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ABSTRACT 

Specific aims of this study are to investigate the mechanism governing surface stress 

generation associated with chemical or molecular binding on functionalized microcantilevers. 

Formation of affinity complexes on cantilever surfaces leads to charge redistribution, 

configurational change and steric hindrance between neighboring molecules resulting in 

surface stress change and measureable cantilever deformation. A novel interferometry 

technique employing two adjacent micromachined cantilevers (a sensing/reference pair) was 

utilized to measure the cantilever deformation. The sensing principle is that binding/reaction 

of specific chemical or biological species on the sensing cantilever transduces to mechanical 

deformation. The differential bending of the sensing cantilever respect to the reference 

cantilever ensures that measured response is insensitive to environmental disturbances. As a 

proof of principle for the measurement technique, surface stress changes associated with: 

self-assembly of alkanethiol, hybridization of ssDNA, and the formation of cocaine-aptamer 

complexes were measured. Dissociation constant (Kd) for each molecular reaction was 

utilized to estimate the surface coverage of affinity complexes. In the cases of DNA 

hybridization and cocaine-aptamer binding, measured surface stress was found to be 

dependent on the surface coverage of the affinity complexes. In order to achieve a better 

sensitivity for DNA hybridization, immobilization of receptor molecules was modified to 

enhance the deformation of underlying surface. Single-stranded DNA (ssDNA) strands with 

thiol-modification on both 3’ and 5’ ends were immobilized on the gold surface such that 

both ends are attached to the gold surface. Immobilization condition was controlled to obtain 

similar receptor density as single-thiolated DNA strands. Hybridization of double-thiolated 
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DNA strands leads to an almost two orders of magnitude increase in cantilever deformation. 

In both DNA hybridization and the conventional mode for cocaine detection, the lowest 

detectable concentration was determined by binding activity between the ligand and receptor 

molecules. In order to overcome this limitation for cocaine detection, a novel competition 

sensing mode that relies on rate of aptamers unbinding from the cantilever due to either 

diffusion or reaction with cocaine as target ligands in solution was investigated. The rate of 

unbinding is found to be dependent on the concentration of cocaine molecules. A model 

based on diffusion-reaction equation was developed to explain the experimental observation. 

Experimental results indicate that the competition mode reduces the lowest detectable 

threshold to 200 nM which is comparable to that achieved analytical techniques such as mass 

spectrometry.   
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CHAPTER 1. OVERVIEW 

A novel surface stress sensor is used for quantitative analysis of nanomechanical 

response arising from adsorption of small molecules on microcantilevers. The deflection of 

the microcantilever is indicative of surface stress that can be correlated with the amount of 

ligands bound to the microcantilever. In detail, the surface of a microcantilever is 

functionalized with receptor molecules that have high affinity for the ligand. In the surface 

stress sensor, adsorption of the ligand on the sensitized surface provides differential 

measurements of deflection between a sensing and reference microcantilevers. An optical 

interferometry is used to measure cantilever deflection that converts molecular interactions 

into a measureable quantitative signal with high precision and accuracy.  

The sensor’s principal applications would be biomedical, forensic and biosecurity 

areas; portability is of crucial importance in molecular recognition with high specificity and 

sensitivity.  In current state-of-art microcantilever sensors, optical beam deflection method is 

utilized for the deflection measurement due to its simplistic configuration and convenience as 

are common in AFM instrumentation. However, the optical deflectometry requires a large 

optical distance for high-sensitive detection and suffers from the challenges in integration of 

all components in a single micro device. The sensitivity of interferometric technique, in 

contrast, is independent of the distance between detectors and the sensing surface of 

microcantilevers. Therefore, the surface stress sensor may be amenable to integrate all sensor 

components into a single MEMS device. 

One outstanding aspect of the microcantilever sensor is that the differential 

measurement of microcantilevers (sensing and reference pair) is inherently insensitive to 
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environmental disturbances such as nonspecific adsorption, changes in pH, ionic strength, 

and especially the temperature. The use of nucleic acid aptamers as receptor molecules 

enables regeneration and robust performance of the sensor because of unique features of 

aptamers such as reversible thermal denaturation, long term stability and easy and 

straightforward chemical modification. 

Ultimate goal of this study is to achieve a mechanism based understanding of the 

molecular phenomena governing surface stress generation and influence of nanoscale 

morphology on such mechanisms. The knowledge of biomolecular interactions would lead to 

instrumentation capable of sensitive and immediate ligand detection and identification. In 

order to achieve this goal, we utilized a novel microcantilever based nanomechanical sensor 

capable of sensitive and specific detection of chemical and biological species. These 

objectives were achieved through successful completion of tasks as follow:  

1) Construction of a novel microcantilever based sensor  

2) Validation of the sensitivity and specificity of microcantilever based sensors for 

measurements of surface stress associated with formation of alkanethiol self-

assembled monolayers (SAMs), DNA hybridization, and cocaine/aptamer binding 

in conventional mode. 

3) Influence of receptor molecule immobilization on surface deformation.   

4)  Invention of a novel sensing mechanism that relies on rate of receptor unbinding 

due to diffusion or reaction with target ligand.   
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CHAPTER 2. LITERATURE REVIEW 

2.1 Conventional techniques for molecular recognitions 

Almost all approaches for detection and identification of biological molecules can be 

broadly classified into two main groups; labeled and label-free methods. Fluorescence 

resonance energy transfer (FRET) is an example of labeling systems and achieved high 

resolution for identification in immunoassays (Hanbury, Miller et al. 1996; Aoyagi and Kudo 

2005; Ko and Grant 2006), nucleic acid (Tyagi and Kramer 1996; Fang, Liu et al. 1999; 

Ueberfeld and Walt 2004), and ligand-receptor interactions (Medintz, Clapp et al. 2003; Ye 

and Schultz 2003; Sandros, Gao et al. 2005). Although labeling techniques have high 

sensitivity and large dynamic range of spatial resolution, they also have drawbacks. For 

instance, time required for extensive sample preparation leads to significant delay in 

identification. It also requires high cost and skilled scientists for labeling processes and 

detecting systems. Alternative methods to substitute labeling techniques are label-free 

methods. Rapid and real-time detections are primary advantages of label-free methods.  

Gas chromatography-mass spectrometry (GC-MS) and High-performance liquid 

chromatography (HPLC) may be standard techniques as label-free biosensing platforms for 

identifying molecules of controlled substances with great specificity and sensitivity. Mass 

spectrometry is designed to determine the elemental composition and chemical structure of 

molecules by measuring mass-to-charge ratios. This technique is often combined with the 

liquid/gas chromatography (HPLC and GC-MS) and is widely used for forensic analysis 

(Mortier, Maudens et al. 2002; Follador, Yonamine et al. 2004; Lopez, Bermejo et al. 2006; 

Valente-Campos, Yonamine et al. 2006; Cristoni, Basso et al. 2007; Johansen and Bhatia 
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2007; Loopez, Bermejo et al. 2007; Barroso, Dias et al. 2008; Gheorghe, van Nuijs et al. 

2008; Jagerdeo, Montgornery et al. 2008; Langman, Bjergum et al. 2009).  

Enzyme multiplied immunoassay technique (EMIT) and Enzyme-linked 

immunosorbent assay (ELISA) were developed for the measurement of substances in test 

samples present at small concentrations, 5 to 20 ng/mL in general (Kergueris, Bourin et al. 

1983; Allard and Deutsch 1987; Badcock and Oreilly 1992; Michael E. Burton 1992; Wilson, 

Tsanaclis et al. 1996; Ullman 1999; Marin, Keith et al. 2009). These two techniques are 

enzyme immunoassays used for routine analytical determinations in forensic laboratories. 

EMIT is a homogeneous and liquid phase assay that is designed for rapid measurements of 

haptens for drug, hormone and metabolite determinations. ELISA is a heterogeneous and a 

solid phase assay that requires the separation of reagents. This technique is based on 

measuring the presence of antibody/antigen or immune complex and is used for diagnosing 

infectious disease and immunoglobulins. In general, EMIT is faster than ELISA but ELISA 

has a better sensitivity.  

Surface plasmon resonance (SPR) and X-ray photoelectron spectroscopy (XPS) are 

other examples of label-free surface analytical tools. SPR is a sensitive and accurate tool for 

detection of specific binding of small molecules but not suitable for bulk because the surface 

plasmon only penetrates a short distance into the external medium (Zhang, Luo et al. 2006; 

Kim, Lee et al. 2008; Solanki, Prabhakar et al. 2008). XPS technique is used for quantitative 

and qualitative analysis of surface chemical or molecular binding. Atomic number and the 

bonding state of elements determine the characterstic peaks in the photoelectron spectrum. It 

can identify all elements except hydrogen on the examined surface. This is a widely used 

technique to confirm the existence of organic molecules on a substrate by comparing peaks 
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of nitrogen and phosphorous. A typical XPS spectrum contains information on both the X-

ray-excited photoelectrons and X-ray-excited Auger electrons (Casero, Darder et al. 2003; 

Lee, Harbers et al. 2007; Liu, Zhang et al. 2009). Many other methods are also proposed for 

recognition of chemical or biological molecules such as quartz crystal microbalances (QCM) 

(Janshoff, Galla et al. 2000), nanowire nanosensors (Wang, Chen et al. 2005), and screen 

printed electrode (SPE) biosensors (Alonso-Lomillo, Yardimci et al. 2009). 

 

2.2 Microcantilever Nanomechanical Sensors 

Among those label-free methods, microcantilever based sensors as biosensing 

platform are being widely investigated for monitoring molecular interactions. These sensors 

are designed to measure nanomechanical responses through a static deflection or resonance 

frequency shift of a microcantilever in both ambient and liquid environments. A single 

microcantilever was used in the early stages of microcantilever based sensors (Berger, 

Delamarche et al. 1997; Lang, Berger et al. 1998; Moulin, O'Shea et al. 1999; Raiteri, Nelles 

et al. 1999). One soon realized that using at least two cantilevers (sensing and reference pairs) 

in parallel could significantly improve the reliability during measurements. The differential 

reading of sensing cantilever respect to reference cantilever suppresses signals caused by 

environmental disturbances such as nonspecific adsorption, changes in pH, ionic strength, 

and temperature change (Lang, Berger et al. 1998). 

The most common method of measuring microcantilever deformation is the beam 

deflection technique (Meyer and Amer 1988; Raiteri, Grattarola et al. 2001; Ziegler 2004). 

Laser beam is focused at the free end of the microcantilever and reflected into a position-

sensitive detector. When the cantilever bends due to adsorption of ligands, the reflected spot 
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undergoes a proportional displacement. Therefore, a large optical distance between a 

cantilever and a detector is required to achieve a sensitive measurement. Alternatively, 

optical interferometry (Martin, Williams et al. 1987; Rugar, Mamin et al. 1989; 

Schonenberger and Alvarado 1989; Putman, Degrooth et al. 1992) can be used to measure 

cantilever deflection. A coherent laser beam is split into two or more parts and recombined to 

form an interference pattern whose intensity is proportional to path length difference between 

the beams. The sensitivity of measurement does not depend on the optical distance although 

it demands accurate in alignments of sensing components, matching the polarization, and 

common mode rejection. However, the possibility of miniaturization of the sensor into a 

single MEMS device with a high performance in surface stress measurement is a reasonable 

compensation for those difficulties in the interferometry technique. 

The use of cantilevers for sensing elements was attempted late 1960, but easy 

availability of microfabricated cantilevers for AFM opened a great potential in use of 

cantilevers as sensing platform (Wilfinge.Rj, Bardell et al. 1968; Heng 1971; Petersen 1979). 

In 1994, Thundat and his colleagues (Thundat, Warmack et al. 1994) made the seminal 

observation that Atomic Force Microscope (AFM) cantilevers deflect due to changes in 

relative humidity and thus opened a myriad of possibilities for the use of AFM cantilevers for 

chemical and biological sensing. They predicted possibilities of adsorbate detection of the 

order of picograms and immediately followed up with another study in which they detected 

mercury adsorption on cantilever from mercury vapor in air with picogram resolution 

(Thundat, Warmack et al. 1994; Thundat, Wachter et al. 1995). Also, Berger et al. (Berger, 

Delamarche et al. 1997) measured differential surface stress induced by formation of 

alkanethiol self-assembled monolayers (SAMs) on gold coated microcantilever. Godin et al. 
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(Godin, Williams et al. 2004) reported that surface stress development is dependent on the 

grain size of the gold film and elucidated the transition phases during SAM formation (Godin, 

Williams et al. 2004). The thickness of the SAM also affects the magnitude of the 

measurements as well as sensing performance (White, Phares et al. 2008). 

Microcantilever based sensors have been successfully utilized for biomolecular 

recognitions. Fritz et al. (Fritz, Baller et al. 2000) monitored hybridization of single-stranded 

DNAs (ssDNAs). They measured surface stress of 5 mN/m and actuation force of 300 pN 

due to single base mismatch between 12-mer and 16-mer oligonucleotides. Moulin et al. 

(Moulin, O'Shea et al. 1999) conducted surface stress measurements of immunoglobulin G 

(IgG) and albumin (BSA) and found that the strength of surface stress change is time 

dependent. They also hypothesized that the direction of cantilever bending is due to 

molecular interaction. Hydrophobic forces between adsorbed proteins bend the cantilever 

down to compressive direction, while high mobility of molecules from weak surface-protein 

interaction may bend cantilever up to tensile direction.  

Majumdar and coworkers (Biswal, Raorane et al. 2006; Stachowiak, Yue et al. 2006) 

reported a series of works on label-free microcantilever sensor for biological detections. 

Stachowiak et al. (Stachowiak, Yue et al. 2006) investigated the efficiency of DNA 

hybridization in various ionic strength and dependence on the grafting density as well as the 

length of the DNA. They found that surface grafting density of ssDNAs can be controlled by 

changing the DNA chain length and ionic strength. Also, they observed that the density of 

receptor molecules on gold surface for hybridization is a key parameter and has an 

exponential relation with generating surface stress changes. Inversely, Biswal et al. (Biswal, 

Raorane et al. 2006) measured surface stress changes associated with dehybridization of 
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double-stranded DNA (dsDNA). They observed the response of melting and diffusing 

dsDNAs away from the cantilever as a function of salt concentration and length of 

oligonucleotides. They confirmed that increasing salt concentration and oligonucleotide 

length result in an increase in the melting temperature. They even extended their sensing 

platform to two-dimensional microcantilever sensor for high-throughput multiplexed 

chemical and biomolecular analysis. Several cantilevers are fabricated in parallel and each 

cantilever is functionalized for a specific target molecule. Through this process, they 

provided that the two-dimensional multiplexed microcantilever sensor can detect many target 

molecules. With the new sensor platform, they measured surface stress changes in the 

responses of DNA immobilization on gold surface (Yue, Lin et al. 2004), toluene and water 

vapor in vapor phase (Lim, Raorane et al. 2006), Prostate specific antigen (PSA) (Yue, 

Stachowiak et al. 2008) as low as 1 ng/mL which corresponds to 2 mN/m of surface stress 

change. 

More recently, Maraldo et al. (Maraldo, Garcia et al. 2007) performed the prostate 

cancer detection through prostate cancer biomarker (α-methylacyl-CoA racemase; AMACR) 

directly in patient urine. They demonstrated the function of microcantilever sensors as a 

feasible application of cancer detection. There have been many other applications to 

oligonucleotide hybridization (Hansen, Ji et al. 2001; McKendry, Zhang et al. 2002; 

Stachowiak, Yue et al. 2006; Zhang, Lang et al. 2006), receptor-ligand (Thaysen, Yalcinkaya 

et al. 2002; Marie, Thaysen et al. 2003; Savran, Burg et al. 2003; Savran, Knudsen et al. 2004; 

Mukhopadhyay, Sumbayev et al. 2005), and antigen-antibody interaction (Raiteri, Nelles et 

al. 1999; Raiteri, Grattarola et al. 2001; Grogan, Raiteri et al. 2002; Dutta, Tipple et al. 2003). 

 



9 

 

 

2.3 Operation modes of micro cantilever sensors (Fritz 2008)  

Nanomechanical cantilever sensors are generally operated in three basic modes: 

bimetallic, dynamic and surface stress modes. In bimetallic mode, microcantilevers undergo 

a static deflection in the response of temperature changes because of different coefficients of 

thermal expansion between the metallic thin film and the underlying substrate. This mode is 

widely used for temperature related applications such as thermal actuators (Ramos, Mertens 

et al. 2007). In dynamic or resonance mode, Attached additional mass on a cantilever lowers 

its resonance frequency and the consequential frequency shift is detected to measure the mass 

addition. This mode has been operated in ambient as well as liquid environments (Cleveland, 

Manne et al. 1993; Humphris, Tamayo et al. 2000; Tamayo, Humphris et al. 2000) and used 

for detection of mass changes as small as 10
-17

 g (Ilic, Czaplewski et al. 2000; Yang, Ono et 

al. 2000). However, the cantilever oscillation is damped out in liquid environment and 

accordingly the sensitivity is significantly diminished. Surface stress mode has been widely 

used to measure the biomolecular recognitions. When molecules adsorb or bind preferentially 

to one side of a cantilever, the surface expands (or contract) compared to the other side which 

leads to bending down (or up) of microcantilever to generate compressive (or tensile) surface 

stress. Each of these operation modes are schematically represented in Figure 1.  

With those basic operating modes, many other modes have been attempted such as 

cantilever bending due to electric charges (Stephan, Gaulden et al. 2002), magnetic forces 

(Weizmann, Patolsky et al. 2004) and photothermal spectroscopy that produced heat from the 

absorption of light (Barnes, Stephenson et al. 1994). 
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Figure 1 Illustrations of bimetallic mode (A), dynamic mode (B) and surface stress mode (C, D). Tensile 

surface stress during conformational changes of DNA hybridization (C) Negative surface stress charges 

and electrostatic repulsion generate compressive surface stress (D) (Fritz 2008) 

 

2.4 Origin of generation of surface stress  

Elastic effects of surface chemical reaction have been known for a long time. For 

instance, adsorbates are used to stabilize surface during crystal growth (Copel, Reuter et al. 

1989) and surface stress changes induced by the presence of adsorbed atoms reconstruct the 

surface due to surface-substrate mismatch and stress-related energy gain (Fiorentini, 

Methfessel et al. 1993). As adsorbed molecules affect surface stress, residual or applied stress 

also influences adsorptions (Gsell, Jakob et al. 1998).   

Although there have been extensive efforts to elucidate the origin of the biomolecular 

binding induced surface stress changes, consensus on the underlying mechanisms is still 

elusive due to complex molecular interactions. Compressive surface stresses are attributed 

due to an expansion of a cantilever surface influenced by electrostatic repulsion of surface 
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groups and increasing the number of negative charges on the surface. Alternatively, 

conformational changes of receptor molecules caused by hybridization or binding that result 

in formation of ordered structures may relax the repulsive steric interactions between 

disordered unbound molecules bending the cantilever upward to tensile direction. Therefore, 

when a surface bound with single-stranded oligonucleotides undergoes hybridization, 

conformational changes from a single strand to a rod-like double helix may result in initial 

tensile surface stress changes but as the hybridization proceeds the surface stress 

development changes sign to compressive stresses due to buildup of charge interactions 

among neighboring molecules. Conformational changes and electrostatic and hydrophobic 

forces are dependent on individual ligand/receptor pair, so the transition point and dominant 

phenomena is difficult to identify (Fritz 2008). 

Wu et al. (Wu, Ji et al. 2001) introduced thermodynamic principles to explain the 

nanomechanical motion of the cantilever during DNA immobilization and hybridization. In 

addition to the electrostatic repulsive force between neighboring DNA chains, they argued 

that the origin of cantilever bending is due to a change in configurational entropy and 

intermolecular energetics induced by specific biomolecular interactions. When immobilized 

single-stranded DNAs interplay between neighboring chains, the configurational entropy 

decreases which lead to increase entropic driving force. The configurational entropy of 

single-stranded DNA is highest in a free solution, but forming double stranded DNAs during 

DNA hybridization reduces this entropic driving force balanced by the strain energy of 

bending the cantilever. Therefore, this curvature produces the cantilever bending up to tensile 

direction (Wu, Ji et al. 2001).  
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2.5 Aptamers: new approach as a substitute for conventional assays  

Aptamers are synthetic oligonucleotides that bind to a designated target ligands and 

can be implemented as an alternative to antibodies or other bio-mimetic receptors. They are 

synthesized and characterized by SELEX (Systematic evolution of ligands by exponential 

enrichment) process in vitro. This method ensures directed evolution of a starting pool of 

oligonucleotides in response to selection pressure on the population through repeated rounds 

of selection and amplification. Target-specific aptamers using SELEX technology have been 

identified for various classes of targets including inorganic and small organic molecules, 

peptides, proteins, carbohydrates, and antibiotics, as well as complex targets such as mixtures 

or whole cells and organisms (Klussmann 2006). 

In 1990, Tuerk et al. (Tuerk and Gold 1990) first described a new selection and 

amplification method (SELEX) used for a combinatorial nucleic acid library to select RNA 

oligonucleotides which have a strong and specific binding with T4 DNA polymerase gp43 as 

a non-nucleic acid target (Tuerk and Gold 1990). In the same year, Ellington et al. (Ellington 

and Szostak 1990) isolated RNA molecules with average length of 100 nt from large 

numbers of random sequence RNA molecules which recognize and bind to six small organic 

dyes (Cibacron Blue 3GA, Reactive Red 120, Reactive Yellow 86, Reactive Brown 10, 

Reactive Green 19, and Reactive Blue 4). They named these selected RNA sequences to 

aptamers from the Latin aptus meaning “to fit.’ In 1992, they showed a successful isolation 

of a set of ligand-binding ssDNA sequences from a large pool of random sequence DNAs 

and reported DNA aptamers would be more stable than RNA aptamers because of the greater 

stability of DNA (Ellington and Szostak 1990; Ellington and Szostak 1992).  
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Bock and his colleagues (Bock, Griffin et al. 1992) attempted the isolation of single-

stranded DNA aptamer to the protease thrombin of the blood coagulation cascade and 

reported binding affinities in the range 25-200 nM. They also found an aptamer molecule of 

96-mer single-stranded DNA that binds human thrombin (Bock, Griffin et al. 1992). An 

endeavor of aptamer-based biosensor was made in 1998 by Potyrailo et al. (Potyrailo, Conrad 

et al. 1998). They immobilized a fluorescently labeled anti-thrombin DNA aptamer to a glass 

surface and detected thrombin in solution by monitoring changes in the evanescent-wave-

induced fluorescence anisotropy of the immobilized aptamer. Through this technique, they 

achieved a sensitivity limit of about 0.7 attomole of thrombin in a 140-pL interrogated 

volume (Potyrailo, Conrad et al. 1998).  

Aptamers as the receptors designed to bind a controlled substance and their main 

advantages over antibodies for molecular recognition are as follow (Lee, So et al. 2008; 

Kazunori Ikebukuro 2009): 

1) Aptamers have consistently high quality because they are chemically synthesized and 

purified.  

2)  Aptamers are selected in vitro whereas antibodies are produced as the induction of an 

immune response in vivo.  

3) Aptamers can be optimized for any conditions but antibodies can only work under 

physiological conditions.   

4) Aptamers are more stable at high temperature and can be regenerated easily after 

denaturation.  

5) Aptamers can be easily labeled whereas labeling the antibodies can result in loss of 

their affinity to their target molecules. 
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Therefore, Aptamers possess a number of advantages over antibodies to be useful tools in 

analytical, diagnostics and therapeutic applications. The most important characteristic of 

aptamers is its ability to bind their target molecules with high specificity. 

 

2.6 Aptamer-based biosensors  

Aptamer-based biosensors (often called aptasensors) utilize three main approaches for 

transducing the aptamer/ligand binding into a measurable signal: electrochemical, optical 

emission and colorimetry (Scheller, Wollenberger et al. 2001; Lee, So et al. 2008; Cho, Lee 

et al. 2009; Liu, Cao et al. 2009). 

DNA hybridization has been the basis for development of aptasensors reported by 

Fan et al. (Fan, Plaxco et al. 2003). They built an electrochemical DNA (E-DNA) sensor and 

successfully measured the change in electron transfer efficiency as low as 10 pM 

concentration. The strategy involves a stem-loop oligonucleotide immobilized at a gold 

electrode. In the absence of target, the stem-loop structure holds the electroactive ferrocene-

tag into close proximity of gold surface; thus, enabling rapid electron transfer and efficient 

redox of the ferrocene label. When hybridized with complementary strands the ferrocene-tag 

moves away from the surface and a large change occurs in redox currents (Fan, Plaxco et al. 

2003). Later, they have applied electronic aptamer-based (E-AB) sensors for detection of 

thrombin in blood serum (Xiao, Lubin et al. 2005) and cocaine (Baker, Lai et al. 2006). Their 

idea has inspired many other groups to utilize this strategy for the detection of small and 

micromolecular analytes (Alonso-Lomillo, Yardimci et al. 2009; Canete, Yang et al. 2009; 

Cekan, Jonsson et al. 2009; Cheng, Sen et al. 2009; Kim, Kim et al. 2009; Pan, Guo et al. 
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2009; Torres-Chavolla and Alocilja 2009; Velasco-Garcia and Missailidis 2009; Xiang, Tong 

et al. 2009). 

Another approach for transduction utilizes changes in optical emission for detection 

of the ligand through fluorescent tags and quantum dots (QDs). Levy and coworkers (Levy, 

Cater et al. 2005) functionalized QDs with a thrombin-binding aptamer. When a short piece 

of quencher-labeled DNA was hybridized to the thrombin aptamer on QDs, they observed 

that 19-fold increase in fluorescence in the presence of 1 µM thrombin (Levy, Cater et al. 

2005). Choi et al. (Choi, Chen et al. 2006) claimed that they can detect thrombin 

concentration as little as ~1 nM through spectroscopic measurements of thrombin using 

photoluminescence transduction of the QD (Choi, Chen et al. 2006). Because of QDs’ 

superior properties such as greater photostability, higher fluorescent efficiency, longer 

fluorescent lifetimes, and sharper emission bands compared to traditional organic 

fluorophores (Levy, Cater et al. 2005; Michalet, Pinaud et al. 2005), aptamer conjugated QDs 

have been utilized for detection of bacteria (Dwarakanath, Bruno et al. 2004) and various 

tumor cells (Chu, Marks et al. 2006; Chu, Shieh et al. 2006; Bagalkot, Zhang et al. 2007; 

Chen, Deng et al. 2008; Ding, Helquist et al. 2008; Levy-Nissenbaum, Radovic-Moreno et al. 

2008). 

Aptamer-based colorimetric sensors determine the presence of target molecules 

through change in solution color. They often work with gold nanoparticles (AuNPs) where 

the color change is due to the cross-linking of DNA on AuNPs or aptamers with target 

ligands. Since Mirkin’s group (Mirkin, Letsinger et al. 1996) first reported AuNPs-DNA 

conjugates, it has been developed to the ultrasensitive detection of DNA and proteins (Taton, 

Mirkin et al. 2000; McKenzie, Faulds et al. 2007; Zhang, Song et al. 2007). Mirkin et al. 
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(Mirkin, Letsinger et al. 1996) presumed that the stability of AuNPs is dependent on salt 

concentration; however, high concentration of salt induces aggregation of colloids and 

produces a similar red-to-blue color changes. Alternatively, Li and coworkers (Li and 

Rothberg 2004; Li and Rothberg 2004; Li and Rothberg 2004) found that thiol-modified 

DNA used to functionalize AuNPs can be replaced by a non-thiolated short single-stranded 

DNA. They also reported that shorter DNA strands and higher temperatures provide faster 

adsorption, but a long or double-stranded DNA is not effectively associated with AuNPs (Li 

and Rothberg 2004; Li and Rothberg 2004; Li and Rothberg 2004).  

 

2.7 Aptamer-based biosensors for cocaine detection 

The U.S. Department of Health and Human Services (HHS) (Services 2008) has 

established a standard of cocaine metabolite cutoff levels, effective October 2010, to 150 

ng/mL and 100 ng/mL for initial screening and confirmatory cutoff levels respectively. 

Current methods of initial screening and identifying biological samples for drugs of abuse 

can match the new standard for detection and identification of cocaine metabolite. For 

instance, enzyme multiplied immunoassay technique (EMIT) (Mead, Niekro et al. 2003; 

Contreras, Hernandez et al. 2006; Baker and Jenkins 2008) and enzyme-linked 

immunosorbent assay (ELISA) (Kerrigan and Phillips 2001; Spiehler, Isenschmid et al. 2003; 

Lopez, Martello et al. 2010) are the two predominant enzyme base immunoassays utilized for 

screening tests.  In both techniques, detection of the controlled substance is based on optical 

absorbance resulting from enzymatic activity. Gas chromatography coupled with mass 

spectrometry (GC-MS) (Valente-Campos, Yonamine et al. 2006; Cristoni, Basso et al. 2007; 

Barroso, Dias et al. 2008) and high performance liquid chromatography (HPLC) (Johansen 
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and Bhatia 2007; Jagerdeo, Montgornery et al. 2008; Nesmerak, Sticha et al. 2010) can 

achieve detection levels required for the confirmatory identification of controlled substances. 

These techniques require extensive sample preparation, a long performance time and/or 

specialized instrumentation to validate drug presence. The sample often must be sent to the 

lab, which results in a significant delay in identification (Stojanovic, de Prada et al. 2001; 

Maurer 2005; Strano-Rossi, Molaioni et al. 2005; Cognard, Bouchonnet et al. 2006; Dixon, 

Brereton et al. 2006; Kaeferstein, Falk et al. 2006; Contreras, Gonzalez et al. 2007; Johansen 

and Bhatia 2007; Schaffer, Hill et al. 2007; Walsh, Crouch et al. 2007). Aptamer based 

biosensors (often called aptasensors) have been investigated as an alternative method to 

overcome these drawbacks. Sensitivity and detection times of conventional and aptamer 

based techniques are compared in Figure 2. 

Aptamers are synthetic oligonucleotides that recognize and bind to their respective 

targets. Aptamers are much smaller and stable than their protein (antibody) counterparts, and 

unlike antibodies, ligand binding is often accompanied by large structural changes in the 

aptamers that can be utilized for detection of the target ligands (Stojanovic, de Prada et al. 

2001). Aptamers have been selected that recognize two drugs of abuse, which are cocaine 

(Stojanovic, de Prada et al. 2001) and codeine (Win, Klein et al. 2006), and many medicinal 

drugs and antibiotics including theophylline (Jenison, Gill et al. 1994), tobramycin (Wang 

and Rando 1995), neomycin (Wallis, Vonahsen et al. 1995), kanamycin (Lato, Boles et al. 

1995), dopamine (Mannironi, DiNardo et al. 1997),chloramphenicol (Burke, Hoffman et al. 

1997), streptomycin (Wallace and Schroeder 1998) and tetracycline (Berens, Thain et al. 

2001). The affinities (Ka) of these aptamers are in the range of 10
5
 to 10

7
 M

-1
.  
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Figure 2 Comparisons of sensitivity and time for conventional and aptamer based sensing techniques 

(Preston, Huestis et al. 1999; Stojanovic, de Prada et al. 2001; Stojanovic and Landry 2002; Kroener, 

Musshoff et al. 2003; Verstraete 2004; Baker, Lai et al. 2006; Gareri, Klein et al. 2006; Concheiro, de 

Castro et al. 2007; Shlyahovsky, Li et al. 2007; White, Phares et al. 2008; Zhang, Wang et al. 2008; 

Freeman, Li et al. 2009; Li, Zhang et al. 2009; Madru, Chapuis-Hugon et al. 2009) 

 

Aptamers can be selected to have exquisite discrimination between molecules 

because their specificity can be tuned by the selection conditions. For example, aptamers 

have been isolated that distinguish between caffeine and theophylline, which differ by only a 

single methyl group (Jenison, Gill et al. 1994) and that distinguish tyramine and dopamine, 

which differ by a single hydroxyl group (Mannironi, Scerch et al. 2000). Very little change in 

the oligonucleotide sequence may be necessary to change the specificity of a nucleic acid. 
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For example, two RNA aptamers were isolated that differ by only 3 nucleotides in 44 and 

that respectively specifically recognize only one of the two closely related amino acids, 

arginine and citrulline (Mannironi, Scerch et al. 2000). 

 

 

Figure 3 Conformational changes of cocaine aptamer from a tertiary structure (Stojanovic, de Prada et al. 

2001) 

 

In 2001, Stojanovic and coworkers (Stojanovic, de Prada et al. 2001)
,
 reported a DNA 

based aptamer that undergoes specific binding with cocaine. It was hypothesized that binding 

of the aptamer with a cocaine molecule results in a change of aptamer structure from an 

unstructured single stranded DNA to a three way stem. The aptamer was used for cocaine 

detection through fluorescent and colorimetric sensors and a 10 µM detection limit was 

reported (Stojanovic, de Prada et al. 2001; Stojanovic and Landry 2002). Baker et al. (Baker, 

Lai et al. 2006) used the same DNA aptamer in electronic aptamer-based (E-AB) sensors and 

measured a dissociation constant (Kd) of 90 µM for cocaine/aptamer binding and detection 

limits of below 10 µM for cocaine molecules. 



20 

 

 

Freeman et al. (Freeman, Li et al. 2009) conducted QD-based optical sensing as well 

as electrochemical sensing of cocaine by employing a split cocaine-aptamer and pyrene 

modification to create supramolecular complexes. They demonstrated as detection limits of 1 

µM for FRET-based sensing and 10 µM for the amperometric response of the system 

respectively. Madru et al. (Madru, Chapuis-Hugon et al. 2009) demonstrated that the 

anticocaine aptamer-based sorbent can be used for the selective extraction of cocaine from 

human plasma. They showed close to 90% of extraction recovery with 3.5 µM of the 

detection limit of cocaine. Shlyahovsky et al. (Shlyahovsky, Li et al. 2007) proposed the 

amplified analysis of cocaine by an autonomous aptamer-based machine and obtained a 

detection limit for cocaine of 5 µM for 60 minutes operating time for the machine.  Li and 

Zhang et al. (Zhang, Wang et al. 2008; Li, Zhang et al. 2009) utilized a split aptamer that 

reassembles into the full tertiary structure in the presence of target. AuNPs then differentiates 

between these two states through surface-plasmon resonance-based color change. This 

colorimetry was able to detect as low as 2 µM cocaine solution. In summary, the cocaine 

aptamer has been used in variety of different platforms to achieve detection threshold 

between 1 to 10 µM. 

Micromechanical cantilever (MC) based sensors have been investigated for detection 

of chemical and biological species (Thundat, Oden et al. 1997; Sepaniak, Datskos et al. 2002). 

A MC intended for chemical or biological sensing is normally modified by coating one of the 

cantilevers with a responsive phase that exhibits high affinity to the targeted ligand. The 

surface stress change induced due to the binding of ligand on the sensitized surface is 

resolved for detection. Potential uses of cantilever transducers in biosensors, 

biomicroelectromechanical systems (Bio-MEMS), proteomics, and genomics are intriguing 
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trends in advanced biomedical analyses (Fritz, Baller et al. 2000; Hansen, Ji et al. 2001; Wu, 

Ji et al. 2001; Savran, Knudsen et al. 2004). When antibodies or small DNA fragments were 

immobilized on one side of a cantilever, the presence of complementary biological species 

produced cantilever deflections (Hansen, Ji et al. 2001; Wu, Ji et al. 2001). On the basis of 

the deflection behavior of MCs, even very small mismatches in receptor–ligand 

complementarity could be detected. A single base pair mismatch was detected by 

oligonucleotide hybridization experiments performed on a cantilever surface (Fritz, Baller et 

al. 2000; Hansen, Ji et al. 2001; Wu, Ji et al. 2001). 
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CHAPTER 3. SENSOR CONFIGURATIONS 

 

3.1 Sensing principle 

In majority of the current state of art sensors, molecule absorption induced surface 

stress change is inferred from the deflection of a single or multiple laser beams reflected 

from the sensing surface. A large optical path is required between sensitized surface and 

position sensitive detectors to achieve high sensitivity in surface stress measurement. 

Deflection of two laser beams reflected each from sensing and reference cantilevers may also 

be used for differential surface stress measurement but that setup may suffer from the 

following drawbacks: measured sensitivity is again proportional to the distance between a 

cantilever and a photodetector; and measured response is determined by subtracting the two 

signals, which may lead to resolution losses.  

We modified Mark-Zehnder interferometer with single-mode fiber optic couplers that 

transduce molecular interactions into a measureable cantilever deflection. The differential 

surface stress sensor consists of two adjacent rectangular-tipless AFM cantilevers, a 

sensing/reference pair, where only the sensing surface is activated for adsorption of chemical 

or biological molecules. Absorption/adsorption of analyte species on the sensitized surface is 

expected to induce differential bending of the sensing and reference cantilevers. The 

microcantilevers and a pair of microlens arrays (MLAs) are arranged in the optical 

arrangement shown schematically in Figure 4 (B) to measure the differential displacement 

between sensing and reference cantilevers. In this optical configuration, incident laser beams 

at points A and C always arrive to points B and D, respectively, regardless of their incident 

angle. The differential bending of cantilevers produces a change in path length difference.  
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Figure 4 Photograph of experimental setup (A), and schematic image of sensing principle (B). 

 

An optical circuit shown in Figure 5 is utilized for assembling the surface stress 

sensor. In the system, fiber coupled Fabry-Perot Laser source provided 635 nm wavelength 

was propagating into microlens array 1 (MLA1) through 3-dB single-mode fiber couplers at 

50/50 ratio. MLA1 with a diameter of 240 µm and a pitch of 250 µm collimates 

incident/refractive beams from off-axis and delivers at precise positions on microlens array 2 

(MLA2) as well as receive back to couplers. MLA2, a diameter of 900 µm and a pitch of 

1mm, focus the direct beams on the sensitized surface of cantilever pair. Sensing and 

reference cantilevers are symmetrically positioned about the lens axis on the focal plane of 

MLA2 and MLA1. The sensing cantilever undergoes submicron-scale bending when specific 

binding occurred on its functionalized surface.  
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Figure 5 Schematic configuration of MC based nanomechanical sensor 

 

 

After reflecting from the sensing and reference surfaces, the two beams accumulate a 

path length difference, l, equal to twice the differential displacement between sensing and 

reference surface. The beams are interfered to measure the path length difference and 

differential surface stress (Δσ) between the two cantilevers is determined using Stoney’s 

formula (Stoney 1909).  

 
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3 1

E t
l

L




  
             

 (1) 

 

where E is the Young’s modulus and ν is the Poisson’s ratio; L and t are the effective length 

and thickness of the cantilever; l is the static deflection of the cantilever beam.  
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Young’s modulus is significantly high among those magnitudes in Equation (1), 

changing cantilevers to plastic or softer materials would significantly affect the sensitivity on 

the surface stress measurement. For instance, silicon (E = 170 GPa) and Polyethylene 

terephthalate (PET, E = 3 GPa) were tested for sensitivity affected on the sensing platform. 

The numerical calculation showed the surface stress changes of 89.95 mN/m and 1.32 mN/m 

for silicon and PET respectively at a constant beam deflection of 100 nm. 

 

Figure 6 Comparison of surface stress changes when two different materials (Silicon and PET) are used 

for cantilevers at a constant beam deflection of 100 nm, obtained surface stress changes were 89.95 and 

1.32 mN/m respectively. 

 

The polarization plane of the reflected beams was matched by cautiously pulling the 

fiber optic couplers but not kinking or folding the couplers. An isolator is also applied to 

block the reflective beam coming back to the laser cavity. Common mode rejection was then 

utilized to ensure maximum fringe visibility in the interfered beams. An isolation box 

covered all fiber couplers as well as sensor components to eliminate acoustic and vibrational 
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noise from the system. Motorized and manual actuators were used to assist in aligning of 

MLAs with respect to the sensing/reference cantilevers.  

Measurements of differential surface stress ensure that detected signal is proportional 

to specific absorption of analyte species on the sensing cantilever and not on the other. 

Therefore, the differential surface stress measurement eliminates the influence of 

environmental disturbances such as nonspecific adsorption, changes in pH, ionic strength, 

and especially the influence of temperature. Surface stress sensor integrated the 

interferometer technique ensures that the resolution is independent of optical distance 

between cantilevers and photodetectors. The sensor is amenable to miniaturize and may 

facilitate the integration of all components of sensors into a single microfabricated chip. 

Intensities of interfered beams may be modeled as two components of interference 

and the outputs (   
 and    

 ) are related to intensity of reflected beams, I1 and I2, from sensing 

and reference cantilevers as: 

   
         √       (

   

 
   )         (2) 

   
         √       (

   

 
   )     (3) 

where 0  is the phase difference, and λ is the laser’s wavelength. The interfered outputs from 

the two arms are out of phase with each other (180 º). The interfered intensity dependent on

 04 l    is the most sensitive operating point for the interferometer and is given at 

quadrature (π/2, 3π/2, etc.) (Rugar, Mamin et al. 1989).  

Two waves generate either a constructive or a destructive interference depending on 

their relative phase. The stability of the wave is described by coherence, and the degree of 
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coherence is often expressed as a fringe visibility. The fringe visibility (V) is defined in 

Equation (4). 

          (4) 

                               

 If the differences between two interfered signals decrease, the fringes become more 

difficult to observe. When the polarization, which is the orientation of waves, is not parallel, 

the fringe visibility again decreases. Therefore, coherence and polarization are directly 

related with the stability as well as sensitivity of the sensor. 

 When laser light is coupled into an interferometric sensor, the phase or frequency 

noise is converted into amplitude noise. One needs to wait for 10 minutes at least to stabilize 

the signals after turning on the laser. Noise is often common in both outputs and appears with 

the same sign or polarity in both ports whereas the signal may have a different sign for each 

of the output ports. In common mode rejection, two outputs from the coupler are subtracted 

each other and emerged into one signal. The beams formed out of phase (180 º) in the output 

ports balance the output signals from the detectors and add the two outputs to demonstrate 

the decrease in noise. 

 

3.2 Microcantilever specifications 

Microcantilevers are the heart of nanomechanical sensors capable of transducing 

molecular adsorption into mechanical deformation. Microcantilevers are made of silicon or 

silicon nitride where a thin gold film (10 - 200 nm) is deposited on one side by evaporating 

or sputtering in an ultrahigh vacuum (UHV). A thin layer of Cr or Ti (> 10nm) improves the 

adhesion between a gold layer and a solid silicon substrate. The typical dimensions of 
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microcantilevers are several hundred µm long, about 10 to 100 µm wide and 0.5 to 1 µm 

thick. Commercial AFM cantilevers are often used to reduce the sensor costs. Also, multiple 

cantilever arrays in parallel have been fabricated on a single chip and used for multiple 

detections of analyte molecules (Baller, Lang et al. 2000). Again, the sensitivity of 

microcantilever sensors depends on the aspect ratio and elasticity of the cantilevers as shown 

in Equation (1).  

Typical value for Poisson’s ratio is about 0.3, and young’s modulus is 170 GPa for 

silicon and 210 GPa or higher for silicon nitride. The spring constant and resonance 

frequency of the cantilevers need to be measured to determine an accurate thickness. Spring 

constant and resonant frequency are expressed in Equations (5) and (6) respectively, 
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where w is the width of a cantilever, mcant is a mass of the cantilever and n (n = 0.24) is a 

correction factor. A silicon cantilever used for our sensing platform has a normal spring 

constant of 0.03 N/m and a resonance frequency of about 6 kHz.  

