Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

General Review Article

Synthesis of Pyrimidine-Annulated Five-Membered Heterocycles: An Overview

Author(s): Pradip Kumar Maji*

Volume 23, Issue 20, 2019

Page: [2204 - 2269] Pages: 66

DOI: 10.2174/1385272823666191019111627

Price: $65

Abstract

This review describes the non-exhaustive scenery of the synthesis of various biologically interesting pyrimidine annulated five-membered heterocyclic ring systems that have been appeared in the literature during the last two decades. During this period, different synthetic routes and various methodologies have been developed for the functionalization of pyrimidine ring towards the construction of five-membered heterocyclic rings. The aim of this review is to give an overview of the assorted methodologies that have been reported about the chemistry of construction of pyrimidines annulated nitrogen, oxygen and sulphur containing five-membered heterocycles.

Keywords: Pyrimidine annulated heterocycles, furopyrimidine, thienopyrimidine, pyrrolopyrimidine, imidazopyrimidine, indolopyrimidine, pyrazolopyrimidine, triazolopyrimidine.

« Previous
Graphical Abstract
[1]
(a) Singh, K.; Singh, K.; Wan, B.; Franzblau, S.; Chibale, K.; Balzarini, J. Facile transformation of Biginelli pyrimidin-2(1H)-ones to pyrimidines. In vitro evaluation as inhibitors of Mycobacterium tuberculosis and modulators of cytostatic activity. Eur. J. Med. Chem., 2011, 46(6), 2290-2294.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.010] [PMID: 21450375]
(b) Lauria, A.; Patella, C.; Abbate, I.; Martorana, A.; Almerico, A.M. Lead optimization through VLAK protocol: New annelated pyrrolo-pyrimidine derivatives as antitumor agents. Eur. J. Med. Chem., 2012, 55, 375-383.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.046] [PMID: 22892346 ]
(c) Roopan, S.M.; Khan, F.N.; Mandal, B.K. Fe nano particles mediated C-N bond-forming reaction: Regioselective synthesis of 3-[(2-chloroquinolin-3-yl)methyl]pyrimidin-4(3H)ones. Tetrahedron Lett., 2010, 51, 2309-2311.
[http://dx.doi.org/ 10.1016/j.tetlet.2010.02.128]
(d) Bharathi, A.; Roopan, S.M.; Vasavi, C.S.; Gayathri, G.A.; Gayathri, M. In silico molecular docking and in vitro antidiabetic studies of dihydropyrimido[4,5-a]acridin-2-amines. Biomed. Res. Inter., 2014, 971569, 1-9.
(e) Abou El Ella, D.A.; Ghorab, M.M.; Noaman, E.; Heiba, H.I.; Khalil, A.I. Molecular modeling study and synthesis of novel pyrrolo[2,3-d]pyrimidines and pyrrolotriazolopyrimidines of expected antitumor and radioprotective activities. Bioorg. Med. Chem., 2008, 16(5), 2391-2402.
[http://dx.doi.org/10.1016/j.bmc.2007.11.072] [PMID: 18086527]
(f) Gebauer, M.G.; McKinlay, C.; Gready, J.E. Synthesis of quaternised 2-aminopyrimido[4,5-d]pyrimidin-4(3H)-ones and their biological activity with dihydrofolate reductase. Eur. J. Med. Chem., 2003, 38(7-8), 719-728.
[http://dx.doi.org/10.1016/S0223-5234(03)00140-5] [PMID: 12932903]
[2]
(a) Nagarajaiah, H.; Mukhopadhyay, A.; Moorthy, J.N. Biginelli reaction: An overview. Tetrahedron Lett., 2016, 57, 5135-5149.
[http://dx.doi.org/ 10.1016/j.tetlet.2016.09.047]
(b) Elattar, K.M.; Rabie, R.; Hammouda, M.M. Recent developments in the chemistry of bicyclic 6-6 systems: Chemistry of pyrido[1,2-c]pyrimidines. Synth. Commun., 2016, 46, 1477-1498.
[http://dx.doi.org/10.1080/00397911.2016.1211702 ]
(c) Jubeen, F.; Iqbal, S.Z.; Shafiq, N.; Khan, M.; Parveen, S.; Iqbal, M.; Nazir, A. Eco-friendly synthesis of pyrimidines and its derivatives: A review on broad spectrum bioactive moiety with huge therapeutic profile. Synth. Commun., 2018, 48, 601-625.
[http://dx.doi.org/ 10.1080/00397911.2017.1408840]
(d) Manvar, A.; Shah, A. Microwave-assisted chemistry of purines and xanthines. An overview. Tetrahedron, 2013, 69, 8105-8127.
[http://dx.doi.org/10.1016/j.tet.2013.06.034]
[3]
(a) Melik-Ogandzhanyan, R.G.; Khachatryan, V.E.; Gapoyan, A.S. Furo-, Thieno-, and Pyrrolo-[2,3-d] pyrimidines. Russ. Chem. Rev., 1985, 54, 262.
[http://dx.doi.org/10.1070/RC1985v054n03ABEH003026 ]
(b) Campaigne, E.; Ellis, R.L.; Bradford, M.; Ho, J. Synthesis of some ureidodihydrofurans and related pyrimidones as potential antimalarials. J. Med. Chem., 1969, 12(2), 339-342.
[http://dx.doi.org/10.1021/jm00302a041] [PMID: 5783618 ]
(c) Blume, F.; Arndt, F.; Ress, R. Ger Patent 3712782 1988.
(d) Bhuiyan, M.M.H.; Rahman, K.M.M.; Hossain, M.K.; Rahim, M.A.; Hossain, M.I. Fused pyrimidines. part II: Synthesis and antimicrobial activity of Some furo[3,2-e]imidazo[1,2-c]pyrimidines and furo[2,3-d]pyrimidines. Croat. Chem. Acta, 2005, 78, 633-636.
(e) Gangjee, A.; Zeng, Y.; McGuire, J.J.; Kisliuk, R.L. Synthesis of classical, four-carbon bridged 5-substituted furo[2,3-d]pyrimidine and 6-substituted pyrrolo[2,3-d]pyrimidine analogues as antifolates. J. Med. Chem., 2005, 48(16), 5329-5336.
[http://dx.doi.org/10.1021/jm058213s] [PMID: 16078850]
(f) Gangjee, A.; Zeng, Y.; Ihnat, M.; Warnke, L.A.; Green, D.W.; Kisliuk, R.L.; Lin, F.T. Novel 5-substituted, 2,4-diaminofuro[2,3-d]pyrimidines as multireceptor tyrosine kinase and dihydrofolate reductase inhibitors with antiangiogenic and antitumor activity. Bioorg. Med. Chem., 2005, 13(18), 5475-5491.
[http://dx.doi.org/10.1016/j.bmc.2005.04.087] [PMID: 16039863]
(g) Gangjee, A.; Zeng, Y.; McGuire, J.J.; Mehraein, F.; Kisliuk, R.L. Synthesis of classical, three-carbon-bridged 5-substituted furo[2,3-d] pyrimidine and 6-substituted pyrrolo[2,3-d]pyrimidine analogues as antifolates. J. Med. Chem., 2004, 47(27), 6893-6901.
[http://dx.doi.org/10.1021/jm040123k] [PMID: 15615538 ]
(h) Dave, C.G.; Shah, R.D. Annellation of triazole and tetrazole systems onto pyrrolo[2,3-d]pyrimidines: Synthesis of tetrazolo[1,5-c]-pyrrolo[3,2-e]-pyrimidines and Triazolo[1,5-c]pyrrolo-[3,2-e]pyrimidines as potential antibacterial agents. Molecules, 2002, 7, 554-565.
[http://dx.doi.org/10.3390/70700554 ]
(i)Janeba, Z.; Balzarini, J.; Andrei, G.; Snoeck, R.; De Clercq, E.; Robins, M.J. Synthesis and biological evaluation of acyclic 3-[(2-hydroxyethoxy)-methyl] analogues of antiviral furo- and pyrrolo[2,3-d]pyrimidine nucleosides. J. Med. Chem., 2005, 48, 4690-4696. (k) Robins, M.J.; Miranda, K.; Rajwanshi, V.K.; Peterson, M.A.; Andrei, G.; Snoeck, R.; De Clercq, E.; Balzarini, J. J. Synthesis and biological evaluation of 6-(alkyn-1-yl)furo[2,3-d]pyrimidin-2(3h)-one base and nucleoside derivatives. J. Med. Chem., 2006, 49, 391-398. l) McGuigan, C.; Balzarini, J. Aryl furanopyrimidines: The most potent and selective anti-VZV agents reported to date. Antiviral Res., 2006, 71, 149-153.
[4]
Majumdar, K.C.; Ganai, S.; Nandi, R.K. Regioselective synthesis of pyrimidine-annulated spiro-dihydrofurans by silver-catalyzed 5-endo-digcyclization. N J. Chem., 2011, 35, 1355-1359.
[http://dx.doi.org/10.1039/c1nj20121b]
[5]
Majumdar, K.C.; Mukhopadhyay, P.P. Regioselective aryl radical cyclization: Access to pyrimidine-annelated spiro heterocycles through 5-exo ring closure. Synthesis, 2004, 1864-1868.
[http://dx.doi.org/10.1055/s-2004-829133]
[6]
(a) Bhattacharya, R.N.; Kundu, P.; Maiti, G. Antimony trichloride catalyzed three-component reaction of urea, aldehydes and cyclic enol ethers: a novel route to 4-arylhexahydrofuro[2,3-d]pyrimidin-2(3H)-ones. Tetrahedron Lett., 2011, 52, 26-28.
[http://dx.doi.org/10.1016/j.tetlet.2010.10.064 ]
(b) Zhu, Y.; Zhao, S.; Zhang, M.; Song, X.; Chang, J. Diastereoselective synthesis of spirobarbiturate-cyclopropanes through organobase-mediated spirocyclopropanation of barbiturate-based olefins with benzyl chlorides. Synthesis, 2019, 51, 899-906.
[http://dx.doi.org/10.1055/s-0037-1609637]
[7]
(a) Majumdar, K.C.; Das, U.; Kundu, U.K.; Bandyopadhyay, A. Regioselective synthesis of pyrimidine annelated heterocycles from 6-(cyclohex-2-enyl)-1,3-dimethyl-5-hydroxyuracil. Tetrahedron, 2001, 57, 7003-7007.
[http://dx.doi.org/10.1016/S0040-4020(01)00656-1 ]
(b) Majumdar, K.C.; Samanta, S.K. Synthesis of pyrimidine-annelated heterocycles: Regioselective heterocyclization of 5-(cyclohex-2-enyl)-1,3-dimethyl-6-hydroxyuracil. Monatsh. Chem., 2002, 133, 1187-1192.
[http://dx.doi.org/10.1007/s007060200088]
[8]
Hudson, R.H.E.; Moszynski, J.M. A Facile Synthesis of Fluorophores Based on 5-Phenylethynyluracils. Synlett, 2006, 2997-3000.
[http://dx.doi.org/10.1055/s-2006-948176]
[9]
(a) Fresneau, N.; Hiebel, M-A.; Agrofoglio, L.A.; Berteina-Raboin, S. One-pot Sonogashira-cyclization protocol to obtain substituted furopyrimidine nucleosides in aqueous conditions. Tetrahedron Lett., 2012, 53, 1760-1763.
[http://dx.doi.org/10.1016/j.tetlet.2012.01.106 ]
(b) Rao, M.S.; Esho, N.; Sergeant, C.; Dembinski, R. 5-Endo-dig electrophilic cyclization of α-alkynyl carbonyl compounds: Synthesis of novel bicyclic 5-iodo- and 5-bromofuranopyrimidine nucleosides. J. Org. Chem., 2003, 68(17), 6788-6790.
[http://dx.doi.org/10.1021/jo0345648] [PMID: 12919049]
[10]
Petraityte, G.; Vaitkevicius, V.; Ozer, B.; Masevicius, V. Synthesis of 5-substituted and 5,6-disubstituted furo[2,3-d]pyrimidines from 2-methylthio-4,6-pyrimidindione and bifunctional electrophiles. Tetrahedron Lett., 2019, 60, 1019-1021.
[http://dx.doi.org/10.1016/j.tetlet.2019.03.017]
[11]
De Coen, L.M.; Jatczak, M.; Muylaert, K.; Mangelinckx, S.; Stevens, C.V. Straightforward synthesis of functionalized furo[3,4-d]pyrimidine-2,4-diones. Synthesis, 2015, 47, 1227-1237.
[http://dx.doi.org/10.1055/s-0034-1380321]
[12]
(a) Chun, B.K.; Song, G.Y.; Chu, C.K. Stereocontrolled syntheses of carbocyclic C-nucleosides and related compounds. J. Org. Chem., 2001, 66(14), 4852-4858.
[http://dx.doi.org/10.1021/jo010224f] [PMID: 11442416]
(b) Prashad, M.; Har, D.; Chen, L.; Kim, H-Y.; Repic, O.; Blacklock, T.J. An efficient and large-scale enantioselective synthesis of PNP405: A purine nucleoside phosphorylase inhibitor. J. Org. Chem., 2002, 67(19), 6612-6617.
[http://dx.doi.org/10.1021/jo020256i] [PMID: 12227788 ]
(c) Kamath, V.P.; Juarez-Brambila, J.J.; Morris, C.B.; Winslow, C.D.; Morris, P.E. Development of a practical synthesis of a purine nucleoside phosphorylase inhibitor: BCX-4208. Org. Process Res. Dev., 2009, 13, 928-932.
[http://dx.doi.org/ 10.1021/op9001142]
(d) Semeraro, T.; Mugnaini, C.; Corelli, F. Preparation of a set of 4,5-dihydro-3H-pyrrolo[3,2-d]pyrimidin-4-ones as potential Hsp90 ligands. Tetrahedron Lett., 2008, 49, 5965-5967.
[http://dx.doi.org/ 10.1016/j.tetlet.2008.07.158]
(e) Oguro, Y.; Miyamoto, N.; Takagi, T.; Okada, K.; Awazu, Y.; Miki, H.; Hori, A.; Kamiyama, K.; Imamura, S. N-phenyl-N'-[4-(5H-pyrrolo[3,2-d]pyrimidin-4-yloxy)phenyl]ureas as novel inhibitors of VEGFR and FGFR kinases. Bioorg. Med. Chem., 2010, 18(20), 7150-7163.
[http://dx.doi.org/10.1016/j.bmc.2010.08.042] [PMID: 20833551 ]
(f) Gomtsyan, A.; Didomenico, S.; Lee, C.H.; Stewart, A.O.; Bhagwat, S.S.; Kowaluk, E.A.; Jarvis, M.F. Synthesis and biological evaluation of pteridine and pyrazolopyrimidine based adenosine kinase inhibitors. Bioorg. Med. Chem. Lett., 2004, 14(16), 4165-4168.
[http://dx.doi.org/10.1016/j.bmcl.2004.06.029] [PMID: 15261263]
(g) Ishikawa, T.; Seto, M.; Banno, H.; Kawakita, Y.; Oorui, M.; Taniguchi, T.; Ohta, Y.; Tamura, T.; Nakayama, A.; Miki, H.; Kamiguchi, H.; Tanaka, T.; Habuka, N.; Sogabe, S.; Yano, J.; Aertgeerts, K.; Kamiyama, K. Design and synthesis of novel human epidermal growth factor receptor 2 (HER2)/epidermal growth factor receptor (EGFR) dual inhibitors bearing a pyrrolo[3,2-d]pyrimidine scaffold. J. Med. Chem., 2011, 54(23), 8030-8050.
[http://dx.doi.org/10.1021/jm2008634] [PMID: 22003817 ]
(h) Xie, R.; Hu, Y.; Wan, H.; Hu, Y.; Chen, S.; Zhang, S.; Zhang, Y. An efficient synthesis of 4,6-substituted pyrrolo[3,2-d]pyrimidines by silver-catalyzed cyclization of acetylene amine. Tetrahedron Lett., 2016, 57, 2418-2421.
[http://dx.doi.org/10.1016/j.tetlet.2016.04.077]
[13]
Ponra, S.; Gohain, M.; Donka, R.; van Tonder, J.H. Al(OTf) 3-catalyzed one-pot synthesis of pyrrolo[3,2-d]pyrimidinedione derivatives. Tetrahedron Lett., 2018, 59, 2909-2912.
[http://dx.doi.org/10.1016/j.tetlet.2018.06.039]
[14]
(a) Majumdar, K.C.; Biswas, A.; Mukhopadhyay, P.P. Regioselective synthesis of pyrrolo[2,3-d]pyrimidine derivatives by amine oxide rearrangement. Synthesis, 2005, 1164-1168.
[http://dx.doi.org/ 10.1055/s-2005-861811]
(b) Majumdar, K.C.; Das, U.; Jana, N.K. Studies on pyrimidine-annelated heterocycles: Synthesis of pyrrolo[3,2-d]pyrimidines by amine oxide rearrangement. J. Org. Chem., 1998, 63, 3550-3553.
[http://dx.doi.org/10.1021/jo9718861]
[15]
Sekhar, N.M.; Acharyulu, P.V.R.; Anjaneyulu, Y. A short and efficient synthetic protocol for the synthesis of 5-substituted-4,6-dioxo-pyrrolo[2,3-d]pyrimidines. Tetrahedron Lett., 2011, 52, 4140-4144.
[http://dx.doi.org/10.1016/j.tetlet.2011.05.141]
[16]
El-Ablak, F.Z.; Abu-Elenein, N.S.; Sofan, M.A. Synthesis of new pyrrolo heterocycles (I): Novel Synthesis of Pyrano[2,3-c] pyrrole, Isoindoline, Pyrrolo[3,4-b]pyridine, and Pyrrolo[3,4-d]pyrimidine Derivatives. J. Heterocycl. Chem., 2016, 53, 1999-2006.
[http://dx.doi.org/10.1002/jhet.2520]
[17]
(a) Jiang, X.; Sun, D.; Jiang, Y.; Ma, D. Efficient synthesis of pyrrolo[2,3-d]pyrimidines via a Cu(I)/6-methylpicolinic acid catalyzed coupling reaction. Tetrahedron Lett., 2015, 56, 3259-3261.
[http://dx.doi.org/10.1016/j.tetlet.2014.12.098 ]
(b) Mayasundari, A.; Fujii, N. Efficient formation of 4,6-disubstituted pyrrolo[2,3-d]pyrimidines: A novel route to TWS119, a glycogen synthase kinase-3β inhibitor. Tetrahedron Lett., 2010, 51, 3597-3598.
[http://dx.doi.org/10.1016/j.tetlet.2010.05.032 ]
(c) Prieur, V.; Rubio-Martinez, J.; Font-Bardia, M.; Guillaumet, G.; Pujol, M.D. Microwave-assisted synthesis of substituted pyrrolo[2,3-d] pyrimidines. Eur. J. Org. Chem., 2014, 1514-1524.
[http://dx.doi.org/10.1002/ejoc.201301496]
[18]
Paul, S.; Das, A.R. A new application of polymer supported, homogeneous and reusable catalyst PEG-SO3H in the synthesis of coumarin and uracil fused pyrrole derivatives. Catal. Sci. Technol., 2012, 2, 1130-1135.
[http://dx.doi.org/10.1039/c2cy20117h]
[19]
Pink, J.H.; Culshaw, J. A Concise synthesis of fused tricyclic pyrrolo[3,2-d]pyrimidine. Synlett, 2016, 27, 2368-2371.
[http://dx.doi.org/10.1055/s-0035-1561482]
[20]
(a) Shen, M.; Zhou, S.; Li, Y.; Li, D.; Hou, T. Theoretical study on the interaction of pyrrolopyrimidine derivatives as LIMK2 inhibitors: Insight into structure-based inhibitor design. Mol. Biosyst., 2013, 9(10), 2435-2446.
[http://dx.doi.org/10.1039/c3mb70168a] [PMID: 23881296]
(b) Ghorab, M.M.; Ragab, F.A.; Heiba, H.I.; Youssef, H.A.; El-Gazzar, M.G. Synthesis of novel pyrrole and pyrrolo[2,3-d]pyrimidine derivatives bearing sulfonamide moiety for evaluation as anticancer and radiosensitizing agents. Bioorg. Med. Chem. Lett., 2010, 20(21), 6316-6320.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.005] [PMID: 20850308 ]
(c) Clark, M.P.; George, K.M.; Bookland, R.G.; Chen, J.; Laughlin, S.K.; Thakur, K.D.; Lee, W.; Davis, J.R.; Cabrera, E.J.; Brugel, T.A.; VanRens, J.C.; Laufersweiler, M.J.; Maier, J.A.; Sabat, M.P.; Golebiowski, A.; Easwaran, V.; Webster, M.E.; De, B.; Zhang, G. Development of new pyrrolopyrimidine-based inhibitors of Janus kinase 3 (JAK3). Bioorg. Med. Chem. Lett., 2007, 17(5), 1250-1253.
[http://dx.doi.org/10.1016/j.bmcl.2006.12.018] [PMID: 17189692]
(d) Gangjee, A.; Zhao, Y.; Raghavan, S.; Ihnat, M.A.; Disch, B.C. Design, synthesis and evaluation of 2-amino-4-m-bromoanilino-6-arylmethyl-7H-pyrrolo[2,3-d]pyrimidines as tyrosine kinase inhibitors and antiangiogenic agents. Bioorg. Med. Chem., 2010, 18(14), 5261-5273.
[http://dx.doi.org/10.1016/j.bmc.2010.05.049] [PMID: 20558072 ]
(e) Wang, L.; Cherian, C.; Kugel Desmoulin, S.; Mitchell-Ryan, S.; Hou, Z.; Matherly, L.H.; Gangjee, A. Synthesis and biological activity of 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl regioisomers as inhibitors of de novo purine biosynthesis with selectivity for cellular uptake by high affinity folate receptors and the proton-coupled folate transporter over the reduced folate carrier. J. Med. Chem., 2012, 55(4), 1758-1770.
[http://dx.doi.org/10.1021/jm201688n] [PMID: 22243528 ]
(f) Ding, S.; Wu, T.Y.H.; Brinker, A.; Peters, E.C.; Hur, W.; Gray, N.S.; Schultz, P.G. Synthetic small molecules that control stem cell fate. Proc. Natl. Acad. Sci. USA, 2003, 100(13), 7632-7637.
[http://dx.doi.org/10.1073/pnas.0732087100] [PMID: 12794184 ]
(g) Wang, Y.; Mitchell-Ryan, S.; Raghavan, S.; George, C.; Orr, S.; Hou, Z.; Matherly, L.H.; Gangjee, A. Novel 5-substituted pyrrolo[2,3-d]pyrimidines as dual inhibitors of glycinamide ribonucleotide formyltransferase and 5-amino-imidazole-4-carboxamide ribonucleotide formyltransferase and as potential antitumor agents. J. Med. Chem., 2015, 58(3), 1479-1493.
[http://dx.doi.org/10.1021/jm501787c] [PMID: 25602637]
[21]
Saikia, L.; Roudragouda, P.; Thakur, A.J. A one pot, two-step synthesis of 5-arylpyrrolo[2,3-d]pyrimidines and screening of their preliminary antibacterial properties. Bioorg. Med. Chem. Lett., 2016, 26(3), 992-998.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.047] [PMID: 26739778]
[22]
Taylor, E.C.; Liu, B. A new and efficient synthesis of pyrrolo[2,3-d]pyrimidine anticancer agents: Alimta (LY231514, MTA), homo-Alimta, TNP-351, and some aryl 5-substituted pyrrolo[2,3-d]pyrimidines. J. Org. Chem., 2003, 68(26), 9938-9947.
[http://dx.doi.org/10.1021/jo030248h] [PMID: 14682686]
[23]
Li, C.; Zhang, F. l-Proline-catalyzed cyclization of 6-aminopyrimidine-4(3h)-ones with nitroolefins: Synthesis of polysubstituted 5-arylpyrrolo[2,3-d]pyrimidin-4-ones. Synlett, 2017, 28, 1315-1320.
[http://dx.doi.org/10.1055/s-0036-1588757]
[24]
Mieczkowski, A.; Tomczyk, E.; Makowska, M.A.; Nasulewicz-Goldeman, A.; Gajda, R.; Woźniak, K.; Wietrzyk, J. Synthesis and investigation of the antitumor properties of novel, bicyclic furopyrimidine, pyrrolopyrimidine and pyrimidopyridazine nucleoside analogues. Synthesis, 2016, 48, 566-572.
[http://dx.doi.org/10.1055/s-0035-1561277]
[25]
Shekarrao, K.; Kaishap, P.P.; Gogoi, S.; Gogoi, S.; Boruah, R.C. A facile synthesis of steroidal D-ring fused pyrazolo[1,5-a]pyrimidines. Tetrahedron Lett., 2014, 55, 5251-5255.
[http://dx.doi.org/10.1016/j.tetlet.2014.07.119]
[26]
Majumdar, K.C.; Ghosh, T.; Shyam, P.K. Facile regioselective synthesis of functionalized heterocycle-tethered spiro compounds via an intramolecular electrophilic ipso-iodocyclization process. Synlett, 2011, 2657-2662.
[http://dx.doi.org/10.1055/s-0031-1289526]
[27]
(a) Li, X.; Xia, C.; Wang, T.; Liu, L.; Zhao, Q.; Yang, D.; Hu, F.; Zhang, M.; Huang, K.; Geng, Y.; Zheng, Y.; Guan, Y.; Wu, H.; Chen, X.; Pan, G.; Chen, J.; Du, J.; Wang, J. Pyrimidoindole derivative UM171 enhances derivation of hematopoietic progenitor cells from human pluripotent stem cells. Stem Cell Res. (Amst.), 2017, 21, 32-39.
[http://dx.doi.org/10.1016/j.scr.2017.03.014] [PMID: 28368243]
(b) Fares, I.; Chagraoui, J.; Gareau, Y.; Gingras, S.; Ruel, R.; Mayotte, N.; Csaszar, E.; Knapp, D.J.H.F.; Miller, P.; Ngom, M.; Imren, S.; Roy, D-C.; Watts, K.L.; Kiem, H-P.; Herrington, R.; Iscove, N.N.; Humphries, R.K.; Eaves, C.J.; Cohen, S.; Marinier, A.; Zandstra, P.W.; Sauvageau, G. Cord blood expansion. Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal. Science, 2014, 345(6203), 1509-1512.
[http://dx.doi.org/10.1126/science.1256337] [PMID: 25237102]
[28]
(a) Biswas, S.; Batra, S. One-step synthesis of 2-amino-5h-pyrimido[5,4-b]indoles, substituted 2-(1,3,5-triazin-2-yl)-1h-indoles, and 1,3,5-triazines from aldehydes. Eur. J. Org. Chem., 2012, 3492-3499.
[http://dx.doi.org/10.1002/ejoc.201200276 ]
(b) Ren, Y-w.; Wang, X.; Wang, W.; Li, B.; Shi, Z-j.; Zhang, W. Photochemical and thermal cyclizations of 4-(2-azidophenyl)-3,4-dihydropyri-midin-2-ones for the synthesis of 4-methylenepyrimidino[5,4-b]indol-2-ones. Tetrahedron Lett., 2011, 52, 192-195.
[http://dx.doi.org/10.1016/j.tetlet.2010.10.176]
[29]
Gupta, S.; Sharma, S.K.; Mandadapu, A.K.; Gauniyal, H.M.; Kundu, B. Three-component tandem reaction involving acid chlorides, terminal alkynes, and ethyl 2-amino-1H-indole-3-carboxylates: Synthesis of highly diversified pyrimido[1,2-a]indoles via sequential Sonogashira and [3+3] cyclocondensation reactions. Tetrahedron Lett., 2011, 52, 4288-4291.
[http://dx.doi.org/10.1016/j.tetlet.2011.06.021]
[30]
Kopchuk, D.S.; Chepchugov, N.V.; Khasanov, A.F.; Kovalev, I.S.; Santra, S.; Nosova, E.V.; Zyryanov, G.V.; Majee, A.; Rusinov, V.L.; Chupakhin, O.N. A one-pot approach to 10-(1H-1,2,3-triazol-1-yl)pyrimido[1,2-a]indoles via aryne-mediated transformations of 3-(pyrimidin-2-yl)-1,2,4-triazines. Tetrahedron Lett., 2016, 57, 3862-3865.
[http://dx.doi.org/10.1016/j.tetlet.2016.07.052]
[31]
Chen, X.; Hu, X.; Bai, S.; Deng, Y.; Jiang, H.; Zeng, W. Rh(III)-Catalyzed [4 + 2] Annulation of indoles with diazo compounds: Access to pyrimido[1,6-a] indole-1(2H)-ones. Org. Lett., 2016, 18(2), 192-195.
[http://dx.doi.org/10.1021/acs.orglett.5b03231] [PMID: 26710082]
[32]
Xu, G.; Zheng, L.; Dang, Q.; Bai, X. Total Synthesis of 4-Azaeudistomin Y1 and analogues by inverse-electron¬demand diels-alder reactions of 3-aminoindoles with 1,3,5-triazines. Synthesis, 2013, 45, 743-752.
[http://dx.doi.org/10.1055/s-0032-1316857]
[33]
Kapti, T.; Dengiz, C.; Balci, M. The chemistry of ethyl 3-(2-ethoxy-2-oxoethyl)-1h-indole-2-carboxylate: synthesis of pyrimido[4,5-b] indoles and diethyl 4-hydroxyquinoline-2,3-dicarboxylate via intramolecular cyclizations. Synthesis, 2016, 48, 1898-1904.
[34]
Majumdar, K.C.; Das, T.K.; Jana, M. Regioselective synthesis of pyrimidine-annulated spiro heterocycles by radical cyclization synth. Commun., 2005, 35, 1961-1969.
[35]
Mulakayala, N.; Reddy, U.; Chaitany, M.; Hussain, M.M.; Kumar, C.S.; Golla, N. Novel and efficient synthesis of 7-trifluoromethyl-substituted pyrazolo[1,5-a] pyrimidines with potent antitumor agents. J. Kore. Chem. Soc., 2011, 55, 719-722.
[http://dx.doi.org/10.5012/jkcs.2011.55.4.719]
[36]
Farag, M.A.; Dawood, K.M.; Elmenoufy, H.A. A convenient route to pyridones, pyrazolo[2, 3-a] pyrimidines and pyrazolo[5,1-c]triazines incorporating antipyrine moiety. Heteroatom Chem., 2004, 15, 508-514.
[http://dx.doi.org/10.1002/hc.20046]
[37]
Kiselyov, A.S.; Smith, L.I.I. Novel one pot synthesis of polysubstituted pyrazolo[1,5-a]- and imidazo[1, 2-a] pyrimidines. Tetrahedron Lett., 2006, 47, 2611-2614.
[http://dx.doi.org/10.1016/j.tetlet.2006.02.031]
[38]
(a) Quiroga, J.; Portilla, J.; Abonıa, R.; Insuasty, B.; Nogueras, M.; Cobo, J. Regioselective synthesis of novel polyfunctionally substituted pyrazolo[1,5-a]pyrimidines under solvent-free conditions. Tetrahedron Lett., 2007, 48, 6352-6355.
[http://dx.doi.org/10.1016/j.tetlet.2007.07.041 ]
(b) Quiroga, J.; Portilla, J.; Abonıa, R.; Insuasty, B.; Nogueras, M.; Cobo, J. Regioselective synthesis of novel substituted pyrazolo[1,5-a] pyrimidines under solvent-free conditions. Tetrahedron Lett., 2008, 49, 6254-6256.
[http://dx.doi.org/10.1016/j.tetlet.2008.08.044]
[39]
Al-Qalaf, F.; Abdelkhalik, M.M.; Al-Enezi, A.; Al-Ajmi, J.R. Studies with functionally substituted enamines: Synthesis of 2-aroyl-3-dimethylamino-2-propenenitrile and their reactivity toward nitrogen nucleophiles. Heterocycles, 2008, 75, 145-156.
[http://dx.doi.org/10.3987/COM-07-11196]
[40]
Lombar, K.; Groselj, U.; Dahmann, G.; Stanovnik, B.; Svete, J. Synthesis of 6-Alkyl-7-oxo-4,5,6,7-tetrahydropyrazolo[1,5-c]pyrimidine-3-carboxamides. Synthesis, 2015, 47, 497-506.
[41]
Mirnik, J.; Groselji, U.; Novak, A.; Dahmann, G.; Golobic, A.; Kasunic, M.; Stanovnik, B.; Svete, J. A novel synthesis of tetrahydropyrazolo[1,5-c]pyrimidine-2,7(1H,3H)-diones. Synthesis, 2013, 45, 3404-3412.
[http://dx.doi.org/10.1055/s-0033-1339977]
[42]
(a) Stepaniuk, O.O.; Matvienko, V.O.; Kondratov, I.S.; Shishkin, O.V.; Volochnyuk, D.M.; Mykhailiuk, P.K.; Tolmachev, A.A. Regioselective reactions of ethyl (4,5-dihydrofuran-3-yl)-2-oxoacetate and ethyl 2-(3,4-dihydro-2h-pyran-6-yl)-2-oxoacetate with 1-unsubstituted aminoazoles. Synthesis, 2012, 44, 895-902.
[http://dx.doi.org/10.1055/s-0031-1289733 ]
(b) Stepaniuk, O.O.; Matviienko, V.O.; Kondratov, I.S.; Vitruk, I.V.; Tolmachev, A.O. Synthesis of new pyrazolo[1,5-a]pyrimidines by reaction of β,γ-unsaturated γ-alkoxy-α-keto esters with n-unsubstituted 5-aminopyra-zoles. Synthesis, 2013, 45, 925-930.
[http://dx.doi.org/10.1055/s-0032-1318329]
[43]
Abed, H.B.; Mammoliti, O.; Lommen, G.V.; Herdewijn, P. Simple approach to the synthesis of 3-fluoro pyrazolo[1,5-a]pyrimidine analogues. Tetrahedron Lett., 2013, 54, 2612-2614.
[http://dx.doi.org/10.1016/j.tetlet.2013.03.015]
[44]
(a) Jismy, B.; Guillaumet, G.; Allouchi, H.; Akssira, M.; Abarbri, M. Concise and efficient access to 5,7-disubstituted pyrazolo[1,5-a]pyrimidines by Pd-catalyzed sequential arylation, alkynylation and SNAr reaction. Eur. J. Org. Chem., 2017, 6168-6178.
[http://dx.doi.org/10.1002/ejoc.201701024 ]
(b) Jismy, B.; Allouchi, H.; Guillaumet, G.; Akssira, M.; Abarbri, M. An Efficient synthesis of new 7-trifluoromethyl-2,5-disubstituted pyrazolo[1,5-a]pyrimidines. Synthesis, 2018, 50, 1675-1686.
[http://dx.doi.org/10.1055/s-0036-1591752]
[45]
Ghelani, S.M.; Naliapara, Y.T. Design, Multicomponent synthesis and characterization of diversely substituted pyrazolo[1,5-a] pyrimidine derivatives. J. Heterocycl. Chem., 2016, 53, 1843-1851.
[http://dx.doi.org/10.1002/jhet.2496]
[46]
Belaroussi, R.; El Bouakher, A.; Marchivie, M.; Massip, S.; Jarry, C.; El Hakmaoui, A.; Guillaumet, G.; Routier, S.; Akssira, M. Convenient synthesis of new n-3-substituted pyrido[1′,2′:1,5]pyrazolo[3,4-d]pyrimidine-2,4(1h, 3h)-dione derivatives. Synthesis, 2013, 45, 2557-2566.
[http://dx.doi.org/10.1055/s-0033-1338514]
[47]
Bajwa, J.J.; Sykes, P.J. New steroidal heterocycles: The synthesis and structure of androsteno[2,3-g]-, androstano[3,2-f]-, and androsteno[16,17-g]-pyrazolo[1,5-a]pyrimidines. J. Chem. Soc., Perkin Trans. 1, 1980, 481-486.
[http://dx.doi.org/10.1039/p19800000481]
[48]
(a) Daniels, R.; Kim, K.; Lebois, E.; Muchalski, H.; Hughes, M.; Lindsley, C. Microwave-assisted protocols for the expedited synthesis of pyrazolo[1,5-a] and [3,4-d] pyrimidines. Tetrahedron Lett., 2008, 49, 305-310.
[http://dx.doi.org/ 10.1016/j.tetlet.2007.11.054]
(b) Quiroga, J.; Mejia, D.; Insuasty, B.; Abonia, R.; Nogueras, M.; Sanchez, A.; Cobo, J. Synthesis of 6-(2-hydroxybenzoyl)pyrazolo[1,5a]pyrimidines by reaction of -5-amino-1h-pyrazoles and 3-formylchromone. J. Heterocycl. Chem., 2002, 39, 51-54.
[http://dx.doi.org/10.1002/jhet.5570390106]
[49]
Saikia, P.; Kaishap, P.P.; Prakash, R.; Shekarrao, K.; Gogoi, S.; Boruah, R.C. A facile one-pot synthesis of 7-substituted pyrazolo[1,5-a] pyrimidines by base induced three-component reaction. Tetrahedron Lett., 2014, 55, 3896-3900.
[http://dx.doi.org/10.1016/j.tetlet.2014.05.021]
[50]
Kaishap, P.P.; Baruah, S.; Shekarrao, K.; Gogoi, S.; Boruah, R.C. A facile method for the synthesis of steroidal and nonsteroidal 5-methyl pyrazolo[1,5-a] pyrimidines. Tetrahedron Lett., 2014, 55, 3117-3121.
[http://dx.doi.org/10.1016/j.tetlet.2014.04.011]
[51]
(a) Ivachtchenko, A.V.; Dmitriev, D.E.; Golovina, E.S.; Kadieva, M.G.; Koryakova, A.G.; Kysil, V.M.; Mitkin, O.D.; Okun, I.M.; Tkachenko, S.E.; Vorobiev, A.A. (3-Phenylsulfonylcycloalkano[e and d]pyrazolo[1,5-a]pyrimidin-2-yl)amines: Potent and selective antagonists of the serotonin 5-HT6 receptor. J. Med. Chem., 2010, 53(14), 5186-5196.
[http://dx.doi.org/10.1021/jm100350r] [PMID: 20560595 ]
(b) Petrov, A.A.; Kasatochkin, A.N.; Emelina, E.E. Study of regioselectivity of reactions between 3(5)-aminopyrazoles and 2-acetylcycloalkanones. Russ. J. Org. Chem., 2012, 48, 1111-1120.
[http://dx.doi.org/10.1134/S1070428012080131]
[52]
(a) Ryabukhin, S.V.; Plaskon, A.S.; Volochnyuk, D.M.; Pipko, S.E.; Tolmachev, A.A. Chlorotrimethylsilane mediated synthesis of 5-(2-hydroxybenzoyl)pyrimidines from 3-formylchromones. Heterocycles, 2008, 75, 583-597.
[http://dx.doi.org/ 10.3987/COM-07-11240]
(b) Zimmerman, J.R.; Myers, B.J.; Bouhall, S.; McCarthy, A.; Johntony, O.; Manpadi, M. A two-step, single pot procedure for the synthesis of substituted dihydropyrazolo-pyrimidines. Tetrahedron Lett., 2014, 55, 936-940.
[http://dx.doi.org/10.1016/j.tetlet.2013.12.057]
[53]
(a) Ryabukhin, S.V.; Granat, D.S.; Plaskon, A.S.; Shivanyuk, A.N.; Tolmachev, A.A.; Volovenko, Y.M. High throughput synthesis of extended pyrazolo[3,4-d]dihydropyrimidines. ACS Comb. Sci., 2012, 14(8), 465-470.
[http://dx.doi.org/10.1021/co300063x] [PMID: 22775440]
(b) Ryabukhina, S.V.; Granat, D.S.; Plaskon, A.S.; Shivanyuk, A.; Lukin, O. Synthesis of pyrazolo[3,4-d]-4,5-dihydropyrimidin-6-ones. Tetrahedron Lett., 2014, 55, 1846-1847.
[http://dx.doi.org/10.1016/j.tetlet.2014.01.131]
[54]
Boyd, S.; Campbell, L.; Liao, W.; Meng, Q.; Peng, Z.; Wang, X.; Waring, M.J. A one step synthesis of 1-alkylpyrazolo[5,4-d]pyrimidines. Tetrahedron Lett., 2008, 49, 7395-7397.
[http://dx.doi.org/10.1016/j.tetlet.2008.10.065]
[55]
Adams, N.D.; Schmidt, S.J.; Knight, S.D.; Dhanak, D. A novel synthesis of substituted 4H-pyrazolo[3,4-d]pyrimidin-4-ones. Tetrahedron Lett., 2007, 48, 3983-3986.
[http://dx.doi.org/10.1016/j.tetlet.2007.04.043]
[56]
Sambaiaha, M.; Mallesham, P.; Kumar, K.S.; Bobde, Y.; Hota, P.K.; Yennam, S.; Ghosh, B.; Behera, M. Tandem schiff-base formation/hetero-cyclization: An approach to the synthesis of fused pyrazolo–pyrimidine/isoxazolo-pyrimidine hybrids. Synlett, 2019, 30, 586-592.
[http://dx.doi.org/10.1055/s-0037-1612081]
[57]
Bagleya, M.C.; Baashen, M.; Paddock, V.L.; Kipling, D.; Davis, T. Regiocontrolled synthesis of 3- and 5-aminopyrazoles, pyrazolo[3,4-d]pyrimidines, pyrazolo[3,4-b]pyridines and pyrazolo[3,4-b]quinolinones as MAPK inhibitors. Tetrahedron, 2013, 69, 8429-8438.
[http://dx.doi.org/10.1016/j.tet.2013.07.055]
[58]
Morrill, C.; Babu, S.; Almstead, N.G.; Moon, Y-C. Synthesis of 1,4-disubstituted pyrazolo[3,4-d]pyrimidines from 4,6-dichloropyrimidine-5-carboxaldehyde: Insights into selectivity and reactivity. Synthesis, 2013, 45, 1791-1806.
[http://dx.doi.org/10.1055/s-0033-1338862]
[59]
Liu, J.; Zhang, X-w.; Wang, Y.; Chen, Y.; Zhang, M-r.; Cai, Z-q.; Zhou, Y-p.; Xu, L-f. A new efficient synthesis of 4-alkoxy-1,6-diaryl-1H-pyrazolo[3,4-d]pyrimidine derivatives. Synth. Commun., 2015, 45, 1009-1017.
[http://dx.doi.org/10.1080/00397911.2014.996296]
[60]
(a) Maia, L.; de Mendonça, A. Does caffeine intake protect from Alzheimer’s disease? Eur. J. Neurol., 2002, 9(4), 377-382.
[http://dx.doi.org/10.1046/j.1468-1331.2002.00421.x] [PMID: 12099922 ]
(b) Cui, P.; Macdonald, T.L.; Chen, M.; Nadler, J.L. Synthesis and biological evaluation of lisofylline (LSF) analogs as a potential treatment for Type 1 diabetes. Bioorg. Med. Chem. Lett., 2006, 16(13), 3401-3405.
[http://dx.doi.org/10.1016/j.bmcl.2006.04.036] [PMID: 16650991 ]
(c) Stine, R.J.; Marcus, R.H.; Parvin, C.A. Aminophylline loading in asthmatic patients: A protocol trial. Ann. Emerg. Med., 1989, 18(6), 640-646.
[http://dx.doi.org/10.1016/S0196-0644(89)80518-9] [PMID: 2658694]
(d) Song, B.; Xiao, T.; Qi, X.; Li, L-N.; Qin, K.; Nian, S.; Hu, G-X.; Yu, Y.; Liang, G.; Ye, F. Design and synthesis of 8-substituted benzamido-phenylxanthine derivatives as MAO-B inhibitors. Bioorg. Med. Chem. Lett., 2012, 22(4), 1739-1742.
[http://dx.doi.org/10.1016/j.bmcl.2011.12.094] [PMID: 22257893]
(e) Roy, A.C.; Lunn, F.A.; Bearne, S.L. Inhibition of CTP synthase from Escherichia coli by xanthines and uric acids. Bioorg. Med. Chem. Lett., 2010, 20(1), 141-144.
[http://dx.doi.org/10.1016/j.bmcl.2009.11.017] [PMID: 20004571 ]
(f) Szentmiklósi, A.J.; Cseppentō, A.; Gesztelyi, R.; Zsuga, J.; Körtvély, A.; Harmati, G.; Nánási, P.P. Xanthine derivatives in the heart: blessed or cursed? Curr. Med. Chem., 2011, 18(24), 3695-3706.
[http://dx.doi.org/10.2174/092986711796642391] [PMID: 21774759 ]
(g) Nehlig, A.; Daval, J-L.; Debry, G. Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Res. Brain Res. Rev., 1992, 17(2), 139-170.
[http://dx.doi.org/10.1016/0165-0173(92)90012-B] [PMID: 1356551]
(h) Schultze-Werninghaus, G.; Meier-Sydow, J. The clinical and pharmacological history of theophylline: first report on the bronchospasmolytic action in man by S. R. Hirsch in Frankfurt (Main) 1922. Clin. Allergy, 1982, 12(2), 211-215.
[http://dx.doi.org/10.1111/j.1365-2222.1982.tb01641.x] [PMID: 7042115]
(i)Watanabe, Y.; Murata, T.; Shimizu, K.; Morita, H.; Inui, M.; Tagawa, T. Phosphodiesterase 4 regulates the migration of B16-F10 melanoma cells. Exp. Ther. Med., 2012, 4(2), 205-210.
[http://dx.doi.org/10.3892/etm.2012.587] [PMID: 22970026 ]
(j)Tesarik, J.; Mendoza, C.; Carreras, A. Effects of phosphodiesterase inhibitors caffeine and pentoxifylline on spontaneous and stimulus-induced acrosome reactions in human sperm. Fertil. Steril., 1992, 58(6), 1185-1190.
[http://dx.doi.org/10.1016/S0015-0282(16)55567-8] [PMID: 1333994]
[61]
Burbiel, J.C.; Hockemeyer, J.; Müller, C.E. Synthesis of xanthine derivatives by microwave-assisted ring closure reaction. ARKIVOC, 2006, 2, 77-82.
[62]
Zajac, M.A.; Zakrzewski, A.G.; Kowal, M.G.; Narayan, S. A novel method of caffeine synthesis from uracil. Synth. Commun., 2003, 33, 3291-3297.
[http://dx.doi.org/10.1081/SCC-120023986]
[63]
(a) Zablocki, J.; Kalla, R.; Perry, T.; Palle, V.; Varkhedkar, V.; Xiao, D.; Piscopio, A.; Maa, T.; Gimbel, A.; Hao, J.; Chu, N.; Leung, K.; Zeng, D. The discovery of a selective, high affinity A(2B) adenosine receptor antagonist for the potential treatment of asthma. Bioorg. Med. Chem. Lett., 2005, 15(3), 609-612.
[http://dx.doi.org/10.1016/j.bmcl.2004.11.044] [PMID: 15664822 ]
(b) Nieto, M.I.; Balo, M.C.; Brea, J.; Caamaño, O.; Cadavid, M.I.; Fernández, F.; Mera, X.G.; López, C.; Rodríguez-Borges, J.E. Synthesis of novel 1-alkyl-8-substituted-3-(3-methoxypropyl) xanthines as putative A(2B) receptor antagonists. Bioorg. Med. Chem., 2009, 17(9), 3426-3432.
[http://dx.doi.org/10.1016/j.bmc.2009.03.029] [PMID: 19346133]
[64]
Bandyopadhyay, P.; Agrawal, S.K.; Sathe, M.; Sharma, P. Kaushik; M. P. A facile and rapid one-step synthesis of 8-substituted xanthine derivatives via tandem ring closure at room temperature. Tetrahedron, 2012, 68, 3822-3827.
[http://dx.doi.org/10.1016/j.tet.2012.03.050]
[65]
Bandyopadhyay, P.; Sathe, M.; Sharma, P. Kaushik; M. P. Exploration of polystyrene-supported 2-isobutoxy-1-isobutoxycarbonyl-1,2-dihydroquino-line (PS-IIDQ) as new coupling agent for the synthesis of 8-substituted xanthine derivatives. Tetrahedron Lett., 2012, 53, 4631-4635.
[http://dx.doi.org/10.1016/j.tetlet.2012.04.135]
[66]
Dong, M.; Sitkovsky, M.; Kallmerten, A.E. Jones; G. B. Synthesis of 8-substituted xanthines via 5,6-diaminouracils: An efficient route to A2A adenosine receptor antagonists. Tetrahedron Lett., 2008, 49, 4633-4635.
[http://dx.doi.org/10.1016/j.tetlet.2008.05.071]
[67]
Beer, D.; Bhalay, G.; Dunstan, A.; Glen, A.; Haberthuer, S.; Moser, H. A solid-phase approach towards the synthesis of PDE5 inhibitors. Bioorg. Med. Chem. Lett., 2002, 12(15), 1973-1976.
[http://dx.doi.org/10.1016/S0960-894X(02)00296-2] [PMID: 12113821]
[68]
Shimizu, M.; Hayama, N.; Kimachi, T.; Inamoto, K. Copper-catalyzed intramolecular C–H amination: A new entry to substituted xanthine derivatives. Synthesis, 2017, 49, 4183-4190.
[http://dx.doi.org/10.1055/s-0036-1588821]
[69]
(a) Areias, F.M.; Proenca, M.F. A base-catalyzed cascade route to phenolic 6-cyanopurines via o-alkylformamidoximes. Synlett, 2014, 25, 2595-2598.
[http://dx.doi.org/ 10.1055/s-0034-1379237]
(b) Liu, B.; Gong, Y.; Lu, S.; Li, D.; Fan, H. Synthesis of fused purine heterocycles via a one-pot cascade reaction of a trisubstituted pyrimidine. Synlett, 2018, 29, 1796-1800.
[http://dx.doi.org/10.1055/s-0036-1591585]
[70]
Senhoraes, N.; Costa, A.L.; Silva, D.I.; Proenc¸, M.F.; Dias, A.M. N1- and C6-substituted adenines: A regioselective and efficient synthesis. Tetrahedron, 2013, 69, 10014-10021.
[http://dx.doi.org/10.1016/j.tet.2013.09.063]
[71]
Maji, P.K.; Mahalanobish, A. copper accelerated one-pot sequential tandem synthesis of tetra hedropurinoisoquinoline derivatives. Heterocycles, 2017, 94, 1847-1855.
[http://dx.doi.org/10.3987/COM-17-13694]
[72]
(a) DeWald, H.A.; Beeson, N.W.; Hershenson, F.M.; Wise, L.D.; Downs, D.A.; Heffner, T.G.; Coughenour, L.L.; Pugsley, T.A. Synthesis and potential antipsychotic activity of 1H-imidazo[1,2-c]pyrazolo[3,4-e]pyrimidines. J. Med. Chem., 1988, 31(2), 454-461.
[http://dx.doi.org/10.1021/jm00397a032] [PMID: 2892936]
(b) Hirota, T.; Sasaki, K.; Tashima, Y.; Nakayama, T. Polycyclic N-hetero compounds. XXXIV. Syntheses and evaluation of antidepressive activity of benzofuro-[2,3-e]imidazo[1,2-c]pyrimidines and their precursors. J. Heterocycl. Chem., 1991, 28, 263-267.
[http://dx.doi.org/ 10.1002/jhet.5570280210]
(c) Camp, D.; Li, Y.; McCluskey, A.; Moni, R.W.; Quinn, R.J. Diimidazo[1,2-c:4′,5′-e]pyrimidines: N6-N1 conformationally restricted adenosines. Bioorg. Med. Chem. Lett., 1998, 8(6), 695-698.
[http://dx.doi.org/10.1016/S0960-894X(98)00101-2] [PMID: 9871585]
(d) Peet, N.P.; Lentz, N.L.; Sunder, S.; Dudley, M.W.; Ogden, A.M.L. Conformationally restrained, chiral (phenylisopropyl)amino-substituted pyrazolo[3,4-d]pyrimidines and purines with selectivity for adenosine A1 and A2 receptors. J. Med. Chem., 1992, 35(17), 3263-3269.
[http://dx.doi.org/10.1021/jm00095a024] [PMID: 1507211]
(e) Chhabria, M.T.; Jani, M.H. Design, synthesis and antimycobacterial activity of some novel imidazo[1,2-c]pyrimidines. Eur. J. Med. Chem., 2009, 44(10), 3837-3844.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.002] [PMID: 19423196]
[73]
Juskenas, R.; Masevicius, V.; Tumkevicius, S. Reactivity of the pyrimidine nitrogen atom toward an acetal moiety: Formation of 3-ethoxy-2,3-dihydroimidazo[1,2-c]pyrimidines by intramolecular cyclization of n-(2,2-diethoxyethyl)pyrimidine-4-amines. Synthesis, 2013, 45, 2438-2446.
[http://dx.doi.org/10.1055/s-0033-1339350]
[74]
Lebed, P.S.; Kos, P.O.; Tolmachev, A.; Vovk, M.V.; Boyko, A.N.; Chekotylo, A. A facile synthesis of functionalized 1,2,6,7-tetrahydroimidazo[1,5-c]pyrimidine-3,5-diones. Synth. Commun., 2013, 43, 2343-2348.
[http://dx.doi.org/10.1080/00397911.2012.707738]
[75]
Law, R.P.; Ukuser, S.; Tape, D.T.; Talbot, E.P.A. Regioselective synthesis of 3-aminoimidazo[1,2-a] pyrimidines with triflic anhydride. Synthesis, 2017, 49, 3775-3794.
[http://dx.doi.org/10.1055/s-0036-1588425]
[76]
(a) Reddy, M.V.; Byeon, K.R.; Park, S.H.; Kim, D.W. Polyethylene glycol methacrylate-grafted dicationic imidazolium-based ionic liquid: Heterogeneous catalyst for the synthesis of aryl-benzo[4,5]imidazo[1,2-a]pyrimidine amines under solvent-free conditions. Tetraheron, 2017, 73, 5289-5296.
[http://dx.doi.org/ 10.1016/j.tet.2017.07.025]
(b) Liu, J.; Lei, M.; Hu, L. Thiamine hydrochloride (VB1): an efficient promoter for the one-pot synthesis of benzo[4,5]imidazo[1,2-a]pyrimidine and [1,2,4]triazolo[1,5-a]pyrimidine derivatives in water medium. Green Chem., 2012, 14, 840-846.
[http://dx.doi.org/ 10.1039/c2gc16499j]
(c) Hemmati, B.; Javanshir, S.; Dolatkhah, Z. Hybrid magnetic Irish moss/Fe3O4 as a nano-biocatalyst for synthesis of imidazopyrimidine derivatives. RSC Advances, 2016, 6, 50431-50436.
[http://dx.doi.org/10.1039/C6RA08504K ]
(d) Kalita, S.J.; Deka, D.C.; Mecadon, H. Organocatalytic domino Knöevenagel-Michael reaction in water for the regioselective synthesis of benzo[4,5]imidazo[1,2-a]pyrimidines and pyrido[2,3-d]pyrimidin-2-amines. RSC Advances, 2016, 6, 91320-91324.
[http://dx.doi.org/10.1039/C6RA21376F]
[77]
Jadhav, A.M.; Kim, Y.I.; Lim, K.T.; Jeong, Y.T. Application of p-TSA in the one pot synthesis of N-methyl-3-nitro-aryl-benzo[4,5]imidazo[1,2-a]pyrimidin-2-amine. Tetrahedron Lett., 2018, 59, 554-557.
[http://dx.doi.org/10.1016/j.tetlet.2018.01.008]
[78]
Al-Tel, T.H.; Al Qawasmeh, R.A.; Voelter, W. Rapid assembly of polyfunctional structures using a one-pot five- and six-component sequential groebke–blackburn/ugi/passerini Process. Eur. J. Org. Chem., 2010, 29, 5586-5593.
[http://dx.doi.org/10.1002/ejoc.201000808]
[79]
(a) Rawat, M.; Rawat, D.S. Copper oxide nanoparticle catalysed synthesis of imidazo[1,2-a]pyrimidine derivatives, their optical properties and selective fluorescent sensor towards zinc ion. Tetrahedron Lett., 2018, 59, 2341-2346.
[http://dx.doi.org/10.1016/j.tetlet.2018.05.005]
(b) Ho, S.L.; Dao, P.D.Q.; Cho, C.S. Microwave-assisted synthesis of benzo[4,5]imidazo[1,2-a]pyrimidines from β-bromo-α,β-unsaturated aldehydes and 2-aminobenzi-midazoles. Synlett, 2017, 28, 1811-1815.
[http://dx.doi.org/10.1055/s-0036-1588834]
[80]
(a) Büyükafşar, K.; Yazar, A.; Düşmez, D.; Oztürk, H.; Polat, G.; Levent, A. Effect of trapidil, an antiplatelet and vasodilator agent on gentamicin-induced nephrotoxicity in rats. Pharmacol. Res., 2001, 44(4), 321-328.
[http://dx.doi.org/10.1006/phrs.2001.0864] [PMID: 11592868 ]
(b) Liu, M.; Sun, Q.; Wang, Q.; Wang, X.; Lin, P.; Yang, M.; Yan, Y. Effect of trapidil in myocardial ischemia-reperfusion injury in rabbit. Indian J. Pharmacol., 2014, 46(2), 207-210.
[http://dx.doi.org/10.4103/0253-7613.129320] [PMID: 24741195]
(c) Gomha, S.M.; Mohamed, A.M.G.; Zaki, Y.H.; Ewies, M.M.; Elroby, S.A. Structural elucidation and antimicrobial evaluation of novel [1,2,4]Triazolo[4,3-a]pyrimidines and Pyrido[2,3-d][1,2,4]triazolo[4,3-a]pyrimidinones. J. Heterocycl. Chem., 2018, 55, 1147-1156.
[http://dx.doi.org/ 10.1002/jhet.3146]
(d) Edrees, M.M.; Farghaly, T.A. Synthesis and antitumor activity of benzo [6 ″, 7 ″] cyclohepta [1 ″, 2 ″: 4′, 5′] pyrido [2′, 3′-d][1, 2, 4] triazolo [4, 3-a] pyrimidin-5-ones. Arab. J. Chem., 2017, 10, S1613.
[http://dx.doi.org/ 10.1016/j.arabjc.2013.06.002]
(e) Kumar Biswas, B.; Malpani, Y.R.; Ha, N.; Kwon, D.H.; Soo Shin, J.; Kim, H.S.; Kim, C.; Bong Han, S.; Lee, C.K.; Jung, Y.S. Enterovirus inhibitory activity of C-8-tert-butyl substituted 4-aryl-6,7,8,9-tetrahydro-benzo[4,5]thieno[3,2-e][1,2,4]triazolo[4,3-a]pyrimidin-5(4H)-ones. Bioorg. Med. Chem. Lett., 2017, 27(15), 3582-3585.
[http://dx.doi.org/10.1016/j.bmcl.2017.05.030] [PMID: 28587824]
(f) Pan, F.J.; Wang, S.B.; Liu, D.C.; Gong, G.H.; Quan, Z.S. Synthesis of 4-phenylthieno[2,3-e][1,2,4]triazolo[4,3-a]pyrimidine-5(4h)-one derivatives and evaluation of their anti-inflammatory activity. Lett. Drug Des. Discov., 2016, 13, 141-148.
[http://dx.doi.org/10.2174/1570180812666150630184439]
[81]
(a) Li, C.; Li, Z.; Wang, Q. A convenient route for the synthesis of novel 2-substituted [1,2,4]triazolo[1,5-c]pyrimidine derivatives. Synlett, 2010, 14, 2179-2183.
(b) Tang, C.; Wang, C.; Li, Z.; Wang, Q. Synthesis of 8-Bromo-7-chloro[1,2,4]triazolo[4,3-c]pyrimidines, their ring rearrangement to [1,5-c] analogues, and further diversification. Synthesis, 2014, 46, 2734-2746.
[http://dx.doi.org/10.1055/s-0034-1378453]
[82]
Karami, B.; Farahi, M.; Banaki, Z. A Novel One-pot method for highly regioselective synthesis of triazoloapyrimidinedicarboxylates using silica sodium carbonate. Synlett, 2015, 26, 1804-1807.
[http://dx.doi.org/10.1055/s-0034-1380677]
[83]
Singh, M.; Fatma, S.; Ankit, P.; Singh, S.B.; Singh, J. Boric acid in aqueous micellar medium: An effective and recyclable catalytic system for the synthesis of aryl-7,8-dihydro[1,2,4]triazolo[4,3-a]pyrimidine-6-carbonitriles. Tetrahedron Lett., 2014, 55, 525-527.
[http://dx.doi.org/10.1016/j.tetlet.2013.11.090]
[84]
He, X.; Kassab, S.E.; Heinzl, G.; Xue, F. Base-catalyzed one-step synthesis of 5,7-disubstituted-1,2,4-triazolo[1,5-a] pyrimidines. Tetrahedron Lett., 2015, 56, 1034-1037.
[http://dx.doi.org/10.1016/j.tetlet.2014.12.135]
[85]
Kolosov, M.A.; Shvets, E.H.; Manuenkov, D.A.; Vlasenko, S.A.; Omel’chenko, I.N.; Shishkina, S.V.; Orlov, V.D. A synthesis of 6-functionalized 4,7-dihydro[1,2,4]triazolo[1,5-a]pyrimidines. Tetrahedron Lett., 2017, 58, 1207-1210.
[http://dx.doi.org/10.1016/j.tetlet.2017.02.035]
[86]
Vilapara, K.; Butani, H.; Gami, S.; Khunt, H.; Naliapara, Y. One-pot sequential approach for the construction of highly functionalized triazolo[4,3-c]pyrimidine library. Synth. Commun., 2015, 45, 2355-2363.
[http://dx.doi.org/10.1080/00397911.2015.1083579]
[87]
Mohamed, M.M.; Khalil, A.K.; Abbass, E.M.; El-Naggar, A.M. Design, synthesis of new pyrimidine derivatives as anticancer and antimicrobial agents. Synth. Commun., 2017, 47, 1441-1457.
[http://dx.doi.org/10.1080/00397911.2017.1332223]
[88]
(a) Emelina, E.E.; Petrov, A.A. α-aminoazoles in the Synthesis of heterocycles: V. Synthesis of azolo[1,5-a]pyrimidines from 2-ethoxyvinyl trifluoromethyl ketones and 2,2-diethoxyvinyl trifluoromethyl ketone. Russ. J. Org. Chem., 2009, 45, 417-420.
[http://dx.doi.org/10.1134/S1070428009030117 ]
(b) Andrade, V.P.; Mittersteiner, M.; Bonacorso, H.G.; Frizzo, C.P.; Martins, M.A.P.; Zanatta, N. Regioselective Synthesis of 5-(Trifluoromethyl)[1, 2,4]triazolo[1,5-a]pyrimidi-nes from β-Enamino Diketones. Synthesis, 2019, 51, 2311-2317.
[http://dx.doi.org/ 10.1055/s-0037-1611765]
(c) Frizzo, C.P.; Scapin, E.; Marzari, M.R.B.; München, T.S.; Zanatta, N.; Bonacorso, H.G.; Buriol, L.; Martins, M.A.P. Ultrasound irradiation promotes the synthesis of new 1,2,4-triazolo[1,5-a]pyrimidine. Ultrason. Sonochem., 2014, 21(3), 958-962.
[http://dx.doi.org/10.1016/j.ultsonch.2013.12.007] [PMID: 24394386 ]
(d) Chernyshev, V.M.; Astakhov, A.V.; Starikova, Z.A. Reaction of 1-substituted 3,5-diamino-1,2,4-triazoles with β-keto esters: Synthesis and new rearrangement of mesoionic 3-amino-2H-[1,2,4]triazolo-[4,3-a]pyrimidin-5-ones. Tetrahedron, 2010, 66, 3301-3313.
[http://dx.doi.org/10.1016/j.tet.2010.03.009]
[89]
Souza, L.A.; Santos, J.M.; Mittersteiner, M.; Andrade, V.P.; Lobo, M.M.; Santos, F.B.; Bortoluzzi, A.J.; Bonacorso, H.G.; Martins, M.A.P.; Zanatta, N. Synthetic versatility of β-alkoxyvinyl trichloromethyl ketones for obtaining [1,2,4]triazolo[1,5-a]pyrimidines. Synthesis, 2018, 50, 3686-3695.
[http://dx.doi.org/10.1055/s-0037-1610191]
[90]
Alnajjar, A.; Abdelkhalik, M.M.; Raslan, M.A.; Ibraheem, S.M.; Sadek, K.U. Synthesis of new [1,2,4]triazolo[1,5-a]pyrimidine derivatives: Reactivity of 3-amino[1,2,4]triazole towards enaminonitriles and enaminones. J. Heterocycl. Chem., 2018, 55, 1804-1808.
[http://dx.doi.org/10.1002/jhet.3222]
[91]
(a) El Ashry, E.S.H.; Rashed, N. 1,2,3-Triazolo[x, y-z]pyrimidines. Adv. Heterocycl. Chem., 1998, 71, 57-114.
[http://dx.doi.org/10.1016/S0065-2725(08)60831-4 ]
(b) Fischer, G. Recent progress in 1,2,4-triazolo[1,5-a]pyrimidine chemistry. Adv. Heterocycl. Chem., 2008, 95, 143-219.
[http://dx.doi.org/10.1016/S0065-2725(07)95003-5 ]
(c) Ohnishi, H.; Yamaguchi, K.; Shimada, S.; Suzuki, Y.; Kumagai, A. A new approach to the treatment of atherosclerosis and trapidil as an antagonist to platelet-derived growth factor. Life Sci., 1981, 28(14), 1641-1646.
[http://dx.doi.org/10.1016/0024-3205(81)90320-9] [PMID: 6264257 ]
(d) Novinson, T.; Springer, R.H. OíBrien, D.E.; Scholten, M.B.; Miller, J.P.; Robins, R.K. 2-(Alkylthio)-1,2,4-triazolo[1,5-a]pyrimidines as adenosine 3′,5′-monophosphate phosphodiesterase inhibitors with potential as new cardiovascular agents. J. Med. Chem., 1982, 25, 420-426.
[http://dx.doi.org/10.1021/jm00346a017] [PMID: 6279846]
(e) Gujjar, R.; Marwaha, A.; El Mazouni, F.; White, J.; White, K.L.; Creason, S.; Shackleford, D.M.; Baldwin, J.; Charman, W.N.; Buckner, F.S.; Charman, S.; Rathod, P.K.; Phillips, M.A. Identification of a metabolically stable triazolopyrimidine-based dihydroorotate dehydrogenase inhibitor with antimalarial activity in mice. J. Med. Chem., 2009, 52(7), 1864-1872.
[http://dx.doi.org/10.1021/jm801343r] [PMID: 19296651]
(f) Chen, Q.; Zhu, X.L.; Jiang, L.L.; Liu, Z.M.; Yang, G.F. Synthesis, antifungal activity and CoMFA analysis of novel 1,2,4-triazolo[1,5-a]pyrimidine derivatives. Eur. J. Med. Chem., 2008, 43(3), 595-603.
[http://dx.doi.org/10.1016/j.ejmech.2007.04.021] [PMID: 17618711 ]
(g) Yu, W.; Goddard, C.; Clearfield, E.; Mills, C.; Xiao, T.; Guo, H.; Morrey, J.D.; Motter, N.E.; Zhao, K.; Block, T.M.; Cuconati, A.; Xu, X. Design, synthesis, and biological evaluation of triazolo-pyrimidine derivatives as novel inhibitors of hepatitis B virus surface antigen (HBsAg) secretion. J. Med. Chem., 2011, 54(16), 5660-5670.
[http://dx.doi.org/10.1021/jm200696v] [PMID: 21786803 ]
(h) El-Gendy, M.M.A.; Shaaban, M.; Shaaban, K.A.; El-Bondkly, A.M.; Laatsch, H. Essramycin: A first triazolopyrimidine antibiotic isolated from nature. J. Antibiot. (Tokyo), 2008, 61(3), 149-157.
[http://dx.doi.org/10.1038/ja.2008.124] [PMID: 18503193 ]
(i)Allen, J.G.; Bourbeau, M.P.; Wohlhieter, G.E.; Bartberger, M.D.; Michelsen, K.; Hungate, R.; Gadwood, R.C.; Gaston, R.D.; Evans, B.; Mann, L.W.; Matison, M.E.; Schneider, S.; Huang, X.; Yu, D.; Andrews, P.S.; Reichelt, A.; Long, A.M.; Yakowec, P.; Yang, E.Y.; Lee, T.A.; Oliner, J.D. Discovery and optimization of chromenotriazolopyrimidines as potent inhibitors of the mouse double minute 2-tumor protein 53 protein-protein interaction. J. Med. Chem., 2009, 52(22), 7044-7053.
[http://dx.doi.org/10.1021/jm900681h] [PMID: 19856920 ]
(j)Tang, W.; Shi, D.Q. Synthesis and herbicidal activity of O,O-dialkyl N-[2-(5,7-dimethyl-[1,2,4]triazolo[1,5-a]pyrimidin-2-yloxy)benzoxyl]-1-amino-1-substitutedbe-nzyl phosphonates. J. Heterocycl. Chem., 2010, 47, 162-166.
(k)Chen, Q.; Liu, Z.M.; Chen, C.N.; Jiang, L.L.; Yang, G.F. Synthesis and fungicidal activities of new 1,2,4-triazolo[1,5-a]pyrimidines. Chem. Biodivers., 2009, 6(8), 1254-1265.
[http://dx.doi.org/10.1002/cbdv.200800168] [PMID: 19697344 ]
(l)El-Koussi, N.A.; Omar, F.A.; Abdel-Aziz, S.A.; Radwan, M.F. Synthesis and antibacterial screening of some 2, 5, 7-triaryl-1, 2, 4-triazolo. Pyrimidines. Bull. Pharm. Sci., 2004, 27, 141-154.
(m)Lakomska, I.; Wojtczak, A.; Sitkowski, J.; Kozerski, L.; Szlyk, E. Platinum(IV) complexes with purine analogs. Studies of molecular structure and antiproliferative activity in vitro. Polyhedron, 2008, 27, 2765-2770.
[http://dx.doi.org/10.1016/j.poly.2008.05.032 ]
(n)Lakomska, I. Molecular structure and antitumor activity of platinum(II) complexes containing purine analogs. Inorg. Chim. Acta, 2009, 362, 669-681. http://
[http://dx.doi.org/10.1016/j.ica.2008.02.030]
[92]
Li, T-J.; Yao, C-S.; Yu, C-X.; Wang, X-S.; Tu, S-J. Ionic liquid–mediated one-pot synthesis of 5-(trifluoromethyl)-4,7-dihydrotetrazolo[1,5-a] pyrimidine derivatives. Synth. Commun., 2012, 42, 2728-2738.
[http://dx.doi.org/10.1080/00397911.2011.566460]
[93]
Kolosov, M.A.; Shvets, E.H.; Manuenkov, D.A.; Kulyk, O.G.; Mazepa, A.V.; Orlov, V.D. A synthesis of 6-functionalized 7-unsubstituted- and 7-methyl[1,2,4]azolo[1,5-a]pyrimidine derivatives. Synth. Commun., 2019, 49, 611-615.
[http://dx.doi.org/10.1080/00397911.2019.1566476]
[94]
Wendt, M.D.; Kunzer, A.; Henry, R.F.; Cross, J.; Pagano, T.G. Regiochemistry of addition of aminoheterocycles to α-cyanocinnamonitriles: Formation of aza-bridged bi- and tricycles. Tetrahedron Lett., 2007, 48, 6360-6363.
[http://dx.doi.org/10.1016/j.tetlet.2007.07.039]
[95]
(a) Kjær, S.; Linch, M.; Purkiss, A.; Kostelecky, B.; Knowles, P.P.; Rosse, C.; Riou, P.; Soudy, C.; Kaye, S.; Patel, B.; Soriano, E.; Murray-Rust, J.; Barton, C.; Dillon, C.; Roffey, J.; Parker, P.J.; McDonald, N.Q. Adenosine-binding motif mimicry and cellular effects of a thieno[2,3-d]pyrimidine-based chemical inhibitor of atypical protein kinase C isoenzymes. Biochem. J., 2013, 451(2), 329-342.
[http://dx.doi.org/10.1042/BJ20121871] [PMID: 23418854]
(b) Horiuchi, T.; Takeda, Y.; Haginoya, N.; Miyazaki, M.; Nagata, M.; Kitagawa, M.; Akahane, K.; Uoto, K. Discovery of novel Thieno[2,3-d]pyrimidin-4-yl hydrazone-based cyclin-dependent kinase 4 inhibitors: synthesis, biological evaluation and structure-activity relationships. Chem. Pharm. Bull. (Tokyo), 2011, 59(8), 991-1002.
[http://dx.doi.org/10.1248/cpb.59.991] [PMID: 21804244]
(c) Horiuchi, T.; Nagata, M.; Kitagawa, M.; Akahane, K.; Uoto, K. Discovery of novel thieno[2,3-d]pyrimidin-4-yl hydrazone-based inhibitors of cyclin D1-CDK4: Synthesis, biological evaluation and structure-activity relationships. Part 2. Bioorg. Med. Chem., 2009, 17(23), 7850-7860.
[http://dx.doi.org/10.1016/j.bmc.2009.10.039] [PMID: 19889545 ]
(d) McClellan, W.J.; Dai, Y.; Abad-Zapatero, C.; Albert, D.H.; Bouska, J.J.; Glaser, K.B.; Magoc, T.J.; Marcotte, P.A.; Osterling, D.J.; Stewart, K.D.; Davidsen, S.K.; Michaelides, M.R. Discovery of potent and selective thienopyrimidine inhibitors of Aurora kinases. Bioorg. Med. Chem. Lett., 2011, 21(18), 5620-5624.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.041] [PMID: 21778056 ]
(e) Gangjee, A.; Li, W.; Kisliuk, R.L.; Cody, V.; Pace, J.; Piraino, J.; Makin, J. Design, synthesis, and X-ray crystal structure of classical and nonclassical 2-amino-4-oxo-5-substituted-6-ethylthieno[2,3-d]pyrimidines as dual thymi-dylate synthase and dihydrofolate reductase inhibitors and as potential antitumor agents. J. Med. Chem., 2009, 52(15), 4892-4902.
[http://dx.doi.org/10.1021/jm900490a] [PMID: 19719239 ]
(f) Gangjee, A.; Qiu, Y.; Li, W.; Kisliuk, R.L. Potent dual thymidylate synthase and dihydrofolate reductase inhibitors: classical and nonclassical 2-amino-4-oxo-5-arylthio-substituted-6-methylthieno[2,3-d] pyrimidine antifolates. J. Med. Chem., 2008, 51(18), 5789-5797.
[http://dx.doi.org/10.1021/jm8006933] [PMID: 18800768]
(g) Gangjee, A.; Qiu, Y.; Kisliuk, R.L. Synthesis of classical and nonclassical 2-amino-4-oxo-6-benzylthieno-[2,3-d]pyrimidines as potential thymidylate synthase inhibitors. J. Heterocycl. Chem., 2004, 41, 941-946.
[http://dx.doi.org/10.1002/jhet.5570410613]
[96]
(a) Majumdar, K.C.; Maji, P.K.; Pal, A.K. Synthesis of pyrimidine-annulated heterocycles: Facile sulfoxide rearrangement of 1, 3-dimethyl-5-(aryloxybut-2-ynylthio) pyrimidine-2, 4-dione. Lett. Org. Chem., 2007, 4, 134-136.
[http://dx.doi.org/10.2174/157017807780414127 ]
(b) Majumdar, K.C.; Pal, N.; Chattopadhyay, S.K. An efficient route to thieno[2,3-d]pyrimidine derivatives by tandem [2, 3] and Sigmatropic Rearrangement. Lett. Org. Chem., 2006, 3, 709-711. [3, 3].
[http://dx.doi.org/10.2174/157017806778700033]
[97]
Kobayashi, K.; Suzuki, T.; Kozuki, T.; Matsumoto, N.; Hiyoshi, H.; Umezu, K. Synthesis of 5,6-disubstituted thieno[2,3-d]pyrimidines from 4-chloro-pyrimidines. Heterocycles, 2012, 85, 1405-1416.
[http://dx.doi.org/10.3987/COM-12-12463]
[98]
Balti, M.; Hachicha, M.; Efrit, M.L.E. An efficient synthetic route towards novel 3N-sunstituted thieno[2,3-d]pyrimidin-4(3H)-Ones. Heterocycles, 2015, 91, 1455-1464.
[http://dx.doi.org/10.3987/COM-15-13236]
[99]
Wilding, B.; Faschauner, S.; Klempier, N. A practical synthesis of 5-functionalized thieno[2,3-d]pyrimidines. Tetrahedron Lett., 2015, 56, 4486-4489.
[http://dx.doi.org/10.1016/j.tetlet.2015.05.104]
[100]
Yang, J.; Shi, D.; Hao, P.; Yang, D.; Zhang, Q.; Li, J. An innovative synthesis of tertiary hydroxyl thieno[2,3-d]pyrimidinone skeleton: Natural-like product from the tandem reaction of o-aminothienonitrile and carbonyl compound. Tetrahedron Lett., 2016, 57, 2455-2461.
[http://dx.doi.org/10.1016/j.tetlet.2016.04.088]
[101]
Moustafa, A.H.; Ahmed, W.W.; Khodairy, A. Syntheses of some new n-linked pyrimidine-2-amines with pyrazinopyrimidines, thienopyrimidines, and benzazoles via reactions of various nucleophiles with cyanamides. J. Heterocycl. Chem., 2017, 54, 3490-3497.
[http://dx.doi.org/10.1002/jhet.2972]
[102]
Lemaire, L.; Leleu-Chavain, N.; Tourteau, A.; Abdul-Sada, A.; Spencer, J.; Millet, R. A rapid route for the preparation of pyrimido[5,4-d]- and pyrido[3,2-d]oxazoles. Tetrahedron Lett., 2015, 56, 2448-2450.
[http://dx.doi.org/10.1016/j.tetlet.2015.03.082]
[103]
Mieczkowski, A.; Bazlekowa, M.; Bagiński, M.; Wójcik, J.; Winczura, A.; Miazga, A.; Ghahe, S.S.; Gajda, R.; Woźniak, K.; Tudek, B. A mild and efficient approach to the 6H-oxazolo[3,2-f]pyrimidine-5,7-dione scaffold via unexpected rearrangement of 2,3-dihydropyrimido[6,1-b][1,5,3]dioxazepine-7,9(5H,8H)-diones: Synthesis, crystallographic studies, and cytotoxic activity screening. Tetrahedron Lett., 2016, 57, 743-746.
[http://dx.doi.org/10.1016/j.tetlet.2016.01.006]
[104]
(a) Mondal, B.; Hazra, S.; Naktode, K.; Panda, T.K.; Roy, B.PhI. (OAc)2 and BF3–OEt2 mediated heterocyclization: Metal-free synthesis of pyrimidine-annulated oxazolines. Tetrahedron Lett., 2014, 55, 5625-5628.
[http://dx.doi.org/ 10.1016/j.tetlet.2014.08.051]
(b) Roy, B.; Hazra, S.; Mondal, B.; Majumdar, K.C. Cu(OTf)2-catalyzed dehydrogenative C-H activation under atmospheric oxygen: An expedient approach to pyrrolo[3,2-d] pyrimidine derivatives. Eur. J. Org. Chem., 2013, 4570-4577.
[http://dx.doi.org/10.1002/ejoc.201300275]
[105]
Shirsale, A.; Patil, Y.; Rawal, G.K.; Pabba, J.; Berthon, G.; Sonawane, R.P.; Sikervar, V. A Convenient and concise metal-free approach to functionalized bicyclic pyrimidinones from oxazine-2,6-diones. Synthesis, 2018, 1, 2087-2093.
[http://dx.doi.org/10.1055/s-0037-1609364]
[106]
(a) Jiang, K-M.; Jin, Y. Lin J. 1,3-Dipolar cycloaddition of uracil derivatives with nitrile oxides: Synthesis of [1,2,4]oxadiazolo[4,5-c]pyrimidine-5,7(6H)-dione derivatives. Tetrahedron, 2017, 73, 6662-6668.
[http://dx.doi.org/10.1016/j.tet.2017.10.024 ]
(b) Liu, X.; Song, X.; Liu, Y.; Xie, M.; Yu, W.; Yan, S.; Lin, J.; Jin, Y. Novel 5H-[1,2,4]oxadiazolo[4,5-a]pyri-midin-5-one derivatives as antibacterial and anticancer agents: Synthesis and biological evaluation. Tetrahedron Lett., 2018, 59, 3767-3772.
[http://dx.doi.org/10.1016/j.tetlet.2018.09.011]
[107]
(a) Pan, B.; Huang, R.; Zheng, L.; Chen, C.; Han, S.; Qu, D.; Zhu, M.; Wei, P. Thiazolidione derivatives as novel antibiofilm agents: Design, synthesis, biological evaluation, and structure-activity relationships. Eur. J. Med. Chem., 20011, 46(3), 819-824.
[http://dx.doi.org/10.1016/j.ejmech.2010.12.014] [PMID: 21255878]
(b) Zhi, H.; Chen, L-M.; Zhang, L-L.; Liu, S-J.; Wan, D.C.C.; Lin, H-Q.; Hu, C. Design, synthesis, and biological evaluation of 5H-thiazolo[3,2-a]pyrimidine derivatives as a new type of acetylcholinesterase inhibitors. ARKIVOC, 2008, 13, 266-277.
(c) Quan, Z-J.; Zhang, Z.; Wang, J-K.; Wang, X-C.; Liu, Y-J.; Ji, P-Y. Efficient synthesis of 5H-thiazolo[3,2-a]pyrimidines from reactions of 3,4-dihydropyrimidine-thiones with α-bromoacetone in aqueous media. Heteroatom Chem., 2008, 2, 149-153.
[http://dx.doi.org/10.1002/hc.20386]
[108]
Singh, S.; Schober, A.; Gebinoga, M.; Groß, G.A. Convenient method for synthesis of thiazolo[3,2-a]pyrimidine derivatives in a one-pot procedure. Tetrahedron Lett., 2011, 52, 3814-3817.
[http://dx.doi.org/10.1016/j.tetlet.2011.05.067]
[109]
Zhao, B.; Jiang, L-L.; Liu, Z.; Deng, Q-G.; Wang, L-Y.; Song, B.; Gao, Y. A microwave assisted synthesis of highly substituted 7-methyl-5H-thiazolo[3,2-a] pyrimidine-6-carboxylate derivatives via one-pot reaction of aminothiazole, aldehyde and ethyl acetoacetate. Heterocycles, 2013, 87(10), 2093-2102.
[http://dx.doi.org/10.3987/COM-13-12797]
[110]
Yadav, L.D.S.; Dubey, S.; Yadav, B.S. Solvent-free one-pot reactions for annulating a pyrimidine ring on thiazoles under microwave irradiation. Tetrahedron, 2003, 59, 5411-5415.
[http://dx.doi.org/10.1016/S0040-4020(03)00854-8]
[111]
(a) Xiao, D.; Han, L.; Sun, Q.; Chen, Q.; Gong, N.; Lv, Y.; Suzenet, F.; Guillaumet, G.; Cheng, T.; Li, R. Copper-mediated synthesis of N-fused heterocycles via Csp-S coupling reaction and 5-endo-dig cyclization sequence. RSC Advances, 2012, 2, 5054-5057.
[http://dx.doi.org/10.1039/c2ra20254a ]
(b) Shelke, A.V.; Bhong, B.Y.; Karade, N.N. New synthesis of 3,5-disubstituted-5H-thiazolo[3,2-a]pyrimidine via ring annulation of 3,4-dihydropyrimidin-2(1H)-thione using alkynyl(aryl)iodonium salts. Tetrahedron Lett., 2013, 54, 600-603.
[http://dx.doi.org/10.1016/j.tetlet.2012.11.098]
[112]
(a) Studzinska, R.; Wroblewski, M.; Draminski, M. Synthesis of new thiazolo[3,2-a]pyrimidin-5-one derivatives in reaction of 3-allyl-2-thiouracils cyclization. Heterocycles, 2008, 75, 1953-1961.
[http://dx.doi.org/ 10.3987/COM-08-11365]
(b) Studzinska, R.; Wroblewski, M.; Karczmarska-Wodzka, A.; Kołodziejska, R. A facile synthesis of the novel thiazolo[3,2-a]pyrimidine derivatives. Tetrahedron Lett., 2014, 55, 1384-1386.
[http://dx.doi.org/10.1016/j.tetlet.2014.01.033]
[113]
Lashmanova, E.A.; Rybakov, V.B.; Shiryaev, A.K. Synthesis of adamantylated pyrimidines using the Biginelli reaction. Synthesis, 2016, 48, 3965-3970.
[http://dx.doi.org/10.1055/s-0035-1562459]
[114]
(a) Behalo, M.S. Synthesis of Some Novel Thiazolo[3,2-a]pyrimidine and Pyrimido[2,1-b][1,3]thiazine derivatives and their antimicrobial evaluation. J. Heterocycl. Chem., 2018, 55, 1391-1397.
[http://dx.doi.org/10.1002/jhet.3174 ]
(b) Elmaaty, T.A.; El-Taweel, F.; Abdeldayem, S.; Elfarh, A.A. Synthesis of some new thiazolo[3,2-a]pyrimidine derivatives and their applications as disperse dyes. J. Heterocycl. Chem., 2019, 56, 922-929.
[http://dx.doi.org/10.1002/jhet.3470]
[115]
(a) Silpa, L.; Petrignet, J.; Abarbri, M. Direct access to fluorinated thiadiazolo[3,2-a]pyrimidin-7-one systems. Synlett, 2014, 25, 1827-1830.
[http://dx.doi.org/10.1055/s-0034-1378332 ]
(b) Dong, H.; Zhao, Y. Highly regioselective synthesis of 7-oxo-7h-[1,3,4]thiadiazolo[3,2-a]pyrimidine-5-carboxylate derivatives under mild conditions. Tetrahedron Lett., 2019, 60, 1399-1403.
[http://dx.doi.org/10.1016/j.tetlet.2019.04.005]
[116]
Zhao, B.; Xu, Y.; Deng, Q-G.; Liu, Z.; Wang, L-Y.; Gao, Y. One-pot, three component synthesis of novel 5H-[1,3,4]thiadiazolo[3,2-a]pyrimidine-6-carboxylate derivatives by microwave irradiation. Tetrahedron Lett., 2014, 55, 4521-4524.
[http://dx.doi.org/10.1016/j.tetlet.2014.06.073]
[117]
Kasaboina, S.; Bollu, R.; Gomedhika, P.M.; Ramineni, V.; Nagarapu, L.; Dumala, N.; Grover, P.; Nanubolu, J.B. A green protocol for one pot synthesis of benzosuberone tethered thiadiazolopyrimidine-6-carboxylates using PEG-400 as potent anti-proliferative agents. Tetrahedron Lett., 2018, 59, 3015-3019.
[http://dx.doi.org/10.1016/j.tetlet.2018.06.068]
[118]
Yavari, I.; Hojati, M.; Azad, L.; Halvagar, M.R. A Synthesis of spirocyclic oxazinoisoquinolines and oxazinoquinolines bearing thiazolopyrimidine moieties. Synlett, 2018, 29, 1024-1027.
[http://dx.doi.org/10.1055/s-0037-1609302]
[119]
Hamama, W.S.; Ibrahim, M.E.; Zoorob, H.H. Synthesis and in vitro antitumor activity of new isoxazolo[5,4-d]pyrimidine systems. J. Heterocycl. Chem., 2016, 53, 2007-2012.
[http://dx.doi.org/10.1002/jhet.2521]
[120]
Gumuş, M.K.; Gorobets, N.Y.; Sedash, Y.V.; Shishkina, S.V.; Desenko, S.M. Rapid formation of chemical complexity via a modified Biginelli reaction leading to dihydrofuran-2(3H)-one spiro-derivatives of triazolo[1,5-a]pyrimidine. Tetrahedron Lett., 2017, 58, 3446-3448.
[http://dx.doi.org/10.1016/j.tetlet.2017.07.071]
[121]
Loidreau, Y.; Levacher, V.; Besson, T. Suzuki cross-coupling of 5-bromothieno[2,3-b]pyridines for the convenient synthesis of 8-arylpyrido[3′,2′:4,5]thieno[3,2-d]pyrimidin-4-amines. Tetrahedron Lett., 2013, 54, 1160-1163.
[http://dx.doi.org/10.1016/j.tetlet.2012.12.077]
[122]
Gnanasekaran, K.K.; Muddala, N.P.; Bunce, R.A. Pyrazoloquinazolinones and pyrazolopyridopyrimidinones by a sequential N-acylation–SNAr reaction. Tetrahedron Lett., 2015, 56, 1367-1369.
[http://dx.doi.org/10.1016/j.tetlet.2015.01.146]
[123]
Pyatakov, D.A.; Astakhov, A.V.; Sokolov, A.N.; Fakhrutdinov, A.N.; Fitch, A.N.; Rybakov, V.B.; Chernyshev, V.V.; Chernyshev, V.M. Alkoxy base-mediated selective synthesis and new rearrangements of 1,2,4-triazolodi-pyrimidinones. Tetrahedron Lett., 2017, 58, 748-754.
[http://dx.doi.org/10.1016/j.tetlet.2017.01.030]
[124]
Krishnammagari, S.K.; Cho, B.G.; Kim, J.T.; Jeongm, Y.T. An efficient and solvent-free one-pot multi-component synthesis of novel highly substituted pyrido[2′,3′:3,4] pyrazolo[1,5-a]pyrimidine-3-carbonitrile derivatives catalyzed by tetramethylguanidine. Synth. Commun., 2018, 48, 2663-2674.
[http://dx.doi.org/10.1080/00397911.2018.1514053]
[125]
Marquise, N.; Nguyen, T.T.; Chevallier, F.; Picot, L.; Thiéry, V.; Lozach, O.; Bach, S.; Ruchaud, S.; Mongin, F. Azine and diazine functionalization using 2,2,6,6-tetramethylpiperidino-based lithium-metal combinations: Application to the synthesis of 5,9-disubstituted pyrido[3′,2′:4,5]pyrrolo[1,2-c]pyri-midines. Synlett, 2015, 26, 2811-2816.
[http://dx.doi.org/10.1055/s-0035-1560496]
[126]
Soleimany, M.; Lari, J.; Vahedi, H.; Imanpour, M. New facile route to synthesize furo[3,2-e][1,2,4]triazolo[4,3-c]pyrimidine and Furo[3,2-e][1,2,4]tri-azolo[1,5-c]pyrimidine derivatives. Synth. Commun., 2014, 44, 1-9.
[http://dx.doi.org/10.1080/00397911.2014.943344]
[127]
Dolzhenko, A.V.; Pastorin, G.; Chui, W.K. A new synthesis of 2,8-disubstituted pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidines. Tetrahedron Lett., 2009, 50, 5617-5621.
[http://dx.doi.org/10.1016/j.tetlet.2009.07.113]
[128]
Ravi, K.N.; Poornachandra, Y.; Krishna, S.D.; Jitender, D.G.; Ganesh, K.C.; Narsaiah, B. Synthesis of novel ethyl 2,4-disubstituted 8-(trifluoromethyl) pyrido [2′, 3′:3,4]pyrazolo[1,5-a]pyrimidine-9-carboxylate derivatives as promising anticancer agents. Bioorg. Med. Chem. Lett., 2016, 26, 5203-5206.
[http://dx.doi.org/10.1016/j.bmcl.2016.09.062] [PMID: 27720296]
[129]
Rote, R.V.; Shelar, D.P.; Patil, S.R.; Jachak, M.N. A convenient synthesis of new pyrazolo[4,3-d]pyrimidines and their fused heterocycles. J. Heterocycl. Chem., 2014, 51, 815-823.
[http://dx.doi.org/10.1002/jhet.2006]
[130]
(a) Gorbunov, E.B.; Rusinov, G.L.; Ulomskii, E.N.; Isenov, M.L.; Charushin, V.N. Synthesis of 2H-azolo[1,5-a] [1,2,3]triazolo[4,5-e]pyrimidines. Chem. Heterocycl. Compd., 2015, 51, 491-495.
[http://dx.doi.org/ 10.1007/s10593-015-1725-2]
(b) Gorbunov, E.B.; Rusinov, G.L.; Ulomsky, E.N.; Rusinov, V.L.; Charushin, V.N.; Chupakhin, O.N. C–H functionalization of triazolo[a]-annulated 8-azapurines. Tetrahedron Lett., 2016, 57, 2303-2305.
[http://dx.doi.org/10.1016/j.tetlet.2016.04.052]
[131]
Liu, B.; Li, X-F.; Liu, H-C.; Yu, X-Y. Unexpected nitrilimine cycloaddition of thiazolo[3,2-a] pyrimidine derivatives. Tetrahedron Lett., 2013, 54, 6952-6954.
[http://dx.doi.org/10.1016/j.tetlet.2013.10.062]
[132]
Agrebi, A.; Allouche, F.; Chabchoub, F.; El-Kaim, L.; Alves, S.; Baleizão, C.; Farinha, J.P. Sc(OTf)3 promoted multicomponent synthesis of fluorescent imidazo[1,2-c]pyrazolo[3,4-d]pyrimidine. Tetrahedron Lett., 2013, 54, 4781-4784.
[http://dx.doi.org/10.1016/j.tetlet.2013.06.136]
[133]
Akbarzadeh, M.; Bakavoli, M.; Eshghi, H.; Shiri, A. Synthesis of Oxazolo[5,4-d][1,2,4]triazolo[4,3-a]pyrimidines as a new class of heterocyclic compounds. J. Heterocycl. Chem., 2016, 53, 832-839.
[http://dx.doi.org/10.1002/jhet.2346]
[134]
Ustalar, A.; Yilmaz, M. Microwave assisted synthesis of 2,3-dihydro-4H-benzo[4,5]thiazolo[3,2-a]furo[2,3-d]pyrimidin-4-ones and 6,7-dihydro-5H-furo[2,3-d]thiazolo[3,2-a]pyrimidin-5-ones using Mn(OAc)3. Tetrahedron Lett., 2017, 58, 516-519.
[http://dx.doi.org/10.1016/j.tetlet.2016.12.067]
[135]
Qiu, F.; Shi, D.; Yang, J.; Zhang, Q.; Li, J. Synthesis of thieno[2,3-b]thiophene fused pyrimidine derivatives via sequential conversion of 3,4-diaminothieno[2,3-b]thiophene-2,5-dicarbonitrile with carbonyl compounds. Tetrahedron Lett., 2016, 57, 1210-1214.
[http://dx.doi.org/10.1016/j.tetlet.2016.01.040]
[136]
Gharpure, S.J.; Niranjana, P.; Porwal, S.K. Cascade radical cyclization to vinylogous carbonates/carbamates for the synthesis of oxa- and aza-angular triquinanes: Diastereoselectivity depends on the ring size of radical precursor. Synthesis, 2018, 50, 2954-2967.
[http://dx.doi.org/10.1055/s-0036-1589541]
[137]
Ramesh, E.; Raghunathan, R. An expedient microwave-assisted, solvent-free, solid-supported synthesis of pyrrolo[2,3-d]pyrimidine-pyrano[5,6-c]coumarin/[6,5-c]chromone derivatives by intramolecular hetero Diels–Alder reaction. Tetrahedron Lett., 2008, 49, 1812-1817.
[http://dx.doi.org/10.1016/j.tetlet.2008.01.059]
[138]
Dabiri, M.; Azimi, S.C.; Khavasi, H.R.; Bazgir, A. A novel reaction of 6-amino-uracils and isatins. Tetrahedron, 2008, 64, 7307-7311.
[http://dx.doi.org/10.1016/j.tet.2008.05.063]
[139]
Sun, T.; Li, H.; Wu, Z.; Li, C.; Ren, X.; Zhang, F. Three-component strategy for synthesis of dihydropyrido[2,3-d]pyrimidine and spirooxindole derivatives. J. Heterocycl. Chem., 2018, 55, 2270-2276.
[http://dx.doi.org/10.1002/jhet.3278]
[140]
Abdel-Aziem, A.; El-Gendy, M.S.; Abdelhamid, A.O. Synthesis and antimicrobial activities of pyrido[2,3-d] pyrimidine, pyridotriazolopyrimidine, triazolopyrimidine, and pyrido[2,3-d:6,5d’]dipyrimidine derivatives. Eur. J. Chem., 2012, 3, 455-460.
[http://dx.doi.org/10.5155/eurjchem.3.4.455-460.683]
[141]
Aarhus, T.; Fritze, U.F.; Hennum, M.; Gundersen, L-L. Sodium borohydride mediated reduction of N-Boc protected purines and applications in the synthesis of 7-alkyladenines and tetrahydro[1, 4]diazepino-[1,2,3-gh]purines. Tetrahedron Lett., 2014, 55, 5748-5750.
[http://dx.doi.org/10.1016/j.tetlet.2014.08.102]
[142]
Acosta, P.; Insuasty, B.; Abonia, R.; Quiroga, J. Annelation of pyrrolo[1,2-a]pyrimidine and pyrido[1,2-a]pyrimidine systems to a pyrazolopyridine framework by a cascade of two cyclization reactions. Tetrahedron Lett., 2015, 56, 2917.
[http://dx.doi.org/10.1016/j.tetlet.2015.04.068]
[143]
Reddy, M.V.; Kim, J.S.; Lim, K.T.; Jeong, Y.T. Polyethylene glycol (PEG-400): an efficient green reaction medium for the synthesis of benzo[4,5]imidazo[1,2-a]-pyrimido[4,5-d]pyrimidin-4(1H)-ones under catalyst-free conditions. Tetrahedron Lett., 2014, 55, 6459-6462.
[http://dx.doi.org/10.1016/j.tetlet.2014.09.135]
[144]
(a) Kumar, A.S.; Nagarajan, R. Copper- or palladium-catalyzed amidation and cyclization route for the synthesis of pyrimido[4,5-b]carbazoles. Synthesis, 2013, 45, 2893-2903.
[http://dx.doi.org/10.1055/s-0033-1339490 ]
(b) Grošelj, U.; Podlogar, A.; Novak, A.; Dahmann, G.; Golobič, A.; Stanovnik, B.; Svete, J. Synthesis of tetrahydropyrazolo[1,5-c]pyrimidine-2,7(1H, 3H)-diones. Synthesis, 2013, 45, 639-650.
[http://dx.doi.org/10.1055/s-0032-1318107]
[145]
Metwally, N.H.; Abdallah, M.A.; Almabrook, S.A. Pyrazolo[1,5-a] pyrimidine derivative as precursor for some novel pyrazolo[1,5-a]pyrimidines and tetraheterocyclic compounds. J. Heterocycl. Chem., 2017, 54, 347-354.
[http://dx.doi.org/10.1002/jhet.2590]
[146]
Campos, J.F.; Queiroz, M-J.R.P.; Berteina-Raboin, S. Synthesis of new annulated pyrazinothienotriazolopyrimidinones and triazolylthienopyrazines. Synthesis, 2018, 50, 1159-1165.
[http://dx.doi.org/10.1055/s-0036-1589136]
[147]
Darehkordi, A.; Fazli-Zafarani, S.M.; Kamali, M. Direct synthesis of trichloro-thiazolo[3,2-a]pyrimidine and thiazolo[2,3-b]quinazoline derivatives. J. Heterocycl. Chem., 2017, 54, 2287-2296.
[http://dx.doi.org/10.1002/jhet.2816]
[148]
Sirakanyan, S.N.; Geronikaki, A.; Spinelli, D.; Hovakimyan, A.A.; Noravyan, A.S. Synthesis and structure of condensed triazolo- and tetrazolopyrimidines. Tetrahedron, 2013, 69, 10637-10643.
[http://dx.doi.org/10.1016/j.tet.2013.10.015]
[149]
Sirakanyan, S.N.; Spinelli, D.; Geronikaki, A.; Kartsev, V.G.; Hakobyan, E.K.; Hovakimyan, A.A. Synthesis and structure of a new heterocyclic system: pyrido[3′,2′:4,5]furo[3,2-d][1,2,4]triazolo[4,3-a]pyrimidin-7(8)-one. Tetrahedron Lett., 2016, 57, 5338-5340.
[http://dx.doi.org/10.1016/j.tetlet.2016.10.058]
[150]
Gomha, S.M.; Riyadh, S.M. Multicomponent synthesis of novel penta-heterocyclic ring systems incorporating a benzopyranopyridine scaffold. Synthesis, 2014, 46, 258-262.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy