Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Formulation and Evaluation of Neuroactive Drug Loaded Chitosan Nanoparticle for Nose to Brain Delivery: In-vitro Characterization and In-vivo Behavior Study

Author(s): Mohsin Qureshi, Mohd. Aqil*, Syed Sarim Imam, Abdul Ahad and Yasmin Sultana

Volume 16, Issue 2, 2019

Page: [123 - 135] Pages: 13

DOI: 10.2174/1567201815666181011121750

Price: $65

Abstract

Background: The present work was designed to explore the efficacy of neuroactive drug (risperidone) loaded chitosan lipid nanoparticle (RIS-CH-LNPs) to enhance the bioactivity in schizophrenia via the nasal route.

Methods: The three-factor and three-level formulation by design approach was used for optimization and their effects were observed on (Y1) size in nm, (Y2) % drug loading, and (Y3) % drug release. The optimized formulation RIS-CH-LNPopt was further evaluated for its surface morphology, ex-vivo permeation study, in-vivo behavior study, and stability study. The developed RIS-CH-LNPs showed nanometric size range with high drug loading and prolonged drug release.

Results: The optimized formulation (RIS-CH-LNPopt) has shown the particle size (132.7 nm), drug loading (7.6 %), drug release (80.7 %) and further ex-vivo permeation study showed 2.32 fold enhancement over RIS-SUS(suspension). In-vivo behavior studies showed that RIS-CH-LNPopt is able to show significant greater bioefficacy as compared to RIS-SUS [intranasal (i.n), intravenous (i.v)]. The pharmacokinetic and brain/plasma ratio of developed chitosan nanoparticle was higher at all time-points as compared to RIS-SUS either given by intranasal or intravenous route that proves the direct nose to brain transport pathway of the drug via nasal administration. The developed chitosan nanoparticle increases nose to brain drug delivery as compared to the dispersion of equivalent dose.

Conclusion: The findings of this study substantiate the existence of a direct nose-to-brain delivery route for RIS-CH-LNPs.

Keywords: Risperidone, behavior study, intranasal, catalepsy, locomotor, nanoparticle.