We used two different types of microcantilevers: single-cantilever and eight-

cantilevers in parallel shown in Figure 7. The nominal dimensions are 500 × 100 × 1 µm and 

the pitch for the eight-cantilevers is 250 µm. Both cantilevers were coated with 5 nm of 

titanium and 30 nm of gold film. 
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Figure 7 Images of microcantilevers used for microcantilever sensors (Nanoworld 2011) 

  

In general, commercial AFM cantilevers are batch produced with large variation of 

dimensions and mechanical properties from the manufacture’s quote (Sader and White 1993; 

Sader, Chon et al. 1999). AFM reference cantilever method was utilized to determine the 

thickness and spring constant of each cantilever for accurate surface stress measurement as 

shown in Figure 8 (Torii, Sasaki et al. 1996).  

 

 

Figure 8 schematic image of the spring constant measurement in AFM contact mode (Tortonese and Kirk 

1997) 
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In brief, a test cantilever mounted on AFM is placed over an infinitely hard sample 

(sapphire for our test) so that no indentation occurred on the sample but the total cantilever 

deflection, δtot, is obtained. Subsequently, the test cantilever is in contact with the free end of 

a reference cantilever whose specifications and spring constant are known. The deflections 

obtained through force curves on AFM contact mode are used to calculate the spring constant 

of the test cantilever in Equation (7).  

                                      (7) 

Where, K and δ are normal spring constant and the deflection of a cantilever respectively. 

The deflection angle, θ, assumed to be zero due to a minute bending of the cantilever. The 

new spring constant, Ktest is then manipulated in Equation (5) to calculate accurate thickness 

of the cantilever. 

The thickness of cantilevers used in the microcantilever sensors was between 0.8 to 

1.2 µm. Two cantilevers that had similar thickness were selected as a pair of sensing and 

reference cantilevers. Figure 9 shows a simple estimation of error due to cantilever’s 

geometry. It indicates that when a cantilever has ± 1 percent error on length and thickness, 

the sensor has 4 percent error in surface stress measurement. 

𝐾𝑡𝑒𝑠𝑡  𝐾𝑟𝑒𝑓
𝛿𝑡𝑜𝑡𝛿𝑡𝑒𝑠𝑡
𝛿𝑡𝑒𝑠𝑡 ∙ 𝑐𝑜𝑠𝜃
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Figure 9 Cantilever error box. It shows the 1 percent error on cantilever geometry results in 4 percent on 

surface stress measurement 

 

 

Figure 10 A typical microstructure of gold surface measured by AFM contact mode (750 nm × 750 nm) 

 

Microstructure and surface roughness of the gold film were determined using contact 

mode atomic force microscope imaging. The grain size was determined to be 40 ± 10 nm 
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(Figure 10).  The mean square roughness of the gold surface was 2.07 ± 0.23 nm for the 750 

nm scan size.   

 

3.3 Microcantilever functionalization 

Cantilever functionalization is a critical step to ensure a specific adsorption of ligand 

on the top surface of a cantilever. For sensing applications, one surface has to be selectively 

functionalized to activate a specific binding while the other surface is passivated from the 

target ligands. Gold coated cantilevers can easily be functionalized with polymers, organic 

monolayers, or biomolecules depending on the specific application or analytes to be detected. 

The chemical immobilization method allows a broad range of biomolecules to be analyzed 

and has become the cornerstone of biomolecular recognition sensors. Amine, aldehyde and 

thiol bonds are widely used approaches for immobilizing biomolecules on the sensor surface 

through a stable bond.  

Self-assembled monolayers (SAMs) of organic molecules on a gold surface, 

particularly thiol linked molecules, undergo low non-specific interactions with various 

proteins and enzymes. As a result, they are excellent candidates for making monolayer-based 

protein assay platforms (Ostuni, Chapman et al. 2001; Godin, Williams et al. 2004). 

Irradiation with UV light results in breaking of the gold-thiol bond. In typical sensing 

experiments, the energy of a binding reaction (5 to 30 kJ/mole) is weaker than that of 

thiol/gold bond which is approximately 155 kJ/mole (Emsley 1980; Beijer, Kooijman et al. 

1998). Therefore, the energy changes associated with binding, charge interaction, or 

denaturation of receptor molecules is not expected to exceed the energy barrier required to 

remove SAM molecules from gold surfaces.  



33 

 

 

Aptamers are single-stranded RNA (ssDNA) or DNA molecules (mostly 15 to 60 nt) 

that recognize and bind to their respective targets with high specificity and high affinity 

(Hermann and Patel 2000). Aptamer molecules can be synthesized with thiol end-groups 

ensuring immobilization on the cantilever surface through the S-Au bonds. Because aptamers 

are much smaller than their proteins, affinity complexes of ligand-aptamer is often 

accompanied large structural changes that can be utilized for detection of target ligands 

(Stojanovic, de Prada et al. 2001). 

In our sensing experiments, the sensing and reference cantilevers were functionalized 

with respective molecules and the experimental procedures were similar through all sensing 

experiments. Self-assembly of single-stranded DNAs (ssDNAs), cocaine aptamer, or 

thiolated cocaine molecules were used as receptor molecules to immobilize on the gold 

surface of a sensing cantilever. A reference cantilever was coated with controlled DNA 

strands had the same base lengths as the cocaine aptamer but with their sequence was 

scrambled. The specific binding of target and receptor molecules would generate the 

deflection of sensing cantilever. We used microtubes as containers for immobilizing 

molecules on the cantilevers. Closing cap on the tube prevents contamination and vaporize 

the solution of target molecules so that the concentration of the molecules would be constant 

through all incubation procedures 

Microcapillary tubes with 187/250 µm inner and outer diameters were employed to 

functionalize multi-cantilevers. In order to insert and functionalize eight-cantilevers, eight 

microcapillary tubes are attached in parallel and controlled by a micropositioning stage.  

Siphonage and capillary force provide solution into the tubes and maintain the solution inside 

of tubes during the incubation process. By using Multi-cantilevers, we can improve the 
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signal-to-noise ratio of the sensors, save aligning time, and expand sensors to a multitasking 

platform. For instance, eight-cantilevers are functionalized with all different receptor 

molecules and able to detect eight different molecules at one experiment. Likewise, eight 

same experiments can be done at one experiment. 

 

Figure 11 Conceptual images of functionalized multicantilevers (Kambhampati 2004)  
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CHAPTER 4. EXPERIMENTAL VALIDATION 

 

4.1 Novel differential surface stress sensor for detection of alkanethiol self-

assembled monolayers (SAMs) 

 

Modified from conference papers published in MRS 2008 and SPIE 2007 

K. Kang, J. Marquardt and P. Shrotriya 

 

4.1.1 Introduction 

Microcantilever based sensors are increasingly being investigated to detect the 

presence of chemical and biological species in both gas and liquid environments. Thundat et 

al. (Thundat, Warmack et al. 1994) reported the static deflection of microcantilevers due to 

changes in relative humidity and thermal heating, and thus opened a myriad of possibilities 

for the use of atomic force microscopy (AFM) cantilever deflection technique for chemical 

and biological sensing. They predicted possibilities of adsorbate detection of the order of 

picograms and immediately followed up with another study in which they detected mercury 

adsorption on cantilever from mercury vapor in air with picogram resolution (Thundat, 

Warmack et al. 1994; Thundat, Wachter et al. 1995).  

Measurements of surface stress changes associated with formation of alkanethiol self-

assembled monolayers (SAMs) on a gold surface were utilized to characterize the 

performance of differential surface stress sensor in ambient condition. Chemisorptions and 

self-assembly of alkanethiol molecules onto the gold-coated cantilever surface leads to 

development of compressive surface stress.   
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Berger et al. (Berger, Delamarche et al. 1997) reported the generation of compressive 

stresses on the order of 0.1- 0.5 N/m during formation of alkanethiol self-assembled 

monolayer on the cantilever’s surface and also reported that the magnitude of surface stress 

increased linearly with the carbon chain backbone of the monolayer. Since the first report by 

Berger et al. (Berger, Delamarche et al. 1997), SAMs have been used as test system for many 

cantilever based sensing techniques (Ji, Finot et al. 2000; Raiteri, Butt et al. 2000; Stevenson, 

Mehta et al. 2002; Godin, Williams et al. 2004). This is because they are relatively easy to 

prepare, form well-ordered close packed films and offers limitless possibilities of variations 

in chain length, end group and ligand attachments (Ulman 1991). One of the commonly 

studied SAMs is alkanethiol SAMs (HS-(CH2)n-1CH3) in which n is the number of carbon 

atoms in the alkyl chain. Godin et al. (Godin, Williams et al. 2004) have shown that the 

kinetics of formation of self-assembled monolayers on gold-coated cantilevers and the 

resulting structure are dependent on the microstructure of the gold film and also the rate at 

which the SAM reaches the surface.  

 

4.1.2 Experiments  

Silicon cantilevers used in the sensor realization are 480 µm long, 80 µm wide, and 1 

µm thick with a top side coating of 5nm titanium and 30nm gold film. (Nanoworld, 

Switzerland). The thickness, microstructure and surface roughness of the gold surface of a 

sensing/reference cantilever were measured and shown details in Chapter 3. 

Liquid octanethiol [CH3(CH2)7SH] was selected as alkanethiol solution and 

purchased from Sigma-Aldrich. All AFM cantilevers were cleaned by immersing for 30 

minutes in piranha solution (70% H2SO4, and 30% H2O2 by volume), rinsed in deionized 
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water and dried in the gentle N2 flow. In order to ensure that alkanethiol is only absorbed on 

the sensing cantilever during the surface stress measurement, alkanethiol SAMs were 

deposited on the reference cantilever prior to the surface stress measurements. 

After cleaning cantilever by piranha solution, one of cantilevers was saved for 

sensing cantilever and the other cantilever was further treated to use as a reference cantilever. 

The reference cantilever was prepared by incubating 2 mM octanethiol/ethanol (200 proof) 

solution for 12 hours to protect formation of SAMs. Formation of a stable SAM on the 

reference cantilever ensures that alkanethiol molecules are only absorbed on the sensing 

cantilever during subsequent experiments. It is then removed from the solution and rinsed in 

anhydrous ethanol for several times (Godin, Tabard-Cossa et al. 2001; Godin, Williams et al. 

2004). Because exposing UV causes disulfides or dimers, all procedures were carried out in 

the dark under a standard fume hood.  

 

Figure 12 Illustration of experimental setup for alkanethiol self-assembled monolayers (SAMs) in 

ambient environment. 
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Surface stress changes associated with formation of alkanethiol SAM were measured 

in three steps. In the first step, sensing and reference cantilevers were mounted in the sensor 

and stability of the interferometer was first checked to ensure that measured signal is not 

affected by drift and ambient noise. In the second step, 20 mL of pure liquid octanethiol was 

injected into a beaker placed near the two cantilevers. The vapors of alkanethiol solutions 

were confined near the cantilevers and interferometer was utilized to measure the deflection 

of sensing cantilever associated with deposition and formation of alkanethiol SAMs. 

Intensities of the interfered beams as well as back reflection from the first couplers were 

delivered through photodetectors (D2, D3 and D1, respectively in Figures 4 (B) and 5 and 

monitored through a data acquisition system. Differential surface stress which is proportional 

to the cantilever deflection is then calculated by Stoney’s Formula with obtained spring 

constant and geometry of the cantilever.  

After the exposure to alkanethiol, both the sensing and reference cantilevers are 

expected to be fully covered with alkanethiol SAMs; therefore, reintroduction of alkanethiol 

vapors should not cause further differential bending of the cantilevers. In the last step, 

sensing and reference cantilevers were again exposed to alkanethiol vapors to ensure that 

measured surface stress change is associated with only alkanethiol formation.    

 

4.1.3 Results and discussion  

  

Experimental measurements of surface stress induced due to vapor phase deposition 

of alkanethiol during a typical run are plotted in Figures 13. Intensities of reflected and 

interfered beams monitored before introduction of alkanethiol vapor are plotted in Figure 

13(A).  Measured intensities are nearly constant and do not drift with time. 
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Figure 13 Surface stress change and the corresponding sensing cantilever deflection respect to reference 

cantilever (A) Intensity of interfered beams before deposition, and Intensity of interfered beams due to 

alkanethiol exposure after deposition. (B) Different surface stress during deposition. 
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All intensity measurements display some scatter, and it is most pronounced in the 

interference signals. The scatter may be the result of thermal noise, environmental vibrations 

or Fresnel reflections at the junctions between fiber optic cables. We are currently working 

on improving acoustic noise and vibration isolation of the system. All fiber optic junctions 

were filled with index matching gel to minimize Fresnel reflections. In the current state, the 

interference signal displays some noise but the signal to noise ratio is still quite large. Further 

work is in progress to improve the signal to noise ratio in the interference signal.  

After the initial monitoring of interferometer stability, alkanethiol vapor was 

introduced near the cantilever and differential bending of the cantilevers was monitored to 

measure the surface stress change associated with formation of alkanethiol SAMs on gold 

coated reference cantilever. Measured surface stress is plotted as a function of time in Figure 

13(B). Surface stress buildup starts after 15 minutes of introducing the solution. Surface 

stress rapidly builds up and reaches a stable value about 0.29 N/m with the corresponding 

cantilever deflection of 185 nm.  

Godin et al. (Godin, Tabard-Cossa et al. 2001; Godin, Williams et al. 2004) reported 

that distance of cantilever to the location where alkanethiol droplets are introduced, condition 

of gold surface like cleanliness and roughness, and grain structure of the gold on the 

cantilever’s surface affects the kinetics and magnitude of surface stress development. Among 

those conditions, the microstructure of gold film significantly influences the development of 

the surface stress during the formation of alkanethiol SAMs. They measured surface stress 

during alkanethiol SAM formation with lager grain sizes of gold and achieved surface stress 

of 0.51 ± 0.02 N/m and 15.9 ±0.6 N/m at grain sizes of 90 ± 50 nm and 600 ± 400nm 
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respectively. The grain size of gold film used for our sensing platform was turned to be 40 ± 

10 nm (Figure 10).   

Magnitude of surface stress change and kinetics of SAM formation are also 

influenced by the distance between cantilever and the location where alkanethiol droplets are 

introduced. During the experiment, octanethiol droplet was introduced at a distance of about 

5 mm from the cantilevers. The kinetics of SAM formation observed in the current 

experiments compare well with other reported measurements for alkanethiol vapor 

introduced at similar distances (Godin, Tabard-Cossa et al. 2001; Godin, Williams et al. 

2004). 

After the SAM formation on the sensing cantilever, sensor was again exposed to 

alkanethiol vapors.  Intensity of the interfered beams measured during second exposure of 

alkanethiol is compared with interfered beams before deposition to check the specificity and 

plotted in Figure 13(A). As shown in the Figure 13(A), variations of the interfered beam 

intensities were within the system’s normal noise range. A minimal surface stress change 

during re-introduction of the alkanethiol vapors indicates that both sensing and reference 

cantilever are covered with alkanethiol SAM.  Furthermore, it indicates surface stress change 

observed during the first introduction is unambiguously associated with SAM formation on 

sensing cantilever.  

 

4.1.4 Conclusions 

A miniature sensor based a pair of microcantilevers, a sensing and reference 

cantilevers, was developed for differential surface stress measurement associated with 

formation of alkanethiol SAMs, which is a typical example of detection of chemical species. 
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High resolution interferometry was utilized to measure the differential surface stress 

developed due to absorption of chemical species on the sensing cantilever. Surface stress 

associated with alkanethiol formation on gold surface was measured to characterize the 

response of the sensor in ambient conditions. Sensitivity of the sensor measurement is not 

dependent on the distance between the sensing surface and detector; as a result, surface stress 

sensor is amenable for miniaturization and array of sensors would be easily fabricated on a 

single MEMS device.  
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4.2 Differential Surface Stress Sensor for Detection of DNA Hybridization  

 

Modified from a paper published in Applied Physics Letters 

2008, 93, 143107 

K. Kang, M. Nilsen-Hamilton, and P. Shrotriya 

 

4.2.1 Introduction 

Microcantilever based sensors are increasingly being investigated to detect the 

presence of chemical and biological species in both gas and liquid environments. Since 

Thundat et al. (Thundat, Warmack et al. 1994) reported the potential of AFM cantilevers in 

chemical and biological sensing components, cantilever based sensors have been 

demonstrated for alkanethiol self-assembled monolayers, proteins, antibodies and antigens, 

and nucleic acids (DNA/RNA) (Fritz, Baller et al. 2000; Wu, Datar et al. 2001; Godin, 

Williams et al. 2004; Savran, Knudsen et al. 2004; Bosch, Sanchez et al. 2007)).  

Hybridization of single-stranded DNA (ssDNA) molecules with their complements 

becomes a fundamental platform in biomolecular recognitions. A monolayer of receptor 

molecules is functionalized on a sensing/reference cantilever. The reference cantilever is then 

hybridized with complementary molecules prior to an experiment to passivate for additional 

target ligands. The formation of molecular binding on the cantilever surface generates 

surface stress and this reaction results in a bending of the cantilever. Surface stress associated 

with complementary poly T to hybridize with immobilized poly A was investigated to 

demonstrate the sensor’s performance. Dissociation constant (Kd) was obtained by 
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Isothermal titration calorimetry (ITC) measurements and provided to analyze linearity of the 

model.  

 

4.2.2 Experiments 

In order to achieve sensitive results, high aspect ratio tipless AFM cantilevers with 

nominal dimensions of 500 µm long, 100 µm wide, and 1 µm thick (Nanoworld, 

Switzerland) were selected. Cantilevers were coated with 5 nm of titanium and 30 nm of gold 

film. The thickness and spring constant of each cantilever for accurate surface stress 

measurements were determined by the AFM reference cantilever method (Chapter 3.2). 

Cantilevers with similar thickness were selected as a sensing and reference cantilever pair to 

eliminate the environmental disturbances. Microstructure and surface roughness of the gold 

film were also determined using contact mode AFM imaging shown in Figure 10. The 

surface stress change associated with hybridization of a surface immobilized 30 nt 

polydeoxyriboadenosine [poly A] with its complementary 30 nt polydeoxyribothymidine 

[poly T] was investigated to demonstrate the sensor performance. Oligonucleotides with the 

following sequences thiolated poly A: 5’-HS-(CH2)6-(A)30-3’ and poly T: (T)30 were 

purchased from Integrated DNA Technologies (Coralville, Iowa) and stored at -20 °C prior to 

the experiments.  

In preparation for the experiments, all cantilevers were cleaned by piranha solution 

(70% H2SO4 and 30% H2O2) for 30 minutes and rinsed in de-ionized water and dried in the 

gentle N2 flow. Thiol-modified (dA)30 was boiled and placed immediately on ice. Only 

selected portion of thiolated poly A was then reheated till 60 °C to cleave any disulfide bonds 

and mixed with the binding buffer (50 mM triethylammonium acetate buffer containing 25% 
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ethanol, pH 7.4) to ensure that the poly A is only immobilized on the gold-coated surfaces. A 

pair of cantilevers was then immersed into the solution containing 20 µM thiolated (dA)30 

dissolved into 7.4 pH binding buffer to functionalize cantilevers. After four hours of 

incubating in thiolated poly A solution, cantilevers were again cleaned and dried by DI water 

and N2 stream several times. One of incubated cantilevers was then saved as a sensing 

cantilever in the refrigerator at 4 °C while the other cantilever was used as a reference 

cantilever by hybridizing poly T strands adsorbed on reference cantilever. In order to 

accomplish the hybridization, (dT)30 strands were prepared following the same procedure as 

poly A and equilibrated in the 7.4 pH hybridization buffer. The reference cantilever was 

incubated for four hours in poly T solution of 20 µM concentration.  

 

 

Figure 14 Optical circuit of differential surface stress sensor. MLA1 collimates beams and delivers to 

MLA2. Bidirectional couplers were used to split the reflected beams and direct one component toward 

photodetectors to measure the intensities of interfered beams. 
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Three different experiments were carried out to demonstrate the sensitivity and the 

specificity of the sensor. In the first experiment, the sensing and reference cantilevers were 

mounted in the sensor realization shown in Figure 14, and the changes in phase difference 

between the reflected beams were monitored to determine the differential surface stress 

development. The two cantilevers were submerged in hybridization buffer and measured the 

surface stress developments due to hybridization on the sensing cantilever at the final 

concentration of 0.1 to 1.0 µM of complementary poly T. In the second experiment, only the 

hybridization buffer alone (No nucleotide) was introduced into the sensor flow cell to 

determine the influence of environmental effects on sensor performance. A 0.5 µM 

concentration of noncomplementary 30-mer poly A in hybridization buffer was introduced to 

measure the surface stress due to nonspecific physisorption of molecules on the cantilever 

surface or nonspecific binding to receptor molecules.  

In the last experiment, influence of temperature on molecular activity while forming 

base pairing between Adenine and Thymine though hydrogen bonds was investigated. We 

thawed two different treatments on complementary strands. One was melted at annealing 

temperature, 60 ºC, and the other was thawed in room temperature but no further treatment. 

We carried out surface stress measurements during DNA hybridization of ssDNA stands with 

these two differently treated complementary strands.      

Hybridization buffer (20 mL of 20× SSPE (4×), 0.2 M NaCl, 7g SDS (7%), 40 mL 

Formamide (40%), 0.1 mL NP40 (0.1%), Fill to 100 mL with DEPC H2O) was initially filled 

in the flow cell while aligning procedures and exact amount of complementary (dT)30 at 7.4 

pH was introduced for hybridization to achieve final concentrations. 
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4.2.3 Results and discussion 

After turning on the laser, it requires 10 to 15 minutes for interfered signals to 

stabilize. Intensity of interfered beams and phase difference were monitored before 

introducing target molecules to confirm that phase difference (φ) does not drift with time. 

A representative profile of surface stress development formed during hybridization 

reaction is plotted in Figure 15 for injection of 0.1 µM poly T concentration. For this case, 

largest surface stress change was observed in 5 minutes after injecting complementary target 

molecules with total volume of 480 µL in the fluid cell. It is important to note that the 

response time of the cantilever was found to be dependent on the volume of solution in the 

flow cell. It showed that the surface stress upon DNA hybridization is reliant on the 

concentration of complementary strands. We also observed that a change of salt 

concentration in hybridization buffer from 1.0 M to 0.2 mM does not affect the saturation 

values in surface stress measurements which remained within the normal noise level of ± 3 

mN/m. 

Following results are consistent with others that surface stress changes induced by 

DNA hybridization are found to be in the range of 5 to 50 mN/m for oligonucleotides of 

similar lengths (Fritz, Baller et al. 2000; Alvarez, Carrascosa et al. 2004; Min Yue 2004; 

Biswal, Raorane et al. 2006). This range is typically 10 to 100 times smaller than surface 

stress generation during formation of alkanethiol SAMs on gold surfaces.  
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Figure 15 The profile of surface stress development during DNA hybridization at complementary (dT)30 

at concentration of 0.1 µM 

 

 

Figure 16 Analytical modeling with experimental data obtained by DNA hybridization of complementary 

(dT)30. Solid red line represents proportion of surface coverage of DNA hybridization. 
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The equilibrium reaction and the corresponding dissociation constant (Kd) are 

expressed in Equations (8) through (11).  

Receptor + Ligand ⇌ Affinity complex 

                                                     Or,    A + B ⇌ AB     (8) 

where A and B are concentrations of receptor and ligand, and AB is the concentration of 

affinity complex of receptor/ligand. The reaction is in equilibrium when the rates of forward 

and backward reactions are balanced. Therefore, the balance meets when forward reaction 

( rate ) is equal to backward rate ( rate ). 

        [ ][ ]                                               (9) 

        [  ]                                                 (10) 

                               (11) 

Here, Kd is the dissociation constant and has molar units (M). Kf and Kb are the rate 

constants for forward and backward reactions respectively. Equation (8) is then developed to 

Langmuir isotherm (Langmuir 1919). Langmuir isotherm leads to readily derivable 

expressions for the coverage or adsorption of molecules on a solid surface.  

                                (12) 

   or                                                                (13) 

where θ is fractional coverage on the surface and ρ is the concentration; Kd is again the 

dissociation constant. Since surface stress change (Δσ) is greatly dependent on the surface 

coverage, Equation (13) can be one step further developed. 

𝐾𝑑  
𝐾𝑏
𝐾𝑓

 
[𝐴][𝐵]

[𝐴𝐵]
 

𝜃  
𝐾𝑑 ∙ 𝜌

  𝐾𝑑 ∙ 𝜌
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                              (14)     

The dissociation constant was measured by ITC (Isothermal Titration Calorimetry) 

and turned to be 240 nM for hybridization of complementary poly T with immobilized poly 

A. Surface coverage and measured surface stress would be inputs for identifying mechanism 

governing surface stress generation. It is a reversible reaction as we derived Equations (8-14), 

and we used the saturated values for surface stress measurements in equilibrium reaction.  

 

Figure 17 Surface stress changes as a function of normalized separation of complementary poly T to 

hybridize with immobilized poly A. 

 

Changes in surface stress are significantly influenced by molecular interactions 

between hybridized chains; consequently, the distance between immobilized or hybridized 

chains may be a leading contribution for surface stress development. ssDNAs are 

immobilized on the gold surface as hexagonal closed packing for binding to fraction of 

Δ𝜎  𝜃 ∙ 𝐶  
𝐾𝑑∙𝜌

 +𝐾𝑑∙𝜌
∙ 𝐶  
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complementary poly T (Hagan, Majumdar et al. 2002). The separation distance for 

immobilized ssDNAs on gold substrate was turned to be 8 nm (Chapter 5.4).  

 

Figure 18 Profiles of surface stress measurements with noncomplementary poly A 

 

Also, experiments with the use of noncomplementary (dA)30 were carried out for the 

analysis of specification in the hybridization buffer. Since complementary strands have been 

already hybridized with immobilized receptors on sensing and reference cantilevers, no 

further cantilever deflection is expected after injection of noncomplementary poly A strands. 

Two results were obtained by introducing 0.5 µM of noncomplementary poly A and shown 

in Figure 18. The profiles show that surface stresses measurements had peaks to about 45 

mN/m but they eventually saturated to the normal noise level after a long period (order of 60-

90 minutes). The initial peak and subsequent decay may be due to different rates of 

physisorption between silicon or gold surface, charge transduction, or reversed-Hoogsteen 

T·AT triplex formation on the reference cantilever. It could also be sampling interactions 
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involving reverse Hoogsteen or other configurations between the poly A chains on sensing 

cantilever (Uddin, Piunno et al. 1997; Wu, Ji et al. 2001; Cheng, Cuda et al. 2006).  

 

Figure 19 Comparison of surface stress measurements between annealed and non-anneal complementary 

ssDNAs (30-mer Poly T) 

 

Two different treatments were applied to complementary DNA strands: melting in 

room temperature without a further treatment and melting at annealing temperature at 60 °C, 

simply named non-annealed and annealed complementary DNA strands respectively. With 

an injection of non-annealed complementary DNA strands in a final concentration of 0.5 µM, 

surface stress change was saturated at 35 mN/m shown in figure 19. It is approximately half 

compared to that obtained by annealed complementary (dT)30. The experimental results show 

that thawed DNA strands were not able to achieve similar level of binding as the annealed 

DNA strands. This may be due to stacking or “crystallization” of single stranded DNA in 

thawed solution. Another interesting observation is that magnitude of the final stress change 
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observed in “thawed poly T” experiments is comparable to initial peaks observed in 

noncomplementary experiments discussed above. However, “non-annealed poly T” 

experiments showed that the final saturation of surface stress measurement was stable for a 

long duration of time.  

 

4.2.4 Conclusions 

A novel differential surface stress sensor is used to measure surface stress changes 

associated with 30-mer complementary poly T to hybridize with surface immobilized ssDNA 

receptors (30-mer poly A). Experimental results indicate that surface stress changes develop 

on exposure to complimentary DNA strands. Varying the poly T concentration from 0.1 to 

0.5 µM results in a linear increase of the surface stress changes from 40 to 78 mN/m during 

DNA hybridization. However, it showed a non-linear behavior when the concentration of 

complementary poly T is beyond 0.5 µM.  

In order to verify the specification of the sensing system, surface stress changes 

during hybridization of noncomplementary DNA strands were obtained. The results showed 

a sharp peak, which repeatedly appeared in the experiments with complementary DNA 

strands, was observed as soon as injection of noncomplementary DNA strands but it decayed 

and saturated to (nearly) no surface stress value.  

Compressive surface stress is hypothesized to occur due to binding of negatively 

charged complimentary strands and corresponding increase in negative charges on the 

surface and consequently greater repulsion between the bound surfaces species (Fritz, Baller 

et al. 2000). The tensile surface stress change during hybridization is attributed to reduction 

in steric hindrances between single-stranded DNAs (ssDNAs) due to transformation from a 
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flexible single strand random coil to stiff hybridized double-stranded DNA (Wu, Ji et al. 

2001). In the current experiments, the initial tensile stress change may be due to the reduction 

in steric hindrances but as the hybridization of DNA continues, the Coulombic repulsion 

between the surface bound chains leads to the development of compressive surface stress.  

Surface stress measurements associated with DNA hybridization clearly demonstrate 

the unique advantages of the differential surface stress sensor. Measurement of differential 

bending of sensing cantilever with respect to reference cantilever ensures that sensor 

response is independent of environmental disturbances. Sensitivity of sensor measurement is 

not dependent on distance between the sensing surface and detector, as a result, surface stress 

sensor is amenable for miniaturization and array of sensors can be integrated with other 

systems on a single MEMS device. 
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4.3 Aptamer Functionalized Microcantilever Sensors for Cocaine Detection 

A paper to be submitted to Langmuir 

Kyungho Kang, Ashish Sachan, Marit Nilsen-Hamilton, and Pranav Shrotriya 

 

4.3.1 Introduction 

 

A cocaine-specific aptamer was used as a receptor molecule in a microcantilever 

based surface stress sensor for detection of cocaine molecules. The response of 

microcantilever for cocaine detection relies on resolving surface stress change associated 

with formation of affinity complexes between aptamer and cocaine molecules on the sensing 

surface. A novel interferometric technique was utilized to measure the surface stress induced 

bending of a sensing cantilever respect to a reference cantilever (Chapter 3). The principle of 

surface stress measurement is schematically presented in Figure 20. Cocaine aptamer 

introduced by Stojanovic molecules (Stojanovic, de Prada et al. 2001) is illustrated in Figure 

3. 
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Figure 20 Schematic representation of the sensing strategy for cocaine detection 

 

4.3.2 Experiments  

Cocaine aptamers with the sequence of 5’- GAC AAG GAA AAT CCT TCA ATG 

AAG TGG GTC -3’ were purchased from Integrated DNA Technologies (IDT), (Coralville, 

Iowa). Affinity complexes between aptamers and cocaine as target ligands were measured by 

isothermal titration calorimetry (ITC) in PBS (20 mM Tris.HCl, pH 7.4, 140 mM NaCl and 5 

mM KCl). Cocaine samples dissolved in acetonitrile were purchased from Sigma Aldrich (St. 

Louis, Missouri). As received, the cocaine samples were diluted in deionized water and 

vaporized in the vacuumed centrifuge in order to achieve desired concentration of acetonitrile 

in the solution. 
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Isothermal titration calorimetry (ITC) experiments were performed using a VP-ITC 

isothermal titration calorimeter (Microcal, Inc., Northhampton, MA). In each experiment, 

600 μM cocaine was titrated using the computer controlled syringe into the sample cell (1.43 

mL) containing 20 μM cocaine aptamer at 25 ℃.  Both aptamer and cocaine were dissolved 

in PBS in the presence of various concentrations of acetonitrile. Before each titration the 

oligonucleotide was heated to 92 °C for 5 minutes in the titration buffer and then cooled to 

room temperature for 60 minutes. The syringe was set at a stirring speed of 310 rpm. After a 

60 seconds initial delay each titration involved an initial 1 µL injection followed by 25 serial 

injections of 12 µL each at intervals of 300 seconds. The raw data obtained in each 

experiment was corrected for the effect of titrating cocaine from the syringe the sample cell 

containing the buffer and various concentrations of acetonitrile but no aptamer. The 

thermodynamic parameters were calculated using a one-site binding model in the software 

(Origin 5.0) provided by Microcal (Microcal, Inc). 

For surface stress measurements, sensing and reference cantilevers were coated 

respectively with the cocaine aptamer and a control DNA consisting of the bases as the 

cocaine aptamer but with their sequence scrambled. Thiol-modified cocaine aptamers and 

control DNA were purchased from IDT (Coralville, Iowa). Gold-coated microcantilevers 

with the nominal dimension of 500 µm length, 100 µm width and 1 µm thickness were 

purchased from Nanoandmore.com (Lady's Island, South Carolina). Microcantilevers were 

cleaned by the Piranha solution (70% H2SO4 and 30% H2O2) for 30 minutes, rinsed in 

deionized water and dried in the gentle N2 flow. Thiol-modified DNA aptamers were heated 

till 60 °C to cleave any disulfide bonds and mixed with the saline sodium citrate buffer (20 × 

SSC), pH 7.4) to obtain a 0.5 µM aptamer solution. Cleaned microcantilevers were immersed 
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in the aptamer solution for three hours in order to immobilize the thiol-modified DNAs on 

the gold-coated surface. Functionalized microcantilevers were immersed in 6-mercapto-1-

hexanol solution (3 mM concentration) for one hour to displace any adsorbed DNA. 

The functionalized sensing and reference cantilevers were mounted in the differential 

surface stress sensor and exposed to various concentrations of cocaine from 25 to 500 µM in 

PBS to determine the sensor response as a function of the cocaine concentration. After the 

sensing experiments, the sensing and reference cantilevers were heated in deionized water at 

80 °C to regenerate the aptamer sequence. The regeneration allows the sensing cantilevers to 

be used a number of times (Baker, Lai et al. 2006) and each cantilevers was used for at least 

three sensing experiments. 

 

4.3.3 Results and discussion 

Isothermal titration calorimetry tests were used to determine the affinity between 

cocaine molecules and the DNA aptamer.  A representative result is plotted in Figure 21. We 

found that the aptamer’s binding affinity is highly sensitive to the presence of acetonitrile, 

which is the solvent of available cocaine standard solutions (Figure 21 (B)).  The dissociation 

constant (Kd) of the currently available cocaine aptamers was between 11 and 22 µM for very 

low or minimal acetonitrile concentration  as shown in Figure 21 (B), but for concentrations 

of acetonitrile above 3 µM the dissociation constant rises to greater than 200 µM. This 

observation probably explains why the aptamer has been reported to have a large  range of 

affinities (Neves, Reinstein et al.; Stojanovic, de Prada et al. 2001; White, Phares et al. 2008).  
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Figure 21 Isothermal titration calorimetry (ITC) was performed to determine the equilibrium constants 

for the cocaine aptamer: A) Kd of the cocaine aptamer for cocaine in the presence as a function of 

acetonitrile concentration; B) Representative ITC data shown in this figure gave a Kd = 11 µM 

 

Differential surface stress developed on the functionalized cantilevers was measured 

as a function of cocaine concentrations in PBS. Sensor response was measured for 10 

different cocaine concentrations – 0 µM (pure buffer), 25, 50, 75, 100, 150, 200, 300, 400, 

500 µM. At each concentration, the sensing experiments were repeated three times at least to 

assess the repeatability of the experimental measurement. Two typical experimental 

observations of surface stress development during direct sensing corresponding to a cocaine 

concentration of 50 µM and pure buffer are plotted in Figure 22. As shown in the Figure 22, 

the surface stress starts developing as soon as the cocaine solution is injected in the sensor 

and saturates to a constant value after a period of approximately 20 minutes. For PBS alone, 
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there is no surface stress buildup indicating the specificity of sensor response to cocaine 

solution. 

 

Figure 22 Surface stress developments during direct sensing for 0 and 50 µM cocaine 

 

The saturated surface stress values were recorded for each sensing experiment and are 

plotted as a function of cocaine concentration in Figure 23, which also shows a Langmuir 

isotherm fit for the experimental data. Sensitivity of the surface stress measurements was 

determined to be 25 mN/m based on the surface stress response measured in the absence of 

cocaine. Based on the sensitivity assumption and fit for the experimental data, the lowest 

detectable threshold for the cocaine concentration is estimated to be 5 µM. 
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Figure 23 Saturated surface stress values as a function of cocaine concentrations. A curve fitting with 

Langmuir isotherm along the experimental data is compared with a fit calculated by Kd of  22 µM, which 

was measured by ITC. 

 

In order to understand the relationship between aptamer-cocaine binding and surface 

stress development, the dissociation constant measured by ITC was used to estimate the 

surface coverage of cocaine-aptamer complexes for each cocaine concentration.  

                                                       (15) 

Where θ is surface coverage of cocaine aptamer on sensing cantilever, C is the 

cocaine concentrations. A Kd of 20 µM was utilized to estimate the fraction of initial aptamer 

molecules that form the cocaine aptamer complexes. Measured surface stress changes (Δσ) 

were assumed to be directly proportional to coverage of cocaine-aptamer complexes. 

         ∙           (16) 

𝜃  
𝐶 ∙ 𝐾𝑑
  𝐾𝑑
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The fit measured surface stress under this assumption is plotted in Figure 23. The 

proportionality assumption accurately describes the measured surface stress values at cocaine 

concentrations up to 100 µM (marked as linear regime in the curve) but the measured values 

continued to increase as the cocaine concentrations increased beyond 100 µM, whereas the 

predicted values, based  on the surface coverage remained nearly constant (indicated as the 

non-linear regime).  

 

Figure 24 Normalized separation between cocaine-aptamer complexes 

 

The fraction of cocaine/aptamer complex can also be used to estimate the average 

normalized spacing between cocaine/aptamer complexes on the surface. 

                                            (17) 

𝑎

𝑎 
 

 

𝜃
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Where a is approximate spacing between aptamer/cocaine complexes, and a0 is the initial 

space of cocaine aptamers. The measured surface stress is plotted as a function of the 

calculated normalized separation between the aptamer-cocaine complexes in Figure 24. As 

indicated on the plot, the surface stress developed is proportional to coverage of the cocaine-

aptamer complexes when the aptamer complexes are spaced at distance larger than 1.1 times 

the initial separation between the immobilized aptamers. As the cocaine-aptamer complex 

separation becomes smaller than 1.1 times the immobilized aptamer separation, the 

developed surface stress is no longer proportion to estimated surface coverage. This 

transition may be due to the nature of intermolecular repulsion between the cocaine-aptamer 

complexes. The data presented here can be utilized to estimate the functional form of the 

interchain repulsion between the cocaine-aptamer complexes and also to determine the 

mechanism underlying the surface stress generation. 

 

4.3.4 Conclusions 

In this study, the existing cocaine aptamer was tested by ITC to determine its affinity 

for cocaine. From these studies we found that acetonitrile, the common solvent for cocaine 

standards, causes a significant decrease in affinity of the aptamer for cocaine. By maintaining 

the acetonitrile concentration below 2 % we realize a 5-fold increase in sensitivity of the 

aptamer compared with published data and with results from our own studies. 

Experimental results presented here have demonstrated a proof-of-concept for 

cocaine detection with aptamer-functionalized microcantilevers at very low cocaine 

concentrations. The surface stress generated due to binding of cocaine molecules to the 

existing cocaine aptamer was determined. As reported above, the binding of cocaine 



64 

 

 

aptamer/cocaine molecules was found to be dependent on the acetonitrile concentration. 

Therefore all solutions for the sensing experiments were prepared to ensure that acetonitrile 

concentration was below 2%. Surface stress changes from 9 to 51 mN/m were measured for 

the range of cocaine concentrations of 25 µM to 500 µM. The sensor is able to detect cocaine 

with the lowest detectable concentration down to 5 µM (1.5 µg/mL) at room temperature. 

The aptamer functionalized cantilever could be regenerated after each sensing experiment 

and demonstrated not to change in sensitivity and specificity on subsequent experiments.  

The experimental data also showed that the surface stress generated during the sensing 

experiments is not directly proportional to the surface coverage of aptamer/cocaine 

complexes. 
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CHAPTER 5.  DOUBLE-THIOLATED SINGLE-STRANDED DNA 

FOR HIGHER THRESHOLD SENSITIVITY UPON DNA 

HYBRIDIZATION 
 

A paper to be submitted to Langmuir 

Kyungho Kang, Marit Nilsen-Hamilton, and Pranav Shrotriya 

5.1 Abstract  

Microcantilever based sensors can be used for quantitative analysis of the nanomechanical 

response associated with conformational change and the corresponding charge transduction 

during molecular interaction. A specific binding of complementary 30-mer Thymine (poly T) 

with surface immobilized single-stranded 30-mer Adenine (poly A) produces a differential 

bending of a pair of microcantilevers. These microcantilevers transduce these molecular 

interactions into a quantitative nanomechanical response expressed as surface stress changes. 

Modifying the immobilization of ssDNA strands from one end attached to both ends attached 

drives in larger surface deformation during hybridization. This larger deformation leads to 

reduce sensitivity as low as two orders of magnitude in the detection limit compared with a 

system operated by single-thiolated ssDNAs with the same experimental procedures.  

 

5.2 Introduction 

Microcantilevers functionalized with chemical or biological species transduce 

specific binding into nanomechanical responses. Due to sensitivity and versatility of 

microcantilevers, they play an important role in molecular recognitions and have served as 
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biosensors for detections of DNA, glucose, liposomes, antibody/antigen, proteins, and 

aptamers (Niemeyer 2007; Waggoner and Craighead 2007). 

Berger et al. (Berger, Delamarche et al. 1997) and Godin et al. (Godin, Williams et al. 

2004; Godin, Tabard-Cossa et al. 2010) measured quantitative data on surface stress changes 

during formation of self-assembly of alkanethiol on gold surface. In these reports, they found 

kinetics of forming self-assembled monolayers on gold and effects of surface coverage and 

grain size of gold. Particularly, they discovered that surface stress changes during adsorption 

of alkanethiol on the sensing surface are up to 2-4 orders of magnitude larger than those from 

intermolecular interactions. They, thus, provided the potential of microcantilever sensors for 

chemical and biomolecular recognitions (Godin, Tabard-Cossa et al. 2001; Godin, Williams 

et al. 2004; Godin, Tabard-Cossa et al. 2010). In 2001, Fritz et al. (Fritz, Baller et al. 2000) 

performed direct translation of DNA hybridization and receptor-ligand binding into 

nanomechanical response through a microcantilever sensor. They opened a possibility for 

microcantilever sensors to use of biomolecular recognitions. 

There have been many attempts to increase sensitivity of the sensing platform. 

Mertens et al. (Mertens, Rogero et al. 2008) found when self-assembled monolayer of 

ssDNAs interacts with complementary ssDNAs, hydration influences significantly on surface 

stress developments. They controlled humidity and measured the hydration-induced surface 

stress of ssDNAs and hybridization with the complementary ssDNAs in a humidity chamber. 

They showed that sensitivity increase of three orders of magnitude compared to the similar 

size of cantilever can be achieved although it required relatively longer sensing time between 

1 to 3 hours.  
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Weizmann et al. (Weizmann, Patolsky et al. 2004) introduced the magneto-

mechanical detection method for single base mismatch between two DNA sequences. 

ssDNAs functionalized on the gold surface of a cantilever are conjugated with 

complementary molecules immobilized on magnetic beads. The external magnetic field 

provided the deflection of the cantilever by the means of amplified magneto-mechanical 

detection when the biorecognition event is occurred. This method could detect large bending 

response from extremely diluted biological samples through the preamplified labeling of the 

magnetic particles. 

Pei et al. (Pei, Lu et al. 2010) designed a 3D DNA tetrahedron structure assembled 

from one vertex (80-nt probe-containing DNA fragments) and three thiol groups (55-nt DNA 

fragments) conjugated on sensing surface. They argued that the pyramidal DNA structures 

have a strong affinity with Au surface because the three thiols on the base enhance rigidity 

and stability of the structure. They reported that a sensor with TSPs (tetrahedron-structured 

probes)-based platform is able to achieve detection limit of 1 pM when measuring 

electrochemical signals during hybridization of an avidin-HRP (horseradish peroxidase) with 

the biotin. Thrombin detection was also carried out in the same experimental setup and 

achieved the threshold sensitivity as low as 100 pM. 

Janice et al. (Marquardt 2008) conducted a microcontact printing of 30-nt poly A on a 

gold substrate and hybridization of 30-nt poly A with 30-nt poly T. The atomic force 

microscope (AFM) height measurements showed that the immobilized poly A and hybridized 

double-stranded DNA (dsDNA) were turned to be 1.68 and 1.59 nm respectively with 95 % 

confidence. They concluded that complexes affinity of poly A and T does not affect height 

difference. Although no major difference in height between the single and double-stranded 



68 

 

 

DNA, complementary DNA strands may build structures lying down rather than vertically 

standing up (Marquardt 2008). 

Cantilevers for alkanethiol self-assembled monolayers (SAMs) and DNA 

hybridization were predicted to undergo bending down to the direction for compressive stress 

(in Chapter 2.4). Esplandiu et al. (Erlandsson, McClelland et al. 1988) investigated 

mechanism governing by SAMs of 1,8-octanedithiol on gold in acidic and alkaline 

electrolytes. They found that compact monolayers with an upright molecular configuration 

were formed. Compared with the results of 1-octanethiol SAMs, the dithiol monolayers 

showed a higher stability as deduced from reduction peak potentials and capacitance values 

(Erlandsson, McClelland et al. 1988). 

 

Figure 25 A simplified description of double-thiolated poly A hybridized with the complementary poly T.  

One end is attached on the gold surface (A), thiols on poly As are immobilized on gold surface through 

thiol/Au bond (B) 
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Surface stress induced due to biological binding is driven by changing in intra-

molecular interaction during complex formation. This low magnitude of mechanical 

deformation limits the sensitivity for detection associated with target ligands. In order to 

overcome this limitation, we investigated the influence of receptor molecules immobilized on 

sensing surface. We modified the receptor immobilization to ensure that both 5’and 3’ ends 

of a single-stranded DNA (ssDNA) are modified with thiols, and these thiol-modified 

ssDNAs are immobilized on the sensitized surface of the cantilever. The surface density of 

receptor molecules was found to be the same with the single-thiolated ssDNA through the 

fluorescence measurement. The immobilized space is larger enough to prevent intra-

molecular reaction between chains. When hybridizing with complementary ssDNAs, the 

surface immobilized strands undergo twisting and changing in stiffness as well as 

configurational change from a string to a rod. This change of strings produce higher surface 

stress in the system and eventually the threshold sensitivity would be lower.  

 

5.3 Experiments  

The double-thiolated poly A (The sequence of 5’-/5ThioMC6-D/AAAAA AAAAA 

AAAAA AAAAA AAAAA AAAAA/3ThioMC3-D/-3’) was purchased from Integrated 

DNA Technologies (Coralvillle, IA) and stored in -20 °C. Cantilevers were cleaned by 

piranha solution (70% H2SO4 and 30% H2O2) for 30 minutes and washed by DI water several 

times. 20 µM double-thiolated poly A in binding buffer (50 mM triethylammonium acetate 

buffer containing 25% ethanol, pH 7.4) was used to immobilize monolayers of double-

thiolated ssDNAs on the gold surface of cantilevers at room temperature for 3 hours. Again 

cantilevers were cautiously cleaned by DI water and dried in gentle N2 stream. A sensing 
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cantilever was further incubated in 3 mM of 6-mercapto-1-hexanol solution for one hour to 

displace any adsorbed DNA. One cantilever was selected for a reference cantilever and 

hybridized with complementary target molecules (30-mer poly T as the sequence of 5’- 

TTTTT TTTTT TTTTT TTTTT TTTTT TTTTT-3’) that make insensitive with additional 

complementary poly T strands.  

Grafting density was investigated by fluorescence techniques (Demers, Mirkin et al. 

2000). In brief, fluorescein tagged single-thiolated and double-thiolated poly A of 20 µM 

respectively were functionalized on the gold surfaces in the same binding buffer. After 

incubating 3 hours, the gold specimen were taken out and rinsed thoroughly with DI water. 

These single- and double-thiolated poly A strands were again displaced from the surfaces 

using 12 mM β-mercapthoethanol which found to effectively break the bonds between sulfur 

and gold. The etching yielded another solution, which was taken to a fluorometer to measure 

the amount of fluorescence from the DNA present. Surface densities were calculated dividing 

this amount by the areas of the surfaces into which they were originally attached. The 

fluorescence was measured using an excitation wavelength of 495 nm and an emission 

wavelength of 520 nm. 

The hybridization experiments were conducted for complementary concentrations of 

poly T from 2 to 100 nM in pH 7.4 hybridization buffer (20 mL of 20 × SSPE, 0.2 M NaCl, 

7g SDS (7%), 40 mL Formamide (40%), 0.1 mL NP40 (0.1%), Fill to 100 mL with DEPC 

H2O). After measuring surface stress changes during specific binding of complementary poly 

T with double-thiolated poly A, the sensor carried out nonspecific binding of poly A on 

double-thiolated poly A.  
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5.4 Results 

The fluorescence intensity determined the grafting density where single- and double-thiolated 

poly A anchored on gold surfaces. The grafting densities of single- and double-thiolated poly 

A on gold surfaces were turned to be the same, in average 1.9 × 10
16

 molecules/m
2
 

respectively. Surface coverage as the number of molecules on the sensing surface was 

calculated and shown in Table 1.  

Table 1 Surface coverage of single- and double-thiolated poly A 

Surface coverage of 

Single-thiolated poly A 

Surface coverage of Double-

thiolated poly A 

2.3x10
16

 molecules/m
2
 2.7 x10

16
 molecules/m

2
 

1.7 x10
16

 molecules/m
2 

1.0 x10
16

 molecules/m
2
 

1.7 x10
16

 molecules/m
2
 2.0 x10

16
 molecules/m

2
 

 

The salt concentration in the buffer was 50 mM and the length of immobilized poly A strands 

for both experiments was 30 bases respectively. The results of grafting densities agreed with 

others (in Table 2) and obtained high degree of reliability in the surface coverage 

measurements.   

Table 2 Results of surface coverage with respect to results from other sources 

 Poly A with single-

thiolated 

Poly A with double-

thiolated 

Stachowiak et al. 

(Stachowiak, Yue et 

al. 2006) 

Castelino et al. 

(Castelino, Kannan et 

al. 2005)  

0.019 molecules/nm
2
 0.019 molecules/nm

2
 0.02 molecules/nm

2
 0.02 molecules/nm

2
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In addition, the distances between molecules were calculated and turned to be 8 nm for both 

single and double-thiolated poly A by assuming a hexagonal closed pack structure for the 

attached molecules. 

The surface stress measurements were conducted with a single or multiple injections 

of complementary poly T whose concentrations were randomly selected from 2 to 100 nM. 

Figure 26 shows typical profiles of surface stress developments during hybridization of 

complementary and noncomplementary strands. The surface stress change with the final 

concentration of 10 nM complementary poly T was turned to be 75 mN/m and no surface 

stress generation with the noncomplementary poly A (1 µM concentration). 

 

 

Figure 26 Surface stress developments during injection of 10 nM complementary poly T and 

noncomplementary poly A on immobilized double-thiol on 30-mer poly A 
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In Figure 27, changes in surface stress during hybridization of complementary poly T 

at the concentration from 2 nM to 100 nM with the immobilized double-thiolated poly A 

were turned to be 30 to 132 mN/m. The experimental results of hybridization of 

complementary strands with immobilized double- and single-thiolated poly A were compared 

in Figure 28. Two plots are drawn with the experimental data: one is the fit to Langmuir 

isotherm and the other is a fit to the proportional to surface coverage calculated by the 

dissociation constant of 240 nM taken by the result of single-thiolated DNA hybridization. 

The results show that the double-thiolated immobilization does not agree with the 

experimental results. It can be said that the binding affinity is different due to modification of 

receptor molecules from single to double-thiolated for immobilization on the cantilevers. It 

must affect the binding mechanism while hybridizing ssDNAs to form dsDNAs.  

 

Figure 27 Surface stress changes during hybridization of complementary poly T with double-thiolated 

ssDNAs 
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From the statistical details about the radius of gyration followed by a random walk in 

three dimensions, we are aware of that the total length of poly A or T strands is longer than 

the end to end distance of the hybridized string. In addition, DNA is a chemically double 

stranded polymer; thus, when two strands are knotted, they become mechanically thick and 

rigid. When the repulsive force applies to both ends of a string, these two strands run in 

opposite directions to each other. Therefore, the dsDNA string tends to stretch out because of 

increasing in bending and angular potentials during DNA hybridization.  

 

 

 

Figure 28 Comparison of surface stress changes during hybridization of complementary strands with 

immobilized single- and double-thiolated ssDNA strands 
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5.5 Conclusions 

We observed a great potential of double-thiolated DNA immobilization in the field of 

molecular recognitions. Without any special treatment, sensitivity was significantly improved 

and reduced threshold of surface stress measurement as low as 500 pM or two orders of 

magnitude lower than that of the single-thiolated DNA hybridization was recorded. For 

surface coverage (grafting density), double-thiol poly A had the same surface attachment of 

single-thiol poly A. Also, AFM height measurements showed that no major difference 

between ssDNAs and dsDNAs due to hybridization. These showed that double-thiolated 

molecules contain a different mechanism of surface stress generation which is capable of 

generating greater values than single thiolated strands. When hybridizing double-thiolated 

ssDNAs to form dsDNAs on gold surface, the dsDNA strings would leads more stress on the 

cantilevers and ends up with high surface stress changes.  
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CHAPTER 6.  APTAMER FUNCTIONALIZED 

MICROCANTILEVER BASED DETECTION OF COCAINE 

MOLECULES AT ULTRA LOW CONCENTRATION THROUGH 

COMPETITIVE BINDING 
 

A paper to be submitted to Nano letters 

Kyungho Kang, Aaron Kempema, George Kraus Marit Nilsen-Hamilton, and  

Pranav Shrotriya 

6.1 Abstract  

MicroCantilever (MC) based sensors can provide revolutionary sensitivity for forensic 

detection and identification of controlled substances. We developed a novel “competition” 

sensing mode based on MC sensors coupled with aptamer-based receptor layers. In the 

conventional mode of sensing, surface deformation due to binding of ligand on a surface 

receptor is measured. In the competition mode, the rate of aptamer dissociation from a 

surface is measured. The rate of aptamer dissociation is determined by diffusion of the 

aptamer and its reaction with ligands in solution. The competitive sensing mode for cocaine 

detection resulted in 200 nM detection limit which is about two orders of magnitude of what 

we obtained in conventional sensing mode.  

 

6.2 Introduction 

Aptamers are short single-stranded DNA (ssDNA) or RNA molecules designed to 

recognize and bind to specific target ligands. Because their specificity can be tuned by the 
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selection conditions, aptamers can be selected that have exquisite discrimination between 

molecules. (Jenison, Gill et al. 1994) (Mannironi, Scerch et al. 2000). Very little change in 

the oligonucleotide sequence may be necessary to change the specificity of a nucleic acid 

(Mannironi, Scerch et al. 2000). With recognition of the obvious benefits of aptamers in 

developing microcantilever sensors, many applications have been developed as discussed in a 

recent review (Mairal, Ozalp et al. 2008). The efficacy of aptamers has been shown on a 

number of biosensing platforms. Examples include the use of surface plasmon resonance 

(Win, Klein et al. 2006), electrochemistry (Schlecht, Malave et al. 2007), fluorescence 

spectrometry (Ozaki, Nishihira et al. 2006), nanotube field-effect transistors (Maehashi, 

Katsura et al. 2007) and microcantilever technology (Savran, Knudsen et al. 2004). 

We have performed conventional direct sensing measurement of cocaine molecules 

and observed the limitation of the sensitivity, which is dependent on the dissociation constant 

(Kd). One alternative approach for detection of cocaine molecules is to consider competition 

between reaction-diffusion. When cocaine as target ligands are introduced in the sensing 

realm, aptamers bound with thiolated cocaine may accelerate the molecular activity either 

diffusing away from the binding site into the solution or reacting/binding with cocaine 

ligands in equilibrium reaction. The conceptual illustration is shown in Figure 29. 
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Figure 29 Schematic representation of competitive sensing strategy for cocaine detection and details view 

of competition between reaction and diffusion of an aptamer 

 

The concept introduced in Figure 29 can be modeled using reaction-diffusion 

equation of point source in spherical geometry.  

               (18) 

Where, D is a diffusion constant and K is a constant dependent on the cocaine 

concentration in solution with initial and boundary conditions;              ,        

      , and               , the general solution of the system is described Equation (19) 

assuming uniform concentration of cocaine and first order kinetics for cocaine/aptamer 

binding.  

𝐶  𝐷𝛻 𝐶  𝐾𝐶  𝐷  
 

𝑟 

𝜕

𝜕𝑟
𝑟 
𝜕𝐶

𝜕𝑟
  𝐾𝐶 



79 

 

 

                                      (19) 

The rate of aptamer dissociation can be expressed in Equation (20) and differential bending 

rate is plotted as a function of cocaine concentration in Figure 30.  

                  (20) 

    [ ]   𝑑 [ ] ≪ [ ] 
 

Where [A] and [B] are concentration of aptamer and cocaine as target ligands respectively 

and aptamers are negligibly small amount compared to the amount of cocaine. 

 

 

Figure 30 Numerical analysis on diffusion and reaction profile 
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We utilized an aptamer functionalized microcantilever for cocaine detection has been 

characterized under a novel “competition” mode that relies on resolving the surface stress 

changes associated with dissociation of affinity complexes on the sensing surface. Aptamer 

molecules are much larger than cocaine molecules; therefore, their removal from the sensing 

surface in the competition sensing mode is expected to give a stress change that is dependent 

in their surface coverage. The novel competitive mode for microcantilever sensor operation 

is schematically depicted in Figure 29, and the sensor configuration is presented in Figure 5. 

The aptamer used for cantilever functionalized has been previously selected to recognize 

cocaine molecules (Stojanovic, de Prada et al. 2001). In the absence of cocaine the termini of 

the aptamer are believed to be separated, but in its presence they form a stem and a three-way 

junction. The extent to which the aptamer changes in structure is a function of the number of 

bases in its terminal stem (Neves, Reinstein et al. 2010). Surface stress associated with this 

major structural change was investigated to characterize sensor response to the aptamer-

ligand. 

 

6.3 Experiments 

In order to implement the competition sensing mode, the experiments were carried 

out in two steps. First, cocaine/aptamer complexes were immobilized on the surface. The rate 

of bending during dissociation of affinity complex was then measured in presence of cocaine 

ligands.  

Thiol-modified cocaine molecules were synthesized and immobilized on the 

microcantilevers. The synthesis began with the known enol ether ester and was generated in 
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one step via a cycloaddition to N-BOC-pyrrole. The eight-step synthesis of the thiolated 

cocaine molecule generated a single enantiomer compound shown in Figure 31.  

 

Figure 31 Synthesis producers of thiolated cocaine 

 

Our thiolated cocaine molecule has two points of attachment (via the two sulfur atoms) to the 

cantilever surface. The site of the connection of the sulfur containing benzoate ester to the 

cocaine skeleton was designed to best present the key functional groups in the cocaine 

molecule (methyl ester, benzoate and amine) to the aptamer. 

Gold-coated microcantilevers with nominal dimensions of 500 µm length, 100 µm 

width and 1 µm thickness were purchased from Nanoandmore.com (Lady's Island, South 

Carolina). Microcantilevers were cleaned by Piranha solution (70 % H2SO4 and 30 % H2O2), 

and immersed into 200 μM of thiolated cocaine molecules in ethyl acetate for 15 hours in 

order to form monolayers of thiolated cocaine on gold surface of the sensing cantilever. 
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Through this procedures, thiol modified cocaine molecules were tethered onto the gold 

surface using the sulfur/gold linkage. 

DNA cocaine aptamers with the sequence of 5’- GAC AAG GAA AAT CCT TCA 

ATG AAG TGG GTC -3’ and a thiol modified DNA with scrambled sequence were 

purchased from Integrated DNA Technologies (IDT), (Coralville, Iowa). Aptamer binding 

affinity for the cocaine was measured by isothermal titration calorimetry (ITC) under the 

same buffer conditions of monovalent and divalent cations and pH as used for the 

microcantilever studies in Chapter 4.3.  

Contact angle measurements were conducted to validate the surface modification 

(Smith 1980). The contact angle of gold surface changed from hydrophilic (66.5 °) to 

hydrophobic (50 °) on exposure to cocaine, which is a hydrophobic molecule, indicating 

surface modification. 

Thiol-cocaine coated microcantilevers were incubated in 400 μM aptamer solution for 

30 minutes and monitored incubation time up to 3 hours such that cantilever surface was 

covered with cocaine/aptamer affinity complexes (as schematically depicted in Figure 29). 

The reference cantilevers were coated with the scrambled DNA sequence of same length and 

base composition as the cocaine aptamer so that exposure to cocaine molecules leads to 

affinity complex dissociation only on the sensing surface.  Surface stress during binding and 

unbinding of aptamers was measured to characterize the attachments and dissociation of 

aptamers. 

The sensing and reference cantilevers were mounted in the surface stress sensor and 

sensor response was measured for exposure to cocaine solutions of concentration varying 

from 0 to 100 μM in PBS buffer (pH 7.4, 140 mM NaCl). After the sensing experiment, the 
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sensing and reference cantilevers were regenerated through heating in deionized water at 

80 °C and each cantilever was reused three times for the sensing experiments. 

 

6.4 Results 

In the competition sensing mode, the sensing cantilevers were coated with thiolated 

cocaine molecules and incubated in cocaine-aptamer solution such that exposure to cocaine 

solution leads to disassociation of cocaine-aptamer complexes on the cantilever surface. 

Under the competition sensing mode, the final magnitude of the saturated surface stress 

change is considerably larger than that measured for direct sensing mode (Figure 33) for the 

same concentration. The surface stress change did not saturate till almost 2 hours after 

injection of the cocaine solution in the sensor.  

The large magnitude of the saturated surface stress change observed during the 

competition sensing mode indicated that aptamer-cocaine complex dissociation was 

responsible for the surface stress change as removal of larger aptamer molecules leads to 

larger deformation of the surface. However, the long time period required to reach the 

saturation value as well as the constant magnitude of saturated surface stress change 

irrespective of different cocaine concentrations indicates that the equilibrium is only 

achieved when significant number of cocaine-aptamer complexes on the cantilever surfaces 

have undergone dissociation. Dependence of the initial slope of surface stress change on the 

cocaine concentration indicates that initial rate of disassociation for cocaine-aptamer 

complexes on the cantilever surface is dependent on concentration of cocaine molecules in 

solution as predicted by the reaction-diffusion model. 
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Figure 32 shows one set of experimental results measured binding and unbinding of 

aptamers from the cantilever surface. The measured surface stress change corresponding to 

cocaine concentration of 1 µM was measured under the competition sensing mode. Only the 

magnitude of the surface stress change is plotted. The binding of aptamers with thiolated 

cocaine molecules resulted in 83 mN/m of surface stress change and the unbinding was 

turned to be 65 mN/m in equilibrium states. It shows that the initial bending of a sensing 

cantilever due to binding of aptamer was recovered approximately 80 percent back during 

unbinding stage.  

It was also interesting to observe that the initial slope of the surface stress change 

seemed to be dependent on the concentration of cocaine solution introduced into the sensor. 

Initial slope of the surface stress change during competition sensing mode was measured for 

seven different cocaine concentrations: 0 (pure buffer), 1, 2, 5, 10, 20, 50 and 100 µM. The 

normalized slope of the surface stress buildup during the first 20 min after introduction of 

cocaine is plotted as a function of cocaine concentration for competition sensing mode in 

Figure 33 (A). Observed values of the normalized slope demonstrate a strong dependence on 

the concentration in the range from 0 - 10 µM cocaine. Given the sensitivity of surface stress 

measurements and the experimental results in Figure 33, the lowest detectable cocaine 

concentration in competition sensing mode is approximated to be 200 nM (equivalent 3 

mN/m of surface stress change). To the best of our knowledge, this is the lowest detectable 

threshold reported for cocaine aptamer based sensing.  
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Figure 33 Rate of aptamer dissociation from a surface (A), and comparison of competition and 

conventional sensing modes for cocaine detection (B) 
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6.5 Conclusions 

Aptamer functionalized microcantilever sensor could combine high sensitivity of 

microcantilevers and high specificity of aptamers. A sensing approach based on 

microcantilever functionalized with aptamers provides an invaluable tool for forensic science 

because of its portability and capability for identification of ligands with high sensitivity and 

specificity. The contact angle measurement showed that immobilization of thiolated cocaine 

influence surface modification from hydrophilic to relatively hydrophobic surface. One 

excellent feature of aptamers as sensor platform is that binding reactions are reversible so 

that the receptor layers can be recharged for detection and reused in the same sensor many 

times. Aptamer-functionalized microcantilever used in the novel competition sensing mode 

have demonstrated threshold sensitivity that match the threshold sensitivities reported for 

lab-based immunoassays but in significantly shorter time. In addition, the specificity of 

cocaine detection needs to be tested in biological matrices as well as in real world samples. 
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CHAPTER 7. CONCLUSIONS 

MicroCantilever (MC) based sensors are increasingly being used to detect chemical 

and biological species in both gas and liquid environments, and these devices could be 

developed for the use of molecular recognitions. The sensing strategy involves coating one 

surface of a micromachined cantilever with receptor species that has a high affinity for 

specific target ligands. The presence of the ligand is detected by resolving the surface stress 

change associated with absorption/adsorption of receptor molecules immobilized on the 

sensitized surface. The introduction of cantilevers substantially enriches the portfolio of 

sensing scenarios that can be used in high performance miniaturized analytical systems. 

A miniature sensor consisting of two adjacent micromachined cantilevers (a sensing 

/reference pair) was utilized for detection of target ligands by measuring the differential 

surface stress associated with adsorption/absorption of chemical or biological species on the 

cantilevers. The unique advantages of the surface stress sensor are: 1) differential 

measurements of surface stress eliminates the influence of environmental disturbances such 

as nonspecific adsorption, changes in pH, ionic strength, and especially the temperature; and 

2) sensitivity of the sensor is independent on the distance between the sensing surface and 

detectors. Therefore, the sensor is being amenable for miniaturization and enables an array of 

sensors to be easily fabricated on a single MEMS device. 

The performance of the microcantilever sensor was first proved through the surface 

stress measurements associated with formation of alkanethiol self-assembled monolayers 

(SAMs) and DNA hybridization in vapor and liquid environments respectively. Whereas, 

alkanethiol SAM is a typical example of detection of chemical species, and the concept of 
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self-assembly becomes fundamental for molecular recognitions. We observed that formation 

of alkanethiol SAMs on gold surface of a sensing cantilever results in highest surface stress 

changes. The saturated surface stress change was turned to be 0.29 mN/m with an injection 

of octanethiol [CH3(CH2)7SH] and we also observed the transition point from tensile to 

compressive stress as Godin reported (Godin, Williams et al. 2004).  

 

Figure 34 Comparison of experimental results in DNA hybridization and cocaine detection 

 

The response of hybridization of ssDNA receptors (30-mer poly A) with complementary 

ssDNA strands (30-mer poly T) was measured in liquid environment. The surface stress 

changes in the concentration of poly T between 0.1 and 1.0 µM were turned to be 40 to 110 
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mN/m. The binding affinity during formation of dsDNAs through the hybridization was 

defined by measuring dissociation constant (Kd). We obtained dissociation constant of 240 

nM using Isothermal Titration Calorimetry (ITC) and manipulated into Equation (14) derived 

by equilibrium reaction to find a fit. The curve fitting on surface stress changes based on ITC 

measurement showed a good reliance on lower concentration of complementary poly T until 

0.5 µM, but it becomes nonlinear beyond 0.5 µM. The surface coverage is a dominant 

element that affects surface stress developments. We also conducted fluorescence 

measurements to determine surface coverage and average space of single- and double-

thiolated DNA strands. The complementary DNA strand is a temperature dependent variable. 

Surface stress changes resulted in different saturation values when thawing temperature on 

frozen complementary DNA strands was changed: in room temperature and in annealing 

temperature at 60 ºC. This might be that ssDNAs are stacked or formed crystallization in 

thawed solution. On the other hand, thawing molecules at annealing temperature (60 ºC) 

makes molecules to most active status and affects hybridization efficiency as well. 

There have been many attempts to improve stability and sensitivity of the sensor such 

as adding polarizers and isolator or selecting microcantilevers with a high aspect-ratio. Not 

only did we consider this mechanical or optical aspect of the sensor, but we also designed a 

new format of a molecular structure to achieve this goal. First attempt was made by attaching 

a thiol-group on both ends of single-stranded DNAs (ssDNAs) to achieve mechanically rigid 

and stable immobilization on the gold surface of a sensing cantilever. While hybridizing with 

complementary DNA strands, double-thiolated DNA receptors may give rise to more stress 

on the cantilever due to twisting to form dsDNA strands and repulsive force between 

molecules. We observed that the activity of hybridization with the double-thiolated poly A 
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could reduce the sensitivity as low as two orders of magnitude in surface stress changes 

compared with the measurement of a single-thiolated poly A.  

We developed microcantilever sensors with high sensitivity and high specificity for 

detection and identification of controlled substances. In order to understand the mechanism 

governing by aptamers associated with controlled substances, the surface stress sensor 

performed the sensitive and specific identification of cocaine as target ligands. The central 

hypothesis is that formation of affinity complexes due to the specific absorption of controlled 

substance molecules on sensitized surfaces would give rise to charge redistribution, 

configurational change and steric hindrance between neighboring molecules leading to a 

measurable surface stress change. We have formulated our hypothesis following these 

reported findings: a) aptamers have highly specific affinity to single target ligands; and b) 

formation of affinity complexes between surface bound aptamers and target ligands leads to a 

change in the surface stress state. Thus, the proof-of-concept of our sensing approach is once 

established, it will become possible to apply this technology for the detection and 

identification of a variety of drugs of abuse. 

The MC sensor response for cocaine detection has been characterized under two 

different sensing strategies. The first mode is a conventional mode that relies on resolving 

surface stress change associated with formation of affinity complexes between aptamer and 

cocaine molecules on the sensing surface. The second mode is a novel “competition” mode 

that relies on resolving the rate of surface stress changes associated with dissociation of 

affinity complexes on the sensing surface.  

For the conventional sensing mode, thiolated cocaine aptamers were immobilized on 

the sensing cantilever surface, while the reference cantilever was coated with a control DNA 
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consisting of the bases as the cocaine aptamer but with their sequence scrambled. The 

solutions for the sensing experiments were prepared to ensure that acetonitrile concentration 

is below 2% for all cases, and concentrations of cocaine molecules were varied from 25 µM 

to 500 µM. Surface stress changes from 9 to 51 mN/m were measured for the range of 

cocaine concentrations. A given threshold sensitivity of 3 mN/m for surface stress 

measurements, this sensor is able to detect cocaine with the lowest detectable concentration 

down to 5 μM in room temperature under the conventional sensing mode. 

In the competition sensing mode, the rate of surface stress generated due to 

dissociation of aptamer/cocaine complexes was measured. A thiol modified cocaine molecule 

was synthesized and attached on the sensing cantilever. The thiolated cocaine molecule has 

two points of attachment (via the two sulfur atoms) to the cantilever surface. The site of the 

connection of the sulfur containing benzoate ester to the cocaine skeleton was designed to 

best present the key functional groups in the cocaine molecule (methyl ester, benzoate and 

amine) to the aptamer. 

Thiol modified cocaine molecules were tethered onto the gold surface using the 

sulfur/gold linkage and immersed in a solution of the cocaine aptamers such that the 

cantilever surface is covered with affinity complexes of cocaine/aptamer. The functionalized 

cantilevers were then exposed to various concentrations of cocaine molecules that accelerate 

dissociation of aptamers from the cocaine-aptamer complexes. The experimental results 

showed that the magnitude was not correlated with the cocaine concentration; however, the 

rate of bending demonstrated a good correlation with cocaine concentration. More 

importantly, the rate of bending correlation indicates that the lowest detectable cocaine 

concentration in competition sensing mode is approximately 200 nM. To the best of our 
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knowledge, this is the lowest detectable threshold reported for currently known cocaine 

aptamer based sensing. Aptamer functionalized microcantilevers used in the novel 

competition sensing mode have demonstrated approximately two orders of magnitude 

improvement in threshold sensitivity over the conventional sensing mode.  
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