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Abstract: The blood brain barrier (BBB) is a physical and biochemical barrier that restricts the entry of certain drugs to the Central 
Nervous System (CNS), while allowing the passage of others. The ability to predict the permeability of a given molecule through the 
BBB is a key aspect in CNS drug discovery and development, since neurotherapeutic agents with molecular targets in the CNS 
should be able to cross the BBB, whereas peripherally acting agents should not, to minimize the risk of CNS adverse effects. In this 
review we examine and discuss QSAR approaches and current availability of experimental data for the construction of BBB 
permeability predictive models, focusing on the modeling of the biorelevant parameter unbound partitioning coefficient (Kp,uu) . 
Emphasis is made on two possible strategies to overcome the current limitations of in silico models: considering the prediction of 
brain penetration as a multifactorial problem, and increasing experimental datasets through accurate and standardized experimental 
techniques. 
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1. INTRODUCTION 

In the field of Central Nervous System (CNS) drug R&D, 
where crossing the blood brain barrier (BBB) is a key step 
for biodistribution, in silico models have been extensively 
used for the prediction of a drug's brain penetration ability, 
on the basis of different independent variables or descriptors. 
From the 1980 work by Levin et al, where quantitative 
relationships of rat brain capillary permeability coefficient 
with the octanol/water partition coefficient and molecular 
weight of 27 compounds were presented [1], many other 
models have been proposed and reviewed [2–6]. 

However, in recent years a significant change of 
paradigm has been evidenced, changing the BBB transport 
modeling approach from less to more biorelevant 
parameters, mainly due to the identification of unbound, 
pharmacologically active drug as the most relevant 
molecular entity [7,8]. 
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The potential of the Quantitative Structure-Activity 
Relationship (QSAR) approach seems to be enormous: to 
predict not only the biological activity, but also the 
pharmacokinetic profile of a given compound (including its 
ability to cross de BBB), by expressing the desired property 
of a group of compounds as a function of several molecular 
descriptors, in order to generate a model that is then used to 
predict the same property for other compounds not included 
in the training set [9]. However, achieving good prediction 
accuracy with computational methods for estimating brain 
transport in early drug discovery still remains a challenging 
task.  

The prediction errors due to poor application of statistical 
methods and recommended guidelines are two of the main 
reasons for the lack of prediction ability [10,11]. Back in 
2009, Dearden et al. listed and discussed the most common 
of these problems, which can be roughly classified into 
failure of the data, failure of the descriptors used, failures in 
the generation, validation and/or interpretation of the model 
and failures in the statistical methods applied [12]. 
Furthermore, underlying any QSAR model is the notion that 
similar chemical structures mean similar biological activities 
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or properties. The most common type of QSARs misuse is 
extrapolation beyond their domain. A QSAR is defined and 
limited by the nature and quality of the data used for its 
development, and it is applicable only to compounds that 
belong to the chemical classes included in the training set 
[13]. 

Hence, the current challenge is to expand QSARs 
applications while minimizing its limitations, which can only 
be done by developing better models, based in high-quality 
experimental data sets and more biorelevant descriptors and 
modeling parameters. For that reason this review begins 
discussing the current knowledge on the BBB and the 
models reported (and the parameters used) for the prediction 
of brain penetration based on the unbound concentration of 
the drug, as well as about the experimental methods 
currently available to determine that concentration, and some 
of the possible ways to optimize BBB penetration 
predictions. In particular, we believe that there is no single 
way to address the issue, and that future improvements will 
come from multifactorial approaches that take into account 
all of the different aspects of the problem and the complexity 
imposed by the BBB, as well as the multiplicity of inter-
related processes that simultaneously occur when trying to 
deliver a drug to the CNS. 

2. BLOOD-BRAIN BARRIER PENETRATION  

Many drugs interact with plasma or tissue proteins, or 
other macromolecules such as melanin and DNA, to form a 
drug-macromolecule complex [14]. The formation of a drug 
protein complex (drug-protein binding) may be an 
irreversible or a reversible process, the latter being the most 
common one, with different binding strength for each drug. 
Reversible drug-protein binding is of major interest in 
pharmacokinetics (PK): the protein-bound drug is a large 
complex that cannot easily cross cell membranes and 
therefore has a restricted distribution. Moreover, the protein-
bound drug is usually pharmacologically inactive. In 
contrast, the free or unbound fraction of the drug is able to 
distribute from the vascular space into tissues where it can 
interact with the therapeutic target to induce its 
pharmacodynamics response [15].  

The aforementioned is usually called the “free-drug 
hypothesis”, which in other words states that only the free, 

unbound fraction of a drug present at its site of action is 
responsible for the pharmacologic response and, since it is 
the only fraction able to cross cell membranes, free drug 
concentration is in equilibrium across those membranes 
(assuming only passive transport) at steady state [16]. The 
BBB, possibly the most selective and tightly controlled of 
these barriers, is a clear example of this situation: formed by 
the endothelial cells of brain microvessels, the BBB is a 
dynamic multicellular structure that separates the CNS from 
the systemic circulation [17,18].  

Between the cells that form the BBB there are very tight 
lateral connections (tight junctions) that limit paracellular 
permeability of drugs and other compounds, which are thus 
forced to cross the BBB through the transcellular path (see 
Figure 1) [19]. This is the way of entry of most of the 

current therapeutic drugs used for the treatment of CNS 
diseases, usually small lipophilic molecules capable of 
passively crossing plasmatic membranes, like 
benzodiazepines or barbiturates, among many others. Two 
other mechanisms are available to pass through the BBB: 
the active transport route, mediated by influx and/or efflux 
transporters, and the endocytic route (receptor and/or 
adsorption mediated, only way of accessing for large 
molecules, nanoparticles and high molecular weight 
complexes) [20,21]. Efflux transporters of the ATP binding 
cassette family (ABC transporters) deserve a special mention 
since they are responsible for extruding drugs from the brain, 
which in turn reduces drugs’ CNS bioavailability [22–24]. P-
glycoprotein (Pgp), Multidrug Resistant Protein (MRP) and 
Breast Cancer Resistant Protein (BCRP) are the three most 
studied members of this family, and its ability to move their 
substrates out of cells has been proved to be a major obstacle 
in CNS drug delivery [25–27]. 

Figure 1. Transcellular transport routes across the BBB. In the 
scheme, three molecules (squares) enter the endothelial cell by 
passive diffusion through the membrane and once there, while two 
of them reach the CNS, the other one is captured and extruded by 
an efflux pump. The carrier-mediated influx and the endocytic 
pathway are also displayed. 

Being the main transport route across the BBB, the 
transcellular passive diffusion pathway is the most studied 
one, and the applicability of the free drug hypothesis has 
already been proved for a great variety of drugs with 
different targets and belonging to different therapeutic areas 
[28].  

Keeping that in mind, it follows that the free drug 
fraction is a much more informative modeling parameter to 
describe the distribution equilibrium established across the 
BBB.  Despite that plasma drug concentrations are generally 
reported as total concentrations (most therapeutic effective 
drug levels found in the literature refer to the total 
concentration), it is now widely accepted that the free levels 
lead to more informative (and accurate) PK/PD relations and 
QSAR models [28–32].   

It is worth to highlight, however, that if the passive 
diffusion is low, or the active transport (both for efflux or 
influx of the drug to the tissue) is significant, an equilibrium 
with equal free levels at both sides of the BBB will not be 
reached. In other words, a new equilibrium with dissimilar 
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free concentrations between plasma and CNS will be 
attained. Other exception to the applicability of the 
hypothesis are those drugs that irreversibly bind to its target, 
as well as the drugs with multiple receptors and/or 
mechanisms of action [16].  

Figure 2 shows a schematic representation of the 
different fractions (bound/unbound) of a drug across the 
BBB. The scheme reflects that, despite both fractions exist 
on both sides of the membrane, only the free drug is able to 
diffuse and thus reaches the equilibrium at steady state. 

 

Figure 2. Schematic representation of the different equilibriums 
that a drug may experience at both sides of the BBB. The different 
plasma and brain drug concentrations and the corresponding 
concentration ratios are showed. 

2.1 Parameters that describe brain-to-plasma 
distribution  

Table 1 presents a summary of the main parameters that 
have been proposed to describe the distribution of drugs 
between brain and plasma [9,33,34] 

As stated before, not all the proposed parameters are 
equally suitable to optimize lead drugs and/or to guide the 
R&D of new drug candidates. Among the most informative 
are unbound drug concentration in brain (Cu,brain), unbound 
brain-to-unbound plasma ratio (Kp,uu), and brain-to-unbound 
plasma ratio (Kp,u). The parameter Kp,u only eliminates the 
effect of binding in plasma and is defined as the ratio of the 
total brain (Cbrain) to unbound plasma (Cu,plasma) 
concentrations of the drug. Based on the assumption of 
passive transport, Kp,u gives a measure of the percentage of 
protein binding in brain tissue [9] 

Parameters like kin or PS focus on the rate of influx of 
drugs from plasma to brain, but give no information about 
the distribution process that follows. In a very interesting 
work, Summerfield et al. studied the relationship between kin 
and the parameters Kp and Kp,uu, finding a poor correlation in 
both cases, that the authors attributed to the fact that both Kp 
and Kp,uu are concentration distribution ratios and thus do not 

provide information about the rate of entry of drugs into the 
brain [35]. 

Other parameters like total brain-to-plasma ratio (or 
partition ratio, Kp) and its logarithmic expression (Log BB), 
as well as the unbound fraction in plasma or in brain (fu,plasma 
and fu,brain, respectively) provide little information to 
understand or predict the in vivo efficacy of drugs into the 
CNS [29]. Despite that, Log BB is clearly the most popular 
quantitative parameter and has been widely used by the 
pharmaceutical industry to determine the efficiency of drug 
distribution in the CNS [8,9,35]. By using models based on 
Log BB it is only possible to establish the total amount of 
drug in the brain once the distribution balance has been 
reached, but not to determine the corresponding free drug 
concentration, responsible for the pharmacological effect 
according to the free drug hypothesis discussed above 
[35,36].  

A clear example of the limited utility of Log BB to 
describe a drug’s pharmacological effects on the CNS can be 
found in a 2009 work by Watson et al., where the authors 
clearly demonstrated that in vivo occupancy of D2 receptors 
in rats was better correlated with Cu, brain (normalized by the 
in vitro affinity of the drug for the D2 receptor). Furthermore, 
given the penetration in terms of Kp, Risperidone was the 
drug with the lowest CNS entry, but that was dismissed 
because the drug possessed the highest free concentration 
associated with its high D2 potency [28].  

First introduced by Gupta et al. [37] the concept of Kp,uu 
is essential to assess if the distribution balance between 
blood and brain have been established. As showed first by 
Gupta and then by Bostrom et al. [38], this parameter 
provides information about the mechanism of transport 
across the BBB, and it is sensible to a compound’s affinity 
for the efflux/influx transporters found in the epithelial cells. 
Compounds with good passive permeability and that are not 
substrates of efflux transporters (e.g. Pgp, BCRP) typically 
present Kp,uu values close to 1. In the same manner, Kp,uu 
values less than 1 could indicate that a compound is substrate 
for an efflux transporter and/or it has limited brain 
penetration due to low passive permeability across the BBB, 
while Kp,uu values greater than 1 suggests active uptake by 
influx transporters [8,29,35].  

As stated before, possibly due to the easier experimental 
determination of Log BB (which in turns leads to a greater 
availability of experimental data), in silico models using Log 
BB are abundant in scientific literature, even in recent years 
[39–44], when the disadvantages and limitations of this 
parameter have been recognized [45–47]. Loryan et al. have 
recently studied the relationship between Kp and Kp,uu, 
finding no correlation between the parameters and hence 
concluding that different conclusions will arise from each of 
them [48].  

Therefore, the next sections of this review will focus on 
the most biorelevant parameter Kp,uu. Both the revision and 
the analysis of currently available Log BB (and Log PS) 
computational models can be found elsewhere (see for 
example [5,9,41,47,49–51] and references therein). 
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3. HOW TO MEASURE DRUG TRANSPORT ACROSS 
THE BBB 

All QSAR models rely on a set of experimental data, 
which size and quality determine the model prediction 
accuracy: widely scattered experimental data, for example, 
will incorporate their variability to the model [51,52], in the 
same manner that lower quality data is associated with a 
poorer statistical fit and usually lead to inaccurate 
predictions [13,53] 

Computational models to predict CNS bioavailability of 
drugs are not an exception, and the widespread use of Log 
BB highlights the lack of methods for measuring the free 
brain fraction of drugs in an efficient manner [54]. In other 
words, while abundant descriptions can be found for the 
experimental determination of Log PS and Log BB 
[9,35,51,55], determining a compound’s Kp,uu is a much 
harder task, that involves the experimental quantification of 
its free plasma and brain concentrations, both at the steady 
state.  

The gold standard techniques to measure the free drug 
fraction in plasma (fu,plasma) are equilibrium dialysis and 
ultrafiltration; the free plasma drug concentration (Cu,plasma) 
is then calculated by knowing the total plasma concentration 
(Cplasma, usually determined by chromatographic or 
immunologic methods). They are however time-consuming 
experimental techniques that require large sample volumes, 
among other drawbacks [56]. Therefore, other approaches to 
assess Cu,plasma  have been proposed using several other 
experimental techniques (spectroscopy, calorimetry, HPLC, 
capillary electrophoresis and surface plasmon resonance 
based biosensors [57,58]), corrective algorithms like the 
Sheiner-Tozer equation [59,60], and even the use of saliva, 
as a natural plasma ultrafiltrate, for the direct quantification 
of the free drug concentration [61,62]. 

On the other hand, the direct quantification of the free 
concentration in brain (Cu, brain) is possible only through in 
vivo intracerebral microdialysis (MD) [63,64], which 
involves the implantation of a probe into the brain by 
stereotaxic surgery. This invasive method is usually 
performed in rodents, and most commonly in rats. The probe 
is a tubular dialysis membrane with inlet and outlet tubes for 
perfusion and sample collection, which is perfused with 
artificial brain extracellular fluid [65], to assure that the 
diffusion of compounds is due only to the concentration 
gradient across the semipermeable membrane. Quantification 
of the drug is then performed in the sampled dialysate. An 
important aspect of the technique is that it requires an 
additional step for the determination of the recovery from the 
probe, because usually the concentration equilibrium at both 
sides of the membrane is not reached, and thus the 
concentration in the dialysate is lower than the true 
extracellular concentration in the brain [47,66–68].  

Despite being the gold standard, MD in rodents has 
several disadvantages that prevent it to become a high 
throughput technique: it is an expensive and time-consuming 
methodology that can only be performed by highly trained 
personnel. These drawbacks are most probably the cause of 
the insufficient Kp,uu data available to build QSAR models, 
and also the reason why other experimental techniques to 
determine Cu, brain have been proposed [69].  

Here, it is important to underline that even though the use 
of CSF concentrations has been proposed as an estimation of 
free brain concentration, it was demonstrated that both 
concentrations do not always correlate well [37,72,77,79]. 
On the other hand, the use of animal models to determine 
free brain concentrations is justified since human data are of 
limited use for QSAR modeling since intracerebral MD may 
be performed only in human patients suffering from a CNS 
or BBB affecting disease, and under very strict conditions 
[70].   

 

Table 1. Main parameters proposed to describe a drug’s brain-to-plasma distribution  

Parameter Expression Meaning 

Cplasma and Cbrain  Total concentrations in plasma and brain, which are the sum of the unbound and 
bound drug concentrations in each fluid. 

Cu, plasma and Cu, brain Cu, plasma = fu, plasma*Cplasma 
Cu, brain = fu, brain*Cbrain 

Free, diffusible and therapeutically active concentration of the drug in plasma 
and brain, respectively.  

fu, plasma and fu, brain  Fraction of unbound drug in plasma and brain, respectively.  

PS PS = -Q*ln(1 - kin/Q) (†) The permeability surface product (PS, or its logarithmic expression Log PS) is an 
intrinsic characteristic of the passive diffusion of a drug across the BBB 

Kp Kp = Cbrain/Cplasma The overall steady-state brain/plasma distribution ratio 
Log BB Log BB = log(Kp) Logarithmic expression of the total brain to plasma ratio 
Kp,u Kp,u = Cbrain/Cu, plasma Total brain to unbound plasma steady-state concentrations ratio 
Kp,uu Kp,uu = Cu, brain/Cu, plasma Unbound brain to unbound plasma steady-state concentrations ratio 
(†) The Renkin-Crone equation of capillary transport. The product of compound permeability (P) and capillary surface area (S) is equal to 
the intrinsic uptake (kin, an organ clearance, the unidirectional influx constant from plasma to brain) corrected for the blood flow rate (Q) 
[71,72]. 
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The homogenate technique first implemented by Kalvass 
and Maurer in 2002 involves placing a small sample of brain 
homogenate (brain tissue diluted with buffer and 
homogenized with a sonic probe) spiked with the drug under 
study into a 96-well equilibrium dialysis apparatus, and 
dialyzing versus fresh buffer [73,74]. Knowing the overall 
steady-state brain concentration (Cbrain) and determining the 
free fraction (fu, brain) by the previously described dialysis 
experiment, Cu, brain can be obtained. Therefore, it is a high-
throughput technique suitable for CNS drug discovery [75], 
but with one major weakness: the homogenization process 
may modify the tissue's binding properties, exposing 
additional drug binding sites and thus potentially leading to 
an underestimation of the free fraction [69,76]. 

Another method to estimate the free drug concentration 
in brain is the slice method [76,77], which consists in the 
incubation at 37 °C of brain slices (of around 400 µm in 
width) of rat or mouse in plasma or buffer spiked with a 
given amount of the test compound/s. To determine the 
steady-state fu, brain, aliquots of the buffer or plasma medium 
are withdrawn at designated time points, and the test 
compound is quantified by a suitable technique. As the 
homogenate technique, the slice method has also been 
developed as a high throughput one, with the additional 
advantage of allowing the maintenance of cell structure [78]. 

In a very interesting work, Fridén et al. compared the 
performance of the three methods mentioned above in a set 
of 15 compounds. Despite no significant differences were 
found for the in vitro and in vivo techniques, the slice 
method had a slightly better performance than the 
homogenate method, most probably due to the maintenance 
of the tissue viability, and the preservation of the distribution 
processes of the brain [77].  

In conclusion, the MD technique should be the first 
choice to measure the free drug concentration in brain. 
However, if a screening of several drug candidates is 
intended, the slice method could be a suitable option to 
obtain good fu, brain estimations within optimized times. 
Finally, the use of the homogenate method is not dismissed, 
taking into account the limitations of the method, which 
measures non-specific binding of drugs [79].  

4. QSAR MODELS TO PREDICT BBB 
PENETRATION 

As said before, QSAR models for the prediction of brain 
penetration were usually based on the Kp parameter, and we 
could only find four works that use Kp,uu as modeling 
parameter [45,46,54,80]. Table 2 presents a summary of 
these four QSAR models reviewed in this section. 

A computational model for the logarithmic expression of 
the unbound partition coefficient, Log Kp,uu, was first 
published by Fridén et al. [54], who obtained two models by 
partial least squares (PLS): one with 16 molecular 2D 
descriptors and the other with the HBA (number of hydrogen 

bond acceptors) descriptor only, with a cross-validated 
coefficient of correlation [81] (Q2) of 0.452 and 0.426, 
respectively. The training set consisted on 41 marketed drugs 
with a 300-fold range of Kp,uu values obtained by the slice 
method in steady state (equivalent to a 10000-fold range of 
Kp values). Besides the internal validation of the models, the 
authors performed an external validation with a test set of 54 
and 91 Kp,uu data obtained by the microdialysis and 
homogenate techniques, respectively. The result of this 
external validation, measured by the root mean squared error 
(RMSE) value for the 16-molecular descriptor model and the 
HBA model were 3.99 and 4.19, respectively. 

Despite that the results showed that only the 40-45% of 
the total variation could be explained by the models, it is 
interesting to observe that the most significant molecular 
descriptors were those related with the hydrogen bonding 
properties (polar surface area -PSA- and HBA), and the 
model with only the HBA descriptor showed that it is 
necessary to remove two hydrogen bonds to achieve a 2-fold 
increase in the Kp,uu value. 

Paradoxically, a Log BB model derived for the same 
training set and based on descriptors related to the 
lipophilicity, basicity and hydrogen bonding properties of the 
compounds showed better relative predictivity (Q2 = 0.693), 
but the authors advice against using it for drug design, since 
it would result in the selection of unnecessarily lipophilic or 
basic compounds without improved pharmacodynamics [54]. 

The moderate prediction power of Fridén's models could 
be due to the reduced size of the training set and the few 
descriptors calculated that could have prevented the 
achievement of a good SAR, and the low cases/independent 
variables ratio of the model with 16 molecular descriptors 
(around 2.5 cases of the training set per independent variable 
used). Additionally, the authors were not clear about the 
curation of the chemical structures prior to the descriptors' 
calculation. Overall, these factors (along with the large 
variability of data sources included in the test set) could have 
diminished the prediction accuracy of the models. 
Nevertheless, the work of Fridén et al. led to a new 
understanding of the factors affecting the passage of drugs 
through the BBB. 

The next report on a Kp,uu QSAR model is a 2011 work 
by Chen et al [80]. Using Random Forest (RF) and Support 
Vector Machine (SVM) algorithms, the authors derived 
direct and indirect regression models that were then 
combined in consensus Kp,uu models. While direct models 
were based on available Kp,uu data, indirect models were a 
combination of primary (or individual) models of total brain-
to-plasma ratio (Kp), unbound volume of distribution in the 
brain (Vu,brain) and unbound fraction of drug in plasma 
(fu,plasma), according to the following equation: 

brainubrainu

p
uup fV

K
K

,,
,


  
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Table 2. Summary of the QSAR models developed using Kp,uu as modeling parameter. When the authors derived more than one model for the 
same data set, the R2 and RMSE values of the best model are presented. PLS: partial least squares, SVM: support vector machine, RF: random 
forest, R2: coefficient of correlation, Q2: cross-validated coefficient of correlation, RMSE: root mean squared error. 
 

Reference Statistical  
Analysis Descriptors Data Set N Test Set 

R2 RMSE 

Friden et al. [54] PLS 16 2D descriptors 
training set 41 

0.452 (Q2) 3.99 
test set 145 

Chen et al. [80] SVM, RF 196 2D and 3D descriptors 
training set 173 

0.58 0.46 
test set 73 

Loryan et al. [45] PLS 188 1D, 2D and 3D descriptors 
training set 39 

0.82 0.31 
test set 11 

Varadharajan et al. [46] SVM, RF 196 2D and 3D descriptors;  
signature descriptors 

training set 242 
0.65 0.45 

test set 104 
 

Figure 3 shows the model building scheme and the 
number of compounds in each data set. The indirect models 
were necessary to take advantage of the larger amount of 
available Kp, Vu,brain and fu,plasma data compared to the Kp,uu 
data. The consensus models were obtained by averaging the 
predictions of two or more individual Kp,uu models. The 
direct, indirect and consensus models were validated with a 
test set of 73 compounds with Kp,uu values obtained by the 
slice method at stationary state [80]. 

The authors calculated a total of 196 2D and 3D 
descriptors, and found that those that were relevant for Kp,uu 
were not for Kp: while Kp,uu was highly correlated with 
Kappa2 descriptor (an estimation of molecular linearity) and 
no correlation was observed with ACDlogP (logP). These 
observations support the previous ones by Fridén et al. [54] 
about the independency of Kp,uu from molecular lipophilicity 
(as a measure of a compound’s ability to interact with a 

biologic membrane) and its relationship with other 
parameters (hydrogen bonding capacity, molecular linearity) 
that account for its interaction with membrane transporters. 
The best model obtained was one of the consensus models, 
with a correlation coefficient (R2) of 0.58, and the lowest 
RMSE (0.46) for the test set. 

The authors also studied the classification ability of the 
models, by using a Kp,uu threshold value of 0.1: compounds 
with Kp,uu  0.1 were regarded as having good brain 
bioavailability, and poor brain exposure was considered if 
Kp,uu.< 0.1. According to this classification criterion, the 
same consensus model showed the best performance, with 
85% and 89% of good classifications (%GC) in the training 
and test set, respectively. It is important to remark, however, 
that all the compounds in the test set presented good brain 
bioavailability. 

Among the reasons why the models of Chen et al. [80] 
showed a better performance than those obtained by Fridén 
et al. [54] we can cite the inclusion of more compounds in 
the training set, the calculation of more molecular descriptors 
and the implementation of consensus models. Moreover, the 

application of a classification criteria allowed the authors to 
evaluate the information with very good predictive power 
even though the arbitrary choice of the threshold value. On 
the other hand, the great variability of data sources in the 
training set of the indirect models may have been a source of 
prediction errors.  

A recent work by Loryan et al. [45] derived Kp,uu based 
QSAR models using training and test sets comprising 39 and 
11 compounds, respectively, with Kp,uu values obtained by 
the slice method, but instead of working at the stationary-
state, Kp values used for calculation were based on single 
dose studies (oral or subcutaneous) [48]. A total of 188 1D, 
2D and 3D molecular descriptors were calculated, and the 
models were obtained by PLS regression. The best model 
obtained presented the following values: R2 = 0.76 and Q2 = 
0.72 for the training set, and R2 = 0.82 and RMSE = 0.31 for 
the test set. The model comprised two molecular descriptors: 
vsurf_Cw8 and TPSA, both related to the compounds' 
polarity and hydrogen bonding ability, and the correlation 
was inverse: an increase in the descriptors’ value cause a 
decrease of the Kp,uu value. 

The developed model showed poor performance when 
the compounds from Friden's data set [54] that fell within the 
applicability domain (30 of 41) were used as external test 
set, indicating that TPSA and vsurf_Cw8 descriptors cannot 
adequately explain the variance in the Kp,uu for this 30 
compounds. Conversely, a good correlation was found when 
other two descriptors (vsurf_W1 and a_don, also related with 
the polarity and the ability to form hydrogen bonds) were 
used, suggesting that local models for a given data set could 
be an option to improve the prediction results or that 
alternatively, broader and more diverse datasets are still 
required. 

As in the previously reviewed studies, the hydrogen 
bonding capacity also proved to be an important factor 
affecting the transport across the BBB. However, the model 
of Loryan et al. is the first that also evidences the influence 
of polarity on the value of Kp,uu.  



QSAR Models to Predict Blood Brain Barrier Penetration           Mini-Reviews in Medicinal Chemistry, 2015, Vol. 0, No. 0     7 

 

Figure 3. Diagram of the methodology applied by Chen et al. to 
build the consensus, direct and indirect models [80]. The number of 
compounds in each data set is indicated in parentheses. 

 
While it may seem that this model has better performance 

than the previous two, the model of Chen has still the best 
performance in an external test set. As stated earlier, the data 
set used by Loryan et al. consisted in approximated Kp,uu 
values, calculated with Kp values obtained after a single dose 
administration. Although it has been proposed that this is a 
valid approach to obtain good approximations to the true 
Kp,uu value [48,82], only when the stationary state is reached 
all the distribution equilibriums across de BBB are 
established. 

The last article reviewed is a 2015 study published by 
Varadharajan et al. [46] that presents an expansion (and 
additional validation) of the 2011 work by Chen et al, by the 
addition of new data and new descriptors. In general, the 
methodology was similar and two data sets of Kp,uu obtained 
by the slice method at stationary-state were included: in 
addition to the original 247 compounds (data set 1), a second 
set of 99 new Kp,uu data were included (data set 2), as well as 
a third set consisting on the combination of the previous two 
(i.e. 346 compounds, data set 3). Atom-based descriptors 
were used to describe the extended valence of the atoms in 
the molecules (signature descriptors). Besides the 2-class 
classification system (CS) presented in 2011, the authors 
proposed a 3-class CS into low, medium and high brain 
bioavailability according to the threshold Kp,uu values of 0.3 
and 0.05. 

The validation of the original model (built with data set 
1) with the data set 2 yielded R2, RMSE and %GC values of 
0.53%, 0.58 and 76%, respectively, which were slightly 
lower than those reported in 2011. In addition, the %GC 
using the 3-class CS were 92%, 40% and 83% for high, 
medium and low classes respectively. The worst value 
observed for the medium class seems to indicate that the 
model could distinguish between high or low brain 
exposures, but not intermediate exposure compounds. 

The authors also developed six new models based on data 
set 3, which were then combined to build consensus models. 
As in 2011, two consensus models displayed the best 
performance with the highest average R2 and RMSE values 

(0.65 and 0.45, respectively). For the 2-class CS the %GC 
was near 84% for the best consensus models, a value similar 
to the one obtained for the high and low classes of the 3-
class CS (around 80%). However, as in the previous case, a 
poor classification precision was found for the moderate 
class (46% of GC). 

From these results, it can be seen that the new models 
(with the expanded data set) performed slightly better than 
the ones built with data set 1. Despite that, the 3-class CS did 
not represent any improvement, possibly due to the fact that 
every classification model possesses poor performance near 
the threshold values [83], which in this case were two 
instead of one. A possible and simple solution would be to 
define different threshold values according to the intended 
use of the model. For example, to search for BBB-crossing 
compounds, a conservative criterion could be used (e.g. Kp,uu 
> 0.6) to assure high prediction specificity.  

As a structural interpretation of the models, the authors 
presented the analysis of each atom contribution to the 
predicted value for 8 compounds (atom-summarized gradient 
contributions), an approach that could prove useful to guide 
molecular design in a drug discovery program. 

Although the results presented above are promising in 
terms of prediction of the passage through the BBB, all the 
reviewed studies have in common the lack of sufficient Kp,uu 
data. The available data sets are not only limited but also 
often imprecise, noisy or even contradictory and generated 
from different experimental protocols. Moreover, another 
factor that could jeopardize the models predictivity is the fact 
that the unbound fraction is not a single value to be assigned 
to any concentration for a particular drug, but instead 
different unbound fractions are observed for many drugs 
depending on their concentration [16].  

Taken altogether, these considerations, rather than 
discourage the use of QSAR modeling for CNS drug R&D, 
encourage us to keep looking for new and better alternatives 
to improve the prediction precision and accuracy of the 
models. 

5. FUTURE PERSPECTIVES 

Analyzing the trend in new drugs R&D through the 
years, it can be acknowledged that, after a golden era in the 
late 90s, the pharmaceutical industry experienced a decline 
in research productivity, where despite that the R&D 
investment increased substantially, the lack of a 
corresponding increase in the output was alarming, with the 
lowest number of new drug applications approved between 
2005-2010 [84–86]. Moreover, when analyzed by 
therapeutic areas, CNS is unfortunately among the less 
productive areas [87]. The most worrying aspect of this 
unfavorable statistics is that their overall effect is to 
discourage the investment in therapeutic areas where the 
chances for medical or scientific breakthroughs are lower 
[85]. In other words, the research for new molecular entities 
for the treatment of CNS disorders is in danger of presenting 
a downward trend in the coming years [88,89]. 
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In contrast, the incidence and socio-economical cost of 
CNS diseases are increasing at an upsetting rate and, 
according to a 2014 report of the World Health Organization, 
the burden of mental disorders continues to grow with 
significant impacts on health and major social, human rights 
and economic consequences all over the world [90].  

When trying to explain the main reasons for the failure in 
drug discovery and development, the arguments found 
usually belong to one of the next categories: drug 
metabolism and pharmacokinetic (DMPK) issues, 
toxicological issues, efficacy issues, clinical safety and/or 
commercial issues [84]. However, in the case of CNS 
disorders DMPK issues have always been regarded as the 
most troublesome due to the presence of the BBB as a major 
obstacle for the drugs to reach its active site inside the CNS.  

Despite that transport across the BBB depends mainly on 
the nature of the drug, its free plasma concentration and its 
ability to be captured by efflux transporters, there are many 
other factors that may influence the concentration gradient 
established through the BBB, like binding to brain tissue, 
enzymatic metabolism and/or the presence of different entry 
routes for the same compound, among others. Brain 
metabolism, for example, may affect the free concentration 
of a drug in the CNS, since metabolizing enzymes present at 
the BBB and/or brain tissue can influence the bioavailability 
of drugs in the brain [91]. Whereas all these processes can 
occur simultaneously and each of them can influence the rate 
and extent of the others, it is very important to take all these 
inter-relationships into account when predicting brain 
exposure [8].  

An interesting example of how various PK and PD 
factors can be interrelated is found when analyzing the effect 
of the already mentioned efflux transporters (ABC 
transporters). While it has been shown that the increased 
efflux transport in Caco-2 cells may decrease the parameter 
Kp,uu [92], another study found that among 24 compounds 
that exhibited low Kp,uu values (Kp,uu < 0.5), only 10 were 
identified as Pgp substrates, while several others of low and 
even very low Kp,uu  values (Kp,uu < 0.1) were not [48]. The 
antipsychotic drug Paliperidone belongs to the latter 
category, highlighting the importance of considering the PD 
potency when analyzing the likelihood of success of CNS 
drug candidates, as well as extending of these studies to 
other transporters overexpressed at the BBB. 

There are still many challenges in order to improve the 
prediction accuracy of QSAR models applied to 
pharmacokinetic properties. For example, classic models 
(like the ones reviewed here) are not able to properly 
describe the PK profile of drugs that modify their own 
biodistribution during chronic or prolonged use, like the 
anticonvulsant phenytoin, which induces its own extrusion 
from the CNS by inducing the expression of efflux 
transporters [93]. While this effect might be seen in an 
animal model of chronic treatment with the drug, other 
effects may not, like the influence of circadian rhythms, 
physiopathology and/or cardiovascular physiology of the 
patient on the distribution and disposition of the drug. Aging, 

as another example, leads to an increased blood flow 
delivery to the extra-splanchnic-renal region with a 
decreased cardiac output, but brain and myocardium have 
their cardiac output fraction increased in the elderly [94]. As 
a consequence, changes in plasma drug concentration may 
not proportionally translate in changes at the action site 
outside the vessels [95]. In other words, elderly and young 
patients could have the same free plasma concentration of a 
drug but different therapeutic effect, as has been reported for 
Diazepam and Digoxin [96,97]. 

Multifactorial approaches have already proven to be very 
promising strategies for the optimization of CNS drugs R&D 
[8,29,48,70]. The workflow proposed by Di et al. is a clear 
example of that: with parallel and sequential stages, it allows 
optimizing the screening for new CNS drug candidates by 
simultaneously seeking for the reduction of Pgp/BCRP 
efflux transport [98], the minimization of metabolic and 
systemic clearance reactions, and the increase of both 
permeability and solubility of the drug (Figure 4) [29]. 

In a study published in 2013, de Lange proposed a 
"Mastermind Approach", as a way to learn about the 
contributions of individual processes in drug PK-PD 
relationships through advanced mathematical modeling. The 
author proposed a model based on data of plasma PK, brain 
distribution and CNS effects of a drug, in which time-
dependency should also be included, as well as information 
on the unbound drug fraction [70]. Alternatively, Ball et al. 
developed a population physiologically based 
pharmacokinetic model (population PBPK model) of the 
CNS based on preclinical brain microdialysis data [99]. This 
multifactorial approach was able to accurately predict brain 
free drug concentrations in rats, and it is the first PBPK 
model based on free drug fractions. Along with the 
aforementioned approaches, we think that this could be the 
beginning of a new trend in predicting CNS bioavailability 
during early drug discovery.  

Figure 4. Screening workflow for CNS new drug candidates. 
Adapted with permission from Di et al. Demystifying Brain 
Penetration in Central Nervous System Drug Discovery. J Med 
Chem 56(1): 2-12. Copyright 2012 © American Chemical Society 
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CONCLUSION 

In order to potentiate the discovery and development of 
new drug candidates for treating CNS diseases, efforts have 
been focused on these physiologic barrier and, as we 
previously discussed, QSAR modeling became one of the 
main and most promising methodologies for the discovery of 
new drugs and/or new indications for known drugs (drug 
repurposing) [100,101].  

However, over the previous sections it has also been 
revealed that computational modeling of a single parameter 
by itself may not be sufficient to achieve a definitive solution 
to the CNS drug discovery problem, not only due to the 
limitations of the in silico methodology and the currently 
scarce available data sets, but also because of the 
multifactorial nature of the addressed issue.  

It seems that the research and the need for new CNS 
drugs are two sides of the same coin with opposite trends, 
where the challenge is to find the best approaches, or 
combination of them, to offer new therapeutic opportunities 
for treating these kinds of diseases. For sure, a better 
understanding of the variability sources in the PK/PD 
modeling of CNS drugs will help improve the development 
of new drug candidates and therapies [70]. 
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