Graphical Abstract
[1]
Weiss, N.; Miller, F.; Cazaubon, S.; Couraud, P.O. The blood-brain barrier in brainhomeostasis and neurological diseases. Biochim. Biophys. Acta Biomembr, 2009, 1788, 842-857.
[2]
Hare, J.I.; Lammers, T.; Ashford, M.B.; Puri, S.; Storm, G.; Barry, S.T. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Adv. Drug Deliv. Rev., 2017, 108, 25-38.
[3]
Pardeshi, V.; Belgamwar, V.S. Direct nose to brain delivery via integrated nerve pathways bypassing the blood-brain barrier: An excellent plateform for brain targeting. Expert Opin. Drug Del., 2013, 10(7), 957-972.
[4]
Mustafa, G.; Ahuja, A.; Ali, J.; Md, S.; Kumar, N.; Singh, T.; Bhatnagar, A.; Baboota, S. Nose to brain targeting potential of a chitosan- coated nano-formulation: Pharmacodynamic and pharmacoscintigraphic evaluation. Sci. Adv. Mat., 2013, 5, 1-14.
[5]
Costantino, H.R.; Illum, L.; Brandt, G.; Johnson, P.H.; Quay, S.C. Intranasal delivery: Physicochemical and therapeutic aspects. Int. J. Pharm., 2007, 337(1-2), 1-24.
[6]
Illum, L. Is nose‐to‐brain transport of drugs in man a reality? J. Pharm. Pharmacol., 2004, 56, 3-17.
[7]
Khan, A.; Aqil, M.; Imam, S.S.; Ahad, A.; Sultana, Y.; Ali, A.; Khan, K. Temozolomide loaded nano lipid based chitosan hydrogel for nose to brain delivery: Characterization, nasal absorption, histopathology and cell line study Int. J. Biol. Macromol., 2018, S0141-8130(18), 31712-31714.
[8]
Hagan, D.T.O.; Critchley, H.; Farraj, N.F.; Fisher, A.N.; Johansen, B.R.; Davis, S.S.; Illum, L. Nasal absorption enhancers for biosynthetic human growth hormone in rats. Pharm. Res., 1990, 7, 772-776.
[9]
Mistry, A.; Stolnik, S.; Illum, L. Nanoparticles for direct noseto- brain delivery of drugs. Int. J. Pharm., 2009, 379(1), 146-157.
[10]
Yoshino, T.; Machida, Y.; Onishi, H.; Nagai, T. Preparation and characterization of chitosan microspheres containing doxifluridine. Drug Dev. Ind. Pharm., 2003, 29(4), 417-427.
[11]
Elnaggar, Y.S.; Etman, S.M.; Abdelmonsif, D.A.; Abdallah, O.Y. Intranasal piperine-loaded chitosan nanoparticles as brain-targeted therapy in Alzheimer’s disease: Optimization, biological efficacy, and potential toxicity. J. Pharm. Sci., 2015, 104(10), 3544-3556.
[12]
Kumar, M.; Misra, A.; Babbar, A.K.; Mishra, A.K.; Mishra, P.; Pathak, K. Intranasal nanoemulsion based brain targeting drug delivery system of risperidone. Int. J. Pharm., 2008, 358, 285-291.
[13]
Imam, S.S.; Aqil, M.; Ahad, A.; Akhtar, M.; Sultana, Y.; Ali, A. Formulation by design-based proniosome for accentuated transdermal delivery of risperidone: In vitro characterization and in vivo pharmacokinetic study. Drug Deliv., 2015, 22(8), 1059-1070.
[14]
Prieto, M.J.; Temprana, C.F.; Zabala, N.E.R.; Marotta, C.H.; Alonso, S.V. Optimization and in vitro toxicity evaluation of G4 PAMAM Dendrimere risperidone complexes. Eur. J. Med. Chem., 2011, 46, 845-850.
[15]
Courchesne, E.; Pierce, K.; Schumann, C.M.; Redcay, E.; Buckwalter, J.A.; Kennedy, D.P.; Morgan, J. Mapping early brain development in autism. Neuron, 2007, 56, 399-413.
[16]
Etheridge, M.L.; Campbell, S.A.; Erdman, A.G.; Haynes, C.L.; Wolf, S.M.; McCullough, J. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine., 2013, 9(1), 1-14.
[17]
Markman, J.L.; Rekechenetskiy, A.; Holler, E.; Ljubimova, J.Y. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv. Drug Deliv. Rev., 2013, 65(13-14), 1866-1879.
[18]
Tiwari, S.B.; Amiji, M.M. A review of nanocarrier-based CNS delivery systems. Curr. Drug Deliv., 2006, 3(3), 219-232.
[19]
Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed, 2017, 12, 1227-1249.
[20]
Raj, R.; Wairkar, S.; Sridhar, V.; Gaud, R. Pramipexole dihydrochloride loaded chitosan nanoparticles for noseto brain delivery: Development, characterization and in vivo anti-Parkinson activity. Int. J. Biol. Macromol., 2018, 109, 27-35.
[21]
Henriksen, I.; Green, K.L.; Smart, J.D.; Smistad, G.; Karlsen, J. Bioadhesion of hydrated chitosans: An in vitro and in vivo study. Int. J. Pharm., 1996, 145, 231-240.
[22]
Ozsoy, Y.; Gungor, S.; Cevher, E. Nasal delivery of high molecular weight drugs. Molecules, 2009, 14, 3754-3779.
[23]
Casettari, L.; Illum, L. Chitosan in nasal delivery systems for therapeutic drugs. J. Control. Release, 2014, 190, 189-200.
[24]
Rosas, J.G.; Blanco, M.; Gonzalez, J.M.; Alcala, M. Quality by design approach of a pharmaceutical gel manufacturing process, Part 1: Determination of the design space. J. Pharm. Sci., 2011, 100, 4432-4441.
