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Involvement of Epithelial Cell Apoptosis in Interstitial
Lung Diseases

Kazuyoshi Kuwano

Abstract

Lung epithelium is the primary site of lung damage in interstitial lung diseases. Although there are various
initiating factors, the terminal stages are characterized by pulmonary fibrosis. Conventional therapy consisting
of glucocorticoids or immunosuppressive drugs is usually ineffective. Epithelial cell apoptosis have been con-
sidered to be initial events in interstitial lung diseases. The death receptor-mediated signaling pathway di-
rectly induces caspase activation and apoptosis. Other stresses induce the release of cytochrome from mito-
chondria and caspase activation. Endoplasmic reticulum stress also induces apoptosis. Epithelial cell death is
followed by remodeling processes, which consist of epithelial and fibroblast activation, cytokine production,
activation of the coagulation pathway, neoangiogenesis, re-epithelialization and fibrosis. Epithelial and mesen-
chymal interaction plays important roles in these processes. Further understanding of apoptosis signaling may
lead to effective strategies against devastating lung diseases. We review the role of epithelial cell apoptosis in
the molecular mechanisms of pulmonary fibrosis.
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Introduction

Apoptosis plays a major role in homeostasis to maintain a
balance between cell survival and death. There are two prin-
ciple signaling pathways of apoptosis (Fig. 1). One is a di-
rect pathway from death receptor ligation to caspase cascade
activation and cell death. Death receptor ligation triggers re-
cruitment of the precursor form of caspase-8 to a death-
inducing complex, through the adaptor protein Fas-
associating protein with death domain (FADD), which leads
to caspase-8 activation. The other pathway triggered by
stimuli such as drugs, radiation, infectious agents and reac-
tive oxygen species is initiated in mitochondria. After cyto-
chrome C is released into the cytosol from the mitochondria,
it binds to Apaf1 and ATP, which then activate caspase-9
(1). The activation of initiator caspase-8 and caspase-9 re-
sults in the activation of effecter caspases such as caspase-3.
Recently, the endoplasmic reticulum has also been shown to
be the organelle to execute apoptosis. Various stresses can
impair protein folding and induce endoplasmic reticulum

stress, and severe endoplasmic reticulum stress can cause
transduction of apoptotic signals (2). Active executioner cas-
pases mediate the cleavage of protein substrates, resulting in
morphological features of apoptosis.
Apoptosis may play important roles in lung diseases in
two different ways. First, failure to clear unwanted cells by
apoptosis will prolong the inflammation because of the re-
lease of their toxic contents, and also delay repair processes.
Apoptotic cells should be quickly recognized and ingested
by phagocytes before releasing their toxic contents, unlike
accidental cell death or necrosis. Second, excessive apopto-
sis may cause diseases. Intratracheal instillation of agonistic
anti-Fas antibody or recombinant Fas ligand (FasL) induces
acute alveolar epithelial injury and lung inflammation (3, 4).
Severe lung injury induces excessive cell death. Maintaining
normal function and repair of parenchymal cells is the key
to improving the prognosis of patients. Excessive cell death
of parenchymal cells means irreversible tissue damage and
may lead to pulmonary fibrosis. Hermansky-Pudlak syn-
drome is a recessive disorder associated with pulmonary in-
flammation and fibrosis. Hermansky-Pudlak mice are sus-
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Figure 1. Apoptosis signaling pathways.

ceptible to bleomycin-induced type II cell apoptosis and fi-
brosis (5).
Lung injury is believed to be due to the inhalation of in-

jurious agents or to blood- borne agents. Both acute and
chronic inflammation can lead to an irreversible process
characterized by pulmonary fibrosis. The term “idiopathic
pulmonary fibrosis (IPF)” is used for those cases where
there are no causative agents. The incidence of this devastat-
ing disease is estimated to be 7 to 10 cases per 100,000
people per year, and its mortality is 50 to 70% at 5 years af-
ter the diagnosis (6). Familial occurrence of IPF is well
known. There have been studies on the association between
genetic factors, such as HLA typing and gene polymorphism
(7, 8), immunological abnormalities, viral infection, mineral
dust, smoking and the development of IPF. The mechanism
by which these factors initiate or affect the development of
IPF still needs to be determined.
Alveolar epithelial damage is an important initial event in

pulmonary fibrosis. When the degree of lung injury is mild,
damaged tissue will normally be repaired, whereas excess
cell death may lead to unrepairable lung damage and pulmo-
nary fibrosis. Epithelial cell damage and cell death during
alveolitis induce the formation of gaps in the epithelial base-
ment membranes. The migration of fibroblasts through these
gaps into the alveolar space leads to intra-alveolar fibrosis
(9). Interstitial fibrosis and the subsequent relining of intra-
alveolar fibrosis by alveolar and bronchiolar epithelial cells

result in structural remodeling after lung injury. The fibros-
ing process is common to all interstitial lung diseases, in-
cluding IPF, interstitial pneumonia associated with collagen
vascular diseases, drug-induced pneumonitis, and sarcoido-
sis, as well as radiation pneumonitis, pneumoconiosis, asbes-
tosis, and chronic hypersensitivity pneumonitis.
The incidence of epithelial cell apoptosis has been dem-
onstrated using TUNEL method and electron microscopy in
idiopathic pulmonary fibrosis (IPF) (10-12). As well as
death receptors/ligands, death signals such as reactive oxy-
gen species, nitrogen species, proinflammatory cytokines,
chemokines and other signaling molecules of apoptosis are
involved in the pathophysiology of interstitial lung diseases.
The survival and recovery of epithelial and endothelial cells
and the resolution of inflammatory cells appear to be the
keys in normal repair. Tissue remodeling is the pathological
repair process accompanied by fibrosis. The degree of re-
modeling is closely associated with the patient’s prognosis.
Therefore, further understanding of the role of epithelial cell
apoptosis in interstitial lung diseases may lead to the devel-
opment of effective strategies for treatment.

1. Epithelial Cell Apoptosis is Involved in

Lung Injury and Fibrosis

Lung epithelium is not only the primary site of lung dam-
age but it also participates in inflammatory reaction through
a number of mechanisms, including the release of inflamma-
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Figure 2. Epithelial cell apoptosis in idiopathic pulmonary 
fibrosis.

tory mediators. Alterations in the structure and function of
lung epithelial cells may affect the expression of these mole-
cules. Epithelial cells in IPF can secrete a number of mole-
cules, such as growth factors and their receptors, proteases,
surfactant proteins, adhesion molecules and matrix compo-
nent, which may regulate the inflammatory and fibrotic re-
sponse within the lung. Prominent alveolar epithelial cell in-
jury is the characteristic feature of IPF. Although type I
pneumocytes comprise 40% of the alveolar epithelial cell
population and over 90% of the alveolar surface in the nor-
mal lung (13), they are markedly decreased in the area of
severe inflammation following extensive injury and cell
death in the lung tissue from patients with IPF. The alveolar
type II cell is a reparative cell and rapidly proliferates fol-
lowing epithelial cell injury. In areas most severely dam-
aged, the basement membrane is covered by proliferating
type II cells which are cuboidal, and death of both type I
and type II cells is replaced by abundant fibroblasts and
smooth muscle cells (14).
Bleomycin rapidly produces extensive DNA damage in

the lung (15). Electron microscopic findings show the char-
acteristic features of apoptosis in bronchiolar and alveolar
epithelial cells in this model (16). Therefore, DNA damage
and the apoptosis of epithelial cells may be associated with
pulmonary fibrosis. There is DNA damage or apoptosis in
bronchiolar and alveolar epithelial cells in IPF using an in
situ DNA nick-end labeling method and electron microscopy
(10, 12, 17). DNA damage and apoptosis in lung epithelial
cells have been reported in acute lung injury (18) and dif-
fuse alveolar damage (19) as well as IPF.
The evidence that apoptosis is involved in lung injury and

fibrosis has also been demonstrated using caspase inhibitors.
One of the intracellular events required for cell death in sev-
eral systems, including the Fas-FasL pathway, is the activa-
tion of caspases. The tripeptide benzyloxycarbonyl-Val-Ala-
Asp fluoromethylketone (Z-VAD.fmk), a broad-spectrum
caspase inhibitor, inhibits the intracellular activation of
caspase-like proteases in vivo, and protects mice against
LPS-induced acute lung injury (20, 21). It also attenuates
bleomycin-induced pulmonary fibrosis in mice (22, 23). Al-
though the precise mechanisms of how epithelial cell apop-
tosis leads to pulmonary fibrosis remain to be examined,
epithelial cell apoptosis probably has an important role in
the pathogenesis of lung injury and fibrosis (Fig. 2).

2. Upregulation of p53 and p21 as a Marker of Epi-

thelial Cell Damage

Upregulation of p53 and p21 in lung epithelial cells has
been demonstrated in lung tissues from patients with IPF
(10). The wild-type p53 normally acts to suppress cell
growth while the cell attempts DNA repair. It also promotes
apoptosis in those cells which have irreparably damaged
DNA or continue to proliferate (24, 25). Expression of p53
is upregulated in response to a variety of stresses. Apoptosis
of type II alveolar epithelial cells is associated with upregu-
lation of p53 and p21 expression in diffuse alveolar damage

(26). DNA damage to alveolar epithelial cells occurs in re-
sponse to bleomycin, and p53 and p21 are overexpressed
within these cells (27, 28). Mice expressing dominant nega-
tive p53 in the lung epithelium have decreased induction of
p21 expression, and impaired recovery from bleomycin-
induced pneumopathy (29). p53 knockout mice present more
severe inflammation and fibrosis after bleomycin instillation
compared with wild-type mice (30). In addition, alveolar
macrophage apoptosis and TNF-α secretion rather than p53
expression contributes to the difference in murine strain re-
sponse to bleomycin (31). Whether p53 induces apoptosis or
promotes repair in lung epithelial cells is likely to be tightly
regulated by complex mechanisms including PUMA and
NOXA within the cell.
p21 is induced in wild-type p53-containing cells follow-
ing exposure to DNA-damaging agents. p21 inhibits cyclin-
Cdk complex kinase activity and is a critical downstream ef-
fecter in the p53-specific pathway of growth control in
mammalian cells (32). p21 directly inhibits PCNA-
dependent DNA replication in the absence of a cyclin/Cdk,
but does not inhibit DNA repair (33). Forced p21 expression
has been shown to have a protective effect against cell death
caused by genotoxic stresses such as radiation or cytotoxic
agents (34, 35). p21 enhances survival either by promoting
DNA repair or by modifying cell death caused by exposure
to hyperoxia (36). The absence of p21 results in rapid ne-
crotic alveolar cell death and mortality and also results in
proliferating fibroblasts after oxidant injury (37).
Adenovirus-mediated transfer of p21 gene to epithelial cells
attenuates bleomycin-induced pulmonary fibrosis in mice
(38). Interestingly, activation of caspase-3 is regulated by
p21, and procaspase-3-p21 complex formation is an essential
system for cell survival (39, 40). These findings suggest that
p21 may be a key regulator of DNA replication and repair
after lung injury and may be a promising molecule in the
treatment of lung injury and fibrosis.
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Figure 3. Cytoprotective strategies against epithelial cell death.

3. Activation of the Fas-FasL Pathway

The Fas-FasL pathway is a representative system of
apoptosis-signaling receptor molecules. Fas antigen is ex-
pressed in various cells and tissues (41). FasL, a cell surface
molecule belonging to the tumor necrosis factor family,
binds to its receptor Fas, thus inducing the apoptosis of Fas
bearing cells. FasL is expressed predominantly in activated
T-lymphocytes and in tissues including the small intestines,
kidney, testis and lung (42). The Fas-FasL pathway has been
demonstrated to contribute to severe epithelial damage that
occurs in ARDS. FasL can be released as a biologically ac-
tive, death-inducing mediator capable of inducing apoptosis
of epithelial cells during acute lung injury (43). Alveolar
epithelial damage in humans with acute lung injury or
ARDS is in part associated with the local upregulation of
the Fas-FasL pathway and activation of the apoptotic cas-
cade in epithelial cells (44). Fas protein expression is
upregulated in lung epithelial cells, and FasL mRNA and
protein expression are upregulated in infiltrating inflamma-
tory cells in lung tissues from patients with IPF (45). Re-
cently, FasL molecules are reported to be expressed on α-
smooth muscle actin positive cells in mice with bleomycin-
induced pulmonary fibrosis, and in humans with IPF (46).
BALF from patients with ARDS or IPF could induce apop-
tosis on small airway epithelial cells which are dependent
on the Fas-FasL pathway (43, 47). Inhibiting this pathway
may be one of the novel treatment strategies against lung in-
jury and fibrosis.
Bleomycin-induced pulmonary fibrosis is an animal

model for lung injury and fibrosis. In this model, FasL
mRNA is upregulated in infiltrating lymphocytes, and Fas is
upregulated in bronchiolar and alveolar epithelial cells in
which excessive apoptosis is detected (16). The neutraliza-
tion of FasL by Fas-Ig fusion protein or neutralizing anti-
FasL antibody could prevent the development of this model

(48). The repeated inhalation of anti-Fas antibody mimick-
ing Fas-FasL cross-linking induced excessive apoptosis of
epithelial cells and inflammation, which resulted in pulmo-
nary fibrosis in mice (49). Fas ligation induced not only
apoptosis but also IL-8 expression via NF-κB activation in
bronchiolar epithelial cells in vitro (50). These results sug-
gest that the Fas-mediated apoptotic pathway is essential in
this model, and also that inhibition of caspases may be a
novel strategy against pulmonary fibrosis.

4. TGF-β-Induced Apoptosis is a Critical
Factor in Fibrogenesis

TGF-β is the most potent promoter of extracellular matrix
(ECM) production, and also a strong chemotactic factor for
monocytes and macrophages. There is a consistent increase
in TGF-β production in epithelial cells and macrophages in
lung tissue from patients with IPF (51) and in bleomycin-
induced pulmonary fibrosis in rodents (52). Transient over-
expression of active TGF-β1 through the transfection of por-
cine TGF-β cDNA to the rat lung results in prolonged and
severe interstitial and pleural fibrosis (53). The increase in
lung collagen accumulation in bleomycin-induced lung fi-
brosis is reduced by treatment with either anti-TGF-β anti-
body, or the recombinant TGFRII (54, 55). Decorin, a natu-
rally occurring biological molecule that antagonizes TGF
bioactivity, may ameliorate excessive TGF signaling in in-
jured lungs. Adenovirus-mediated decorin gene transfer re-
duces fibrotic response to bleomycin (56).
Smad proteins regulate intracellular signals from the
membrane to the nucleus of TGF-β (57). The activated
TGF-β receptors induce phosphorylation of Smad2 and
Smad3, which form complexes with Smad4. The complexes
translocate to the nucleus and regulate transcriptional re-
sponses. Smad3 deficiency attenuates bleomycin-induced
pulmonary fibrosis in mice (58). Smad7 prevents the phos-
phorylation of Smad2 and Smad3 by association with acti-
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vated TGF-β1 receptors. Transient gene transfer and the ex-
pression of exogenous Smad7 into the lung by adenoviral
vectors prevent bleomycin-induced lung fibrosis (59).
TGF-β1 can induce apoptosis directly in various cells.
The mechanism of TGF-β1-mediated apoptosis varies
among cell types. TGF-β1 is a potent inducer of apoptosis
through the caspase-3 activation and the downregulation of
p21 and is also an enhancer of Fas-mediated apoptosis of
lung epithelial cells (47). This novel function of TGF-β1 in
apoptosis of lung epithelial cells should be considered in the
treatment of lung injury and fibrosis. TGF-β1 overexpