groups (p<0.001). AD partici-
pants showed significantly fewer years of education than 

either HC (p<0.001) or MCI-Stable (p=0.003) participants. 
Years of education did not differ significantly between any 
other groups in pairwise comparisons. As expected, the HC 
group had a lower percentage of ApoE4+ participants than 
any of the clinical groups, while the AD group had the  
highest percentage of ApoE4+ participants. The MCI-Stable 
and MCI-Converter groups had different proportions of A-
poE4+ participants, with the MCI-Converter group showing 
a higher percentage of ApoE4+ participants than the MCI-
Stable group. Neuropsychiatric test results, including scores 
from the Geriatric Depression Scale (GDS) [63] and Neuro-
psychiatric Inventory Questionnaire (NPI-Q) [64], were 
significantly different between groups (p<0.001). HC parti-
cipants showed significantly fewer depressive symptoms 
than either AD or MCI-Stable participants (p<0.001), and 
had a lower mean score on the NPI-Q than the AD, MCI-
Stable, and MCI-Converter groups (p<0.001). AD parti-
cipants also had a significantly higher mean NPI-Q score 
than the MCI-Stable (p<0.001) and MCI-Converter 
(p=0.008) groups. No significant differences in mean GDS 
scores were found between the MCI-Stable, MCI-Converter, 
and AD groups. No group showed clinically meaningful le-
vels of depressive symptoms. Ischemic events and/or risk 
were not significantly different between groups as assessed 
by the Modified Hachinski scale [65]. 

 As expected, neuropsychological test scores (MMSE [66, 
67], Clinical Dementia Rating (CDR) [68], and the Functio-
nal Assessment Questionnaire (FAQ) [69]) varied signifi-
cantly between groups (p<0.001). Pairwise comparisons 
showed a similar pattern for the MMSE, Global CDR, and 
CDR-Sum of Boxes. HC participants had significantly hig-
her MMSE and lower CDR scores relative to all other groups 
(p<0.001). Additionally, MCI-Stable and MCI-Converter 
participants showed significantly higher MMSE and lower 
CDR scores compared to AD participants (p<0.001), but did 
not differ from one another on these assessments. Mean FAQ 
total scores were significantly different across groups and in 
all pairwise comparisons (p<0.001).  

 Neuropsychological scores from the Rey Auditory  
Verbal Learning Test (RAVLT) [70], Boston Naming Test 
(BNT) [71], and category verbal fluency tests (Fluency-
Animals, Fluency-Vegetables) [72] also showed significant 
differences between groups (p<0.001). However, these  
assessments showed a different pattern in pairwise compari-
sons than the MMSE, Global CDR, and FAQ. MCI-
Converters and AD participants showed similar scores on the 
learning and verbal neuropsychological tests, with no signi-
ficant differences on RAVLT measures, BNT, or verbal 
fluency tests. As expected, all of the clinical groups perfor-
med below HC participants for RAVLT, BNT, and verbal 
fluency measures (p<0.001). MCI-Stable participants also 
had significantly higher scores on all RAVLT measures and 
Fluency-Vegetables than both the AD and MCI-Converter 
groups (p<0.001). Finally, MCI-Stable participants had 
significantly higher scores than AD participants but not 
MCI-Converters on Fluency-Animals and BNT (p<0.001).  

VBM Group Comparisons by Baseline Diagnosis and 

One Year Conversion Status 

 All 693 participants were included in the initial VBM 
analyses. A one-way ANOVA indicated striking between-
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Table 1. ADNI Participants at Baseline (Adjusted Mean (SE)) 

AD MCI-Converters MCI-Stable HC 
  

(n=148) (n=62) (n=277) (n=206) 

p-value 
Pairwise Comparisons 

(at p<0.01) 

 Age (yrs.) 75.4 (0.6) 74.3 (0.9) 75.1 (0.4) 76.0 (0.5) NS No pairs significant 

 Gender (M, F) 77, 71 36, 26 178, 99 107, 99 0.02 MCI-S>HC 

 Education (yrs.) 14.8 (0.2) 15.2 (0.4) 15.8 (0.2) 16.1 (0.2) p<0.001 HC, MCI-S>AD 

 Handedness (R, L) 141, 7 57, 5 253, 24 189, 17 NS No pairs significant 

 % English Speaking 98.7% 98.4% 97.5% 99.0% NS No pairs significant 

 % ApoE 4 Positive  

 (1 or 2 alleles) 
65.5% 59.7% 53.1% 27.2% p<0.001 AD, MCI-C, MCI-S>HC 

 

 MMSEe 23.5 (0.1) 26.7 (0.2) 27.1 (0.1) 29.1 (0.1) p<0.001 HC>allf; MCI-S, MCI-C>AD 

 Global CDRe 0.75 (0.01) 0.50 (0.02) 0.50 (0.01) 0.00 (0.01) p<0.001 AD>allg; MCI-S, MCI-C>HC 

 CDR – Sum of Boxese 4.3 (0.1) 1.9 (0.1) 1.5 (0.1) 0.3 (0.7) p<0.001 AD>allg; MCI-S, MCI-C>HC 

 FAQa,e 13.0 (0.4) 6.4 (0.5) 3.2 (0.3) 0.1 (0.3) p<0.001 All pairs significant 

 

 Geriatric Depression  

 Scalee 
1.6 (0.1) 1.3 (0.2) 1.6 (0.1) 0.8 (0.1) p<0.001 AD, MCI-S>HC 

 NPI-Qe 3.5 (0.2) 2.2 (0.3) 1.7 (0.2) 0.4 (0.2) p<0.001 AD>allg; MCI-S, MCI-C>HC 

 Modified Hachinskie 0.64 (0.06) 0.63 (0.09) 0.65 (0.04) 0.57 (0.05) NS No pairs significant 

 

 RAVLT (1-5)b,e 23.5 (0.7) 26.2 (1.1) 31.9 (0.5) 42.5 (0.6) p<0.001 HC>allf; MCI-S>MCI-C, AD  

 RAVLT 30min Recallc,e 0.8 (0.3) 1.2 (0.4) 3.1 (0.2) 7.5 (0.2) p<0.001 HC>allf; MCI-S>MCI-C, AD  

 RAVLT 30min  

 Recognitionc,e 
7.4 (0.3) 8.1 (0.4) 10.0 (0.2) 13.0 (0.2) p<0.001 HC>allf; MCI-S>MCI-C, AD  

 Boston Naming Testd,e 22.8 (0.3) 24.4 (0.5) 25.5 (0.2) 27.9 (0.3) p<0.001 HC>allf; MCI-S>AD  

 Fluency - Animalse 12.7 (0.4) 14.3 (0.6) 16.2 (0.3) 20.1 (0.3) p<0.001 HC>allf; MCI-S>AD  

 Fluency - Vegetablese 7.8 (0.3) 9.3 (0.4) 11.2 (0.2) 14.7 (0.2) p<0.001 HC>allf; MCI-S>MCI-C, AD  

 

 Total Intracranial 

 Volume (ICV)e 

1607159.5 

(14004.6) 

1598192.9 

(21470.1) 

1597844.8 

(10181.0) 

1576429.8 

(11855.6) 
p<0.001 No pairs significant 

a 3 MCI-Stable participants removed due to incomplete scores 
 b 7 participants removed due to incomplete scores (3 AD, 4 HC) 
 c 1 HC participant removed due to an incomplete score 
 d 3 participants removed due to incomplete scores (1 AD, 1 MCI-Stable, 1 HC) 
 e Covaried for age, education, gender, and handedness 
 f HC>all is HC>MCI-S, MCI-C, AD 

 g AD>all is AD>MCI-S, MCI-C, HC (Note: greater scores on these measures (CDR, FAQ, GDS, NPI-Q, Modified Hachinski) signify more impairment) 

 

group differences in smoothed, unmodulated normalized GM 
maps (see Figs. 2 & 3, unless noted, all differences are 
p<0.005 (FDR)). AD participants showed reduced density in 
nearly all GM regions compared to the HC group, with the 
maximum global difference in the left hippocampus (Fig. 2a, 
HC>AD). Surface renderings of the comparison between the 
HC and AD groups showed that the GM density of nearly 

the entire cortical surface is significantly lower in AD (Fig. 
2b, HC>AD), including significant differences in the tempo-
ral, frontal and parietal lobes. MCI-Converters also showed 
reduced GM density compared to HC, with a global maxi-
mum in the left hippocampus (Fig. 2c, HC>MCI-
Converters). The pattern of significant voxels in the compa-
rison between HC and MCI-Converters was very similar to 
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that seen in the HC>AD comparison, both in subcortical  
regions and on the cortical surface (Fig. 2d, HC>MCI-
Converters). Selected sections (Fig. 2e, HC>MCI-Stable) 
show a more focal distribution of differences in the compari-
son of GM maps from MCI-Stable and HC participants. 
MCI-Stable participants showed reduced GM density in  
focal bilateral MTL regions relative to HC, with a global 
maximum in the right parahippocampal gyrus and additional 
local maxima in bilateral amygdalar and hippocampal  
regions. Surface renderings reflect the focal distribution pat-
tern of significant voxels in the HC>MCI-Stable contrast 
(Fig. 2f, HC>MCI-Stable), with differences localized prima-
rily in the temporal and frontal lobes.  

 A widespread pattern of significant voxels was also  
detected in the comparison between the MCI-Stable and AD 

groups. MCI-Stable participants showed significantly higher 
GM density than AD in the MTL, including a global maxi-
mum difference in the left hippocampus (Fig. 3a, MCI-
Stable>AD) and additional local maxima in bilateral amyg-
dalar and hippocampal regions. The extensive pattern of GM 
differences between MCI-Stable and AD participants is 
further reflected in the surface renderings, with AD partici-
pants having significant GM reduction on nearly the entire 
cortical surface relative to MCI-Stable participants (Fig. 3b, 
MCI-Stable>AD). A more focal pattern was observed when 
comparing MCI participant groups. MCI-Converters had 
significantly reduced GM density relative to MCI-Stable 
participants in bilateral MTL regions, with a global maxi-
mum in the right insula and additional local maxima in bila-
teral amygdalar and hippocampal regions (Fig. 3c, MCI-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Group comparisons of healthy control participants and patient groups using a one-way ANOVA of GM density maps.  

Selected slices (A) and surface renderings (B) of regions where HC>AD. Selected slices (C) and surface renderings (D) of regions where 

HC>MCI-Converters. Selected slices (E) and surface renderings (F) of regions where HC>MCI-Stable. All comparisons are displayed at a 

threshold of p<0.005 (FDR), k=27. Age, gender, years of education, handedness and ICV were included as covariates in all comparisons. 

Selected sections for (A), (C), and (E) include left to right MNI coordinates: (0, -9, 0, coronal), (0, -23, -16, axial), (-26, -10, -15, sagittal), 

and (26, -10, -15, sagittal). 
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Stable>MCI-Converters). Surface renderings of the compari-
son between the MCI-Stable and MCI-Converter groups also 
show a focal pattern of GM differences in the frontal and 
temporal lobes (Fig. 3d, MCI-Stable>MCI-Converters). No 
significant voxels were found in the comparison between 
GM density maps from MCI-Converters and AD participants 
(Fig. 3, MCI-Converters>AD). At a lower statistical thres-
hold (p<0.001 (uncorrected)), AD participants showed  
reduced GM density in focal regions of the posterior parietal 
and occipital lobes relative to MCI-Converters (data not 
shown). 

 As noted above, similar contrasts were performed using 
matched participants in equal sized groups to control for 
power as a function of group size. This comparison resulted 
in a highly similar pattern of between-group differences as in 
the full sample but, as anticipated, at lower statistical thres-
holds due to attenuated power (data not shown). Results 
from comparisons between groups using modulated normali-
zed GM maps from the full sample were also highly similar 
to those using unmodulated images (data not shown). 

ROI Grey Matter Density Comparisons 

 Mean left and right hippocampal GM density values from 
the smoothed, unmodulated normalized GM maps of all 693 

participants were extracted as described above. GM density 
was significantly different between all groups for both the 
left and right hippocampi (Fig. 4a, p<0.001). In pairwise 
comparisons, HC participants showed significantly greater 
hippocampal GM density bilaterally relative to all other 
groups (p<0.001). MCI-Converters had significantly reduced 
local GM density relative to MCI-Stable participants in both 
the left (p=0.001) and right (p=0.034) hippocampi, as did 
AD participants (p<0.001 bilaterally). Hippocampal GM 
density did not differ significantly between AD participants 
and MCI-Converters. Analyses using smoothed, modulated 
normalized GM maps showed a similar pattern of results to 
those using unmodulated images (data not shown).  

FreeSurfer-Derived VOI and Cortical Thickness Com-

parisons 

 Bilateral hippocampal and amygdalar volumes and corti-
cal thickness values from the entorhinal cortex, inferior, 
middle, and superior temporal gyri, inferior parietal gyrus 
and precuneus were extracted from all 693 participants as 
described above. Comparisons of mean bilateral hippocam-
pal (Fig. 4b) and amygdalar (Fig. 4c) volumes and entorhinal 
cortex thickness (Fig. 4d) were significant across all groups 
(p<0.001), and show similar results in pairwise comparisons. 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Group comparisons of patient groups based on baseline diagnosis and one year conversion status using a one-way ANOVA 

of GM density maps.  

Selected slices (A) and surface renderings (B) of regions where MCI-Stable>AD. Selected slices (C) and surface renderings (D) of regions 

where MCI-Stable>MCI-Converters. No significant voxels were found in the comparison between MCI-Converters and AD participants. All 

comparisons are displayed at a threshold of p<0.005 (FDR), k=27. Using a more lenient statistical threshold, differences were apparent in the 

posterior parietal and occipital lobes (data not shown). Age, gender, years of education, handedness and ICV were included as covariates in 

all comparisons. Selected sections for (A) and (C) include left to right MNI coordinates: (0, -9, 0, coronal), (0, -23, -16, axial), (-26, -10, -15, 

sagittal), and (26, -10, -15, sagittal).  
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All of the clinical groups (MCI-Stable, MCI-Converters, 
AD) had decreased bilateral hippocampal and amygdalar 
volumes and entorhinal cortex thickness compared to HC 
(p<0.001). MCI-Converters also showed significant reducti-
ons relative to MCI-Stable participants, including reduced 
bilateral hippocampal volumes (p<0.001), bilateral amygda-
lar volumes (p<0.001 left, p=0.01 right), and thinner bilateral 
entorhinal cortex (p=0.006 left, p<0.001 right). AD partici-
pants had significant reductions in bilateral hippocampal and 
amygdalar volumes and entorhinal cortex thickness relative 
to MCI-Stable participants (p<0.001). However, MCI-
Converters and AD participants showed no significant diffe-
rences in any MTL measures (hippocampal and amygdalar 
volume or entorhinal cortex thickness).  

 Mean cortical thickness values from lateral temporal cor-
tices were also significantly different across groups (Fig. 5, 
p<0.001). Similar to other ROI and VOI comparisons, HC 
participants had significantly greater bilateral inferior (Fig. 
5a), middle (Fig. 5b) and superior (Fig. 5c) temporal gyrus 
cortical thickness relative to all other groups in pairwise 
comparisons (p<0.001). MCI-Converters had significant 

cortical thinning bilaterally relative to MCI-Stable partici-
pants in the inferior (p<0.001), middle (p<0.001 left, 
p=0.001 right), and superior (p=0.003 left, p=0.002 right) 
temporal gyri. AD participants also had significantly thinner 
bilateral inferior, middle, and superior temporal gyri relative 
to MCI-Stable participants (p<0.001). MCI-Converters and 
AD participants showed no temporal gyrus cortical thickness 
differences.  

 Parietal lobe cortical thickness values also showed signi-
ficant differences across all groups, specifically in the inferi-
or parietal gyrus (Fig. 6a, p<0.001) and precuneus (Fig. 6b, 
p<0.001). Pairwise comparisons showed similar patterns as 
those of other imaging biomarkers. HC participants had 
significantly greater cortical thickness in bilateral inferior 
parietal gyrus and precuneus relative to all other groups 
(p<0.001). AD participants had significantly reduced cortical 
thickness in bilateral inferior parietal and precuneus regions 
relative to MCI-Stable participants (p<0.001), as did MCI-
Converters (inferior parietal gyrus p=0.006 left, p=0.009  

 

 

 

 

 

 

 

 

 

Fig. (4). Extracted GM density, volume, and cortical thickness values from medial temporal lobe structures.  

Comparisons of GM density values (A) were extracted from the unmodulated VBM GM maps using standard left and right hippocampal 

ROIs traced on an independent sample of 40 HC participants [25, 58]. Bilateral hippocampal (B) and amygdalar (C) volume estimates and 

entorhinal cortex thickness values (D) were extracted using automated parcellation. The comparisons of all four MRI metrics show a signifi-

cant difference (p<0.001) across all groups. In pairwise comparisons, hippocampal GM density, hippocampal and amygdala volumes, and 

entorhinal cortex thickness show significant differences between HC and all clinical groups (p<0.001) bilaterally and MCI-Stable and AD 

groups (p<0.001) bilaterally. Furthermore, MCI-Stable and MCI-Converter groups show significant differences in GM density and volume in 

the left (GM (A), p=0.001; volume (B), p<0.001) and right (GM (A), p=0.034; volume (B), p<0.001) hippocampi, as well as significant  

differences in amygdala volume on both the left (p<0.001) and right (p=0.01). MCI-Converters also showed significantly thinner entorhinal 

cortices than MCI-Stable participants on both the left (p=0.006) and right (p<0.001). No significant differences were found in hippocampal 

GM density, hippocampal or amygdalar volumes, or entorhinal cortex thickness values between MCI-Converter and AD groups. Age,  

gender, years of education, handedness, and ICV were included as covariates in all comparisons. 
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Fig. (5). Cortical thickness values from the temporal lobe extracted using automated parcellation.  

Comparisons between cortical thickness values from three regions of the temporal lobe, including inferior (A), middle (B), and superior (C) 

temporal gyri, demonstrated significant differences (p<0.001) across all groups. Pairwise comparisons demonstrated significant differences in 

cortical thickness values for all temporal gyri bilaterally between HC and all other groups (p<0.001), as well as between the MCI-Stable and 

AD groups (p<0.001). The MCI-Converter and MCI-Stable groups also showed significant differences in cortical thickness in bilateral inferi-

or temporal gyri (p<0.001), left (p<0.001) and right (p=0.001) middle temporal gyri, and left (p=0.003) and right (p=0.002) superior temporal 

gyri. Cortical thickness values from bilateral inferior, middle, and superior temporal gyri were not significantly different between the MCI-

Converter and AD groups. Age, gender, years of education, handedness, and ICV were included as covariates in all comparisons. 

 

 

 

 

 

 

 

 

 

 

 
Fig. (6). Parietal cortical thickness values extracted using automated parcellation.  

Cortical thickness values from the inferior parietal gyrus (A) and precuneus (B) showed significant differences between groups (p<0.001). 

Pairwise comparisons showed significant differences in bilateral inferior parietal gyrus and precuneus between HC and all clinical groups 

(p<0.001), as well as between the MCI-Stable and AD groups (p<0.001). The MCI-Stable and MCI-Converter groups were significantly 

different in the left (p=0.006) and right (p=0.009) inferior parietal gyri and left (p=0.012) and right (p=0.013) precuneus. No significant 

difference was found between MCI-Converter and AD groups in either region. Age, gender, years of education, handedness and ICV were 

included as covariates in all comparisons.  

right; precuneus p=0.012 left, p=0.013 right). MCI-
Converters and AD participants showed no significant 
differences in either inferior parietal gyrus or precuneus 
cortical thickness values. 

Effect Sizes of Imaging Biomarkers 

 Imaging biomarkers extracted from both VBM GM maps 
and automated parcellation compared between MCI-
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Converters and MCI-Stable participants demonstrated large 
effect sizes in MTL structures, as well as in temporal and 
parietal lobar regions (Fig. 7). Bilateral mean hippocampal 
volume was found to have the highest effect size, with a 
Cohen’s d of 0.603. Cortical thickness values from the 
inferior and middle temporal gyri, as well as the entorhinal 
cortex, also showed strong effect sizes, with Cohen’s d 
values of 0.535, 0.529, and 0.493, respectively. Amygdalar 
volume (Cohen’s d=0.478), superior temporal cortical 
thickness (Cohen’s d=0.448), inferior parietal cortical 
thickness (Cohen’s d=0.417), precuneus cortical thickness 
(Cohen’s d=0.408), and hippocampal GM density (Cohen’s 
d=0.408) also showed high effect sizes. For illustrative 
purposes, imaging metrics with the 20 largest effect sizes are 
shown in Fig. (7). 

DISCUSSION 

 We examined baseline 1.5T T1-weighted MRI scans 
from 693 participants in the ADNI cohort to (1) characterize 
initial differences between the AD, MCI, and HC groups and 
(2) detect anatomic features associated with imminent con-
version from MCI to probable AD within one year (MCI-
Converters). We hypothesized that cross-sectional baseline 
differences would be consistent with the well-established 
progression from MTL structures to neocortical involve-
ment, and that those individuals with MCI who are about to 
convert to AD will appear more similar to AD prior to  
conversion than those MCI patients who remain stable for at 

least one additional year. Publically available and widely 
used semi-automated image analysis methodologies (VBM 
in SPM5, automated parcellation in FreeSurfer) were 
employed to assess these hypotheses.  

 Several key conclusions can be drawn from the obtained 
results. First, the overall pattern of structural MRI changes in 
MCI and AD patients observed at baseline in the ADNI co-
hort is similar to prior findings in other, typically smaller and 
less intensively characterized samples [11-17, 19, 21, 25-36,  
38-40, 43-46, 52, 53, 57, 73]. Second, MCI-Converters are 
distinguishable from individuals with MCI who will not 
show significant clinical progression over the next year 
(MCI-Stable). Third, MCI-Converters show significantly 
greater global and MTL-specific atrophy than MCI-Stable 
participants, a pattern previously reported in earlier studies 
with smaller samples [12, 13, 15, 18, 20, 22, 23, 31-36, 40-
45, 74, 75]. Fourth, MCI-Converters show a neuroimaging 
profile more similar to that seen in the AD group than that of 
the MCI-Stable group. The MCI-Converter group  
demonstrated a pattern of atrophic changes nearly equivalent 
to those of the AD group up to a year before meeting clinical 
criteria for probable AD. Finally, a comparison of effect  
sizes for contrasts between the MCI-Converter and MCI-
Stable groups on MRI metrics indicated that degree of neu-
rodegeneration of MTL structures is the best antecedent MRI 
marker of imminent conversion, with decreased hippocampal 
volume (left more than right) being the most robust struc-
tural MRI feature.  

 

 

 

 

 

 

 

 

 

Fig. (7). Effect sizes of the comparison between MCI-Stable and MCI-Converter groups evaluated for selected imaging biomarkers.  

GM density, volume, and cortical thickness were extracted using VBM and automated parcellation and compared between sub-groups based 

on MCI to AD conversion status after one year. Effect sizes (Cohen’s d) of comparisons between MCI-Stable and MCI-Converter groups 

showed that imaging biomarkers from the temporal lobe, including hippocampal and amygdalar volume and cortical thickness values from 

the entorhinal cortex and inferior, middle, and superior temporal gyri, provided the greatest statistical difference. Age, gender, handedness, 

education, and ICV were included as covariates and adjusted bilateral means were used to calculate effect size. 
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 There are several aspects to these results and analyses 
that warrant comment. This report is among the first, in the 
fully enrolled ADNI cohort, to assess group differences  
between AD, MCI, and controls at baseline, as well as to 
examine antecedent imaging predictors of future change in 
clinical status (i.e., conversion to probable AD, in patients 
with amnestic MCI). Our comparisons of the three baseline 
diagnostic groups using VBM are similar to previous reports 
using alternative methods to compare global atrophy  
between AD, MCI, and HC participants in the ADNI cohort 
[76-78]. One recent study from Hua et al. [77] found signi-
ficant MTL atrophy in both AD and MCI subjects in the 
ADNI cohort using tensor-based morphometry (TBM), simi-
lar to our results using VBM. Furthermore, our results using 
the one year MCI to AD converter population from the 
ADNI cohort provided congruent results with those of Hua 
et al., in which temporal lobe atrophy as assessed using 
TBM correlated with MCI to AD conversion in a subset of 
the ADNI MCI-Converters (n=40) [77]. A recent study using 
another imaging analysis technique (RAVENS) also found a 
similar pattern of distinctive atrophy in MCI-Converters re-
lative to MCI-Stable participants in a sub-sample (27 MCI-
Converter, 76 MCI-Stable) of the ADNI cohort, which could 
be used to predict MCI to AD conversion using a pattern 
classification technique [78]. In the present study, we were 
able to substantially extend the results of earlier partial  
cohort analyses by including the largest possible set of 
ADNI participants with usable data, since one year outcomes 
were only recently completed. Further, our multi-method 
approach included VBM-based analyses of GM density and 
volume and FreeSurfer-derived ROI analyses of volume and 
cortical thickness, which together provide a more detailed 
picture of anatomical differences between groups.  

 Studies employing VBM methods differ with regard to 
including a volume conserving step referred to as “modulati-
on” [8-10]. Briefly, unmodulated GM maps are typically 
interpreted as indicating differences in GM density or  
concentration. By contrast, VBM performed on modulated 
GM maps are interpreted as local GM volume estimates. At 
present there is no strong consensus in the literature regar-
ding which approach is more appropriate for a given applica-
tion. Furthermore, the pathophysiological significance of 
differences detected by one method versus the other has not 
been conclusively determined. Our primary VBM analyses 
were performed without modulation. We then repeated the 
analyses with the modulation step for comparison, and found 
highly similar patterns of GM differences between groups 
(Figs. 2 & 3, modulated data not shown). Specifically, the 
overall pattern of GM reduction for all patient groups (AD, 
MCI-Converters, MCI-Stable) compared to HC participants 
remained significant using both VBM methods, with the 
greatest differences remaining in bilateral MTL. Similarly, 
the pattern for MCI-Converters relative to the MCI-Stable 
participants was largely unaffected by analytic methodology. 
Analysis of GM values extracted from left, right and combi-
ned hippocampal ROIs defined in an independent cohort of 
healthy older adult controls [25, 58] showed similar group 
differences, and the effect size for MCI-Converters versus 
MCI-Stable participants was nearly identical (Figs. 4 & 7, 
modulated data not shown). Overall, inclusion of a volume 
conserving modulation step in the VBM analyses had little 

influence on the pattern or magnitude of group differences. 
This may in part be related to our inclusion of intracranial 
volume as a covariate in all analyses. To eliminate the possi-
bility of bias due to markedly unequal group sizes when 
comparing MCI-Converters and MCI-Stable participants, we 
repeated the main VBM analyses on four matched groups of 
equal size. Despite slightly attenuated power to detect group 
differences, the additional matched group analyses did not 
alter the overall pattern of results (data not shown). 

 The second major approach to assessing morphological 
changes in AD, MCI and controls entailed examining Free-
Surfer parcellation derived ROIs, selected on the basis of 
their status as important regions for AD pathology. Group 
differences were evaluated for left, right and combined  
hippocampal volume and GM density, additional MTL 
ROIs, and regional cortical thickness estimates. Significant 
differences between groups were found in hippocampal, a-
mygdalar, and other MTL regions, as well as widespread 
neocortical regions. These results are consistent with prior 
ROI and VOI studies in AD and MCI, in which hippocampal 
volumes [17, 25, 31-36, 38-40, 44, 48, 52, 53, 79], hippo-
campal GM density [19, 24, 25], and other regions [19, 31-
35, 38, 39, 43-47, 50, 51, 74, 75], were found to be signifi-
cantly decreased relative to HC. As in our VBM results, ROI 
measures indicated that participants who convert from MCI 
to AD within one year show significant atrophy relative to 
MCI participants who remain clinically stable, and also have 
a generally equivalent degree of atrophy to AD participants. 
Decreased hippocampal GM density and volume, amygdalar 
volume, and cortical thickness in entorhinal cortex, inferior, 
middle, and superior temporal gyri, inferior parietal gyrus, 
and precuneus reflect the antecedent structural characteristics 
of MCI-Converters compared to individuals with MCI who 
remained clinically stable for at least a year. Similar to the 
global atrophy detected using VBM, local measures of  
volume and cortical thickness detected significant degenera-
tion in MCI-Converters up to one year prior to the point at 
which they meet clinical criteria for an AD diagnosis,  
suggesting an accelerated rate of neuropathological changes 
in these individuals which is not well captured by the MCI  
diagnosis alone. Furthermore, these results, obtained from 
the largest group assessment of one year conversion from 
MCI to AD to date, extend the findings of previous smaller 
studies which have reported local atrophy in MCI to AD 
converters using measures of hippocampal, amygdalar,  
entorhinal cortex, and other MTL volume estimates [12, 13, 
15, 18, 20, 23, 31-34, 36, 37, 40, 42-45, 50, 74, 75, 80]. 

 Taken together, the present findings support the use of 
structural MRI as a biomarker for assessing prodromal and 
early AD related changes. An important implication of the 
analyses performed in this report is that although many  
regions and measurements are sensitive to early AD patholo-
gy, MRI markers have differential sensitivities for detection 
of those individuals who are at greatest risk of short-term 
progression to probable AD. The MRI measures with the 
largest effect sizes (far left, Fig. 7) for MCI-Converters ver-
sus MCI-Stable contrasts appear to be important biomarker 
candidates for prediction of MCI to AD conversion. Previous 
studies have investigated the use of MTL density and volu-
me in the prediction of MCI to AD conversion, with some 
reports finding significantly greater sensitivity and speci-
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ficity achieved by adding imaging biomarkers to clinical test 
prediction algorithms, while others suggested minimal utility 
of including additional imaging variables [31-34, 37, 42-45, 
47, 48, 51, 74, 75, 79, 81]. However, the majority of these 
studies included modest participant pools and manually 
drawn ROIs. The time-consuming nature of manual ROI 
tracing limits the utility of these endpoints as biomarkers in 
studies with large numbers of participants, as well as in rou-
tine clinical settings. Automated or semi-automated extracti-
on of volume and cortical thickness values from ROIs in the 
MTL requires minimal manual intervention. The largely au-
tomated nature and wide availability and use of this and  
other methods (e.g., [53, 82]) in assessing local and global 
atrophy will facilitate incorporation of these measures as key 
variables in pharmacological efficacy and neuroprotection 
trials.  

 A limitation of the present report is the inclusion of only 
baseline scans in characterizing anatomic changes. Additio-
nal information, including changes in imaging measures over 
time and rate of atrophy, has been shown to be useful in  
assessing and accurately predicting rapid conversion [41, 
42]. As a cross-sectional assessment of structural neuroima-
ging measures, the present study does not capture the dyna-
mic processes associated with MCI to AD conversion. Futu-
re studies assessing multiple timepoints, including two and 
three year MCI to AD conversion patterns, will be needed to 
determine the diagnostic and predictive value of dynamic 
measures of global and local atrophy. Furthermore, the cur-
rent participant pool includes 182 participants diagnosed 
with MCI at baseline who were on AD-indicated medicati-
ons during the first year of the study. Pharmacological treat-
ments, such as AChE inhibitors and memantine, have been 
shown to reduce or delay MCI to AD conversion [83-87]. 
The impact of medications was not assessed in the current 
study. Future studies should focus on including this variable 
in predicting and assessing conversion from MCI to AD. 
Another limitation of this report is the inclusion of only 
structural imaging. It is possible that FDG PET, obtained on 
approximately half of the ADNI cohort, could enhance the 
detection and characterization of antecedent changes alone or 
in combination with MRI and other measures. Targeted mo-
lecular PET imaging for amyloid deposition with [11C]PiB 
is also being investigated in a smaller add-on study in the 
ADNI cohort [88]. Future studies will undoubtedly clarify 
the contribution of FDG and PiB PET to understanding early 
changes and predicting clinical trajectory. Finally, the role of 
genetic factors was only considered to a limited degree in the 
present study by controlling for APOE genotype where  
appropriate. A genome wide association study employing a 
high density microarray with over 620,000 single nucleotide 
polymorphisms is underway by the ADNI Genetics Working 
Group and these forthcoming results will permit inclusion of 
data on individual differences in important biological 
pathways in predictive models. 

 In summary, a major goal of ADNI is to identify imaging 
biomarkers that could be used for early detection and predic-
tion of longitudinal changes in MCI and AD. Two semi-
automated, widely used and publically available image ana-
lysis methods (VBM, automated parcellation) revealed signi-
ficant global and local atrophy in AD and MCI patients in a 
large cohort from the ADNI sample at baseline relative to 

HC. These techniques were also successful at detecting dif-
ferences at baseline between participants who would convert 
from MCI to AD within one year and those who would  
remain stable with an MCI diagnosis for at least one year. 
The results of these analyses suggest that VBM and automa-
ted parcellation are useful tools for characterization of 
atrophy in MCI and AD and prediction of disease course. 
Employed with repeated scans for longitudinal monitoring of 
brain degeneration, these methods will be useful for clinical 
trials in MCI and AD. With further refinement, MRI coupled 
with advanced image analysis approaches appears to have 
potential for individualized prediction of risk of progression 
and enhancement of clinical trials by including those at grea-
test risk of conversion. 

FUNDING 

 Data collection and sharing was funded by the Alzhei-
mer’s Disease Neuroimaging Initiative (ADNI; Principal 
Investigator: Michael Weiner; NIH grant U01 AG024904). 
ADNI is funded by the National Institute on Aging (NIA), 
the National Institute of Biomedical Imaging and Bio-
engineering (NIBIB), and through generous contribution 
from the following: Pfizer Inc., Wyeth Research, Bristol-
Myers Squibb, Eli Lilly and Company, GlaxoSmithKline, 
Merck & Co. Inc., AstraZeneca AB, Novartis Pharma-
ceuticals Corporation, the Alzheimer’s Association, Eisai 
Global Clinical Development, Elan Corporation plc, Forest 
Laboratories, and the Institute for the Study of Aging, with 
parti-cipation by the U.S. Food and Drug Administration. 
Industry partnerships are coordinated through the Foundation 
for the National Institutes of Health. The grantee organizati-
on is the Northern California Institute for Research and Edu-
cation, and the study is coordinated by the Alzheimer’s  
Disease Cooperative Study at the University of California, 
San Diego. ADNI data are disseminated by the Laboratory of 
Neuro Imaging at the University of California, Los Angeles. 

 Data analysis was supported in part by the following 
grants from the National Institutes of Health: NIA R01 
AG19771 to AJS and P30 AG10133 to Bernardino Ghetti, 
MD and NIBIB R03 EB008674 to LS, and by the Indiana 
Economic Development Corporation (IEDC #87884 to AJS). 

ACKNOWLEDGEMENTS 

 The authors thank Aaron Cannon of Brigham Young 
University, Sungeun Kim, PhD of Indiana University School 
of Medicine, Nick Schmansky, MA, MSc and Bruce Fischl, 
PhD of Harvard Medical School, and Randy Heiland, MA, 
MS of Indiana University for their help. We also thank Ber-
nardino Ghetti, MD, Guest Editor and organizer of the  
Indiana ADC MCI Symposium in which initial results were 
presented. 

ABBREVIATIONS 

MRI = Magnetic resonance imaging 

ADNI = Alzheimer’s Disease Neuroimaging Initia-
tive 

AD = Alzheimer’s Disease 

MCI = Mild Cognitive Impairment 
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HC = Healthy elderly controls 

MTL = medial temporal lobe 

GM = Grey matter 

MP-RAGE = Magnetization prepared rapid acquisition 
gradient echo 

SPM = Statistical parametric mapping 

VBM = Voxel-based morphometry 

ROI = Region of interest 

VOI = Volume of interest 

FDR = False discovery rate 

ApoE = Apolipoprotein E  
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