[25]
Rosas, J.G.; Blanco, M.; Gonzalez, J.M.; Alcala, M. Quality by design approach of a pharmaceutical gel manufacturing process, Part 2: Near infrared monitoring of composition and physical parameters. J. Pharm. Sci., 2011, 100, 4442-4451.
[26]
Jahangir, M.A.; Khan, R.; Imam, S.S. Formulation of sitagliptin-loaded oral polymeric nano scaffold: process parameters evaluation and enhanced anti-diabetic performance. Artif. Cells Nanomed. Biotechnol., 2017, 9, 1-13.
[27]
Khan, A.; Imam, S.S.; Aqil, M.; Ahad, A.; Sultana, Y.; Ali, A.; Khan, K. Brain targeting of temozolomide via the intranasal route using lipid-based nanoparticles: Brain pharmacokinetic and scintigraphic analyses. Mol. Pharm., 2016, 13, 3773-3782.
[28]
Shah, B.; Khunt, D.; Misra, M.; Padh, H. Application of Box-Behnken design for optimization and development of quetiapine fumarate loaded chitosan nanoparticles for brain delivery via intranasal route. Int. J. Biol. Macromol., 2016, 89, 206-218.
[29]
Imam, S.S.; Aqil, M.; Ahad, A.; Akhtar, M.; Sultana, Y.; Ali, A. Formulation by design based risperidone nano soft lipid vesicle as a new strategy for enhanced transdermal drug delivery: In-vitro characterization, and in-vivo appraisal. Mater. Sci. Eng. C, 2017, 75, 1198-1205.
[30]
Jia, L.; Zhang, D.; Li, Z.; Duan, C.; Wang, Y.; Feng, F.; Wang, F.; Liu, Y.; Zhang, Q. Nano-structured lipid carriers for parenteral delivery of silybin: Biodistribution and pharmacokinetic studies. Colloids Surf. B., 2010, 80, 213-218.
[31]
Imam, S.S.; Aqil, M.; Ahad, A.; Akhtar, M.; Sultana, Y.; Ali, A. Optimization of mobile phase by 32-mixture design for the validation and quantification of risperidone in bulk and pharmaceutical formulations using RP-HPLC. Anal. Methods, 2014, 6, 282-288.
[32]
Qumbar, M. Ameeduzzafar; Imam, S.S.; Ali, J.; Ahmed, J.; Ali, A. Formulation and optimization of lacidipine loaded niosomal gel for transdermal delivery: In-vitro characterization and in-vivo activity. Biomed. Pharmacother., 2017, 93, 255-266.
[33]
Baig, M.S.; Ahad, A.; Imam, S.S.; Aqil, M. Application of Box–Behnken design for preparation of levofloxacin-loaded stearic acid solid lipid nanoparticles for ocular delivery: Optimization, in vitro release, ocular tolerance, and antibacterial activity. Int. J. Biol. Macromol., 2016, 85, 258-270.
[34]
Costa, P.; Lobo, J.M.S. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci., 2001, 13, 123-133.
[35]
Peppas, N.A. Analysis of Fickian and non-Fickian drug release from polymers. Pharm. Acta Helv., 1985, 60, 110-111.
[36]
Trevitt, J.; Vallance, C.; Harris, A.; Goode, T. Adenosine antagonists reverse the cataleptic effects of haloperidol: Implications for the treatment of Parkinson’s disease. Pharmacol. Biochem. Behavior., 2009, 92, 521-527.
[37]
Costain, W.J.; Buckley, A.T.; Evans, M.C.; Mishra, R.K.; Johnson, R.L. Modulatory effects of PLG and its peptidomimetics on haloperidol-induced catalepsy in rats. Peptides, 1999, 20(6), 761-766.
[38]
Dews, P.B. The measurement of the influence of drugs on voluntary activity in mice. Br. J. Pharmacol. Chemother., 1953, 8, 46-48.
[39]
Eskandari, S.; Varshosaz, J.; Minaiyan, M.; Tabbakhian, M. Brain delivery of valporic acid via intranasal administration of nanostructured lipid carriers: in vivo pharmacodynamic studies using rat electroshock model. Int. J. Nanomed, 2011, 6, 363-371.
[40]
Alam, M.I.; Baboota, S.; Ahuja, A.; Ali, M.; Ali, J.; Sahni, J.K. Nanostructured lipid carrier containing CNS Acting drug: Formulation, optimization and evaluation. Curr. Nanosci., 2011, 7, 1014-1027.
[41]
Patil, G.B.; Patil, N.D.; Deshmukh, P.K.; Patil, P.O.; Bari, S.B. Nanostructured lipid carriers as a potential vehicle for Carvedilol delivery: Application of factorial design approach. Artif. Cells Nanomed. Biotechnol., 2016, 44, 12-19.
[42]
Muller, R.H.; Runge, S.; Ravelli, V.; Mehnert, W.; Thunemann, A.F.; Souto, E.B. Oral bioavailability of cyclosporine: Solid lipid nanoparticles (SLN) versus drug nanocrystals. Int. J. Pharm., 2006, 317(1), 82-89.
[43]
Kumar, M.; Pandeya, R.S.; Patra, K.C.; Jain, S.K.; Sonia, M.L.; Dangi, J.S.; Madan, J. Evaluation of neuropeptide loaded trimethyl chitosan nanoparticles for nose to brain delivery. Int. J. Biol. Macromol., 2013, 61, 189-195.
[44]
Misra, A.; Ganesh, S.; Shahiwala, A. Drug delivery to the central nervous system. J. Pharm. Pharm. Sci., 2003, 6, 252-273.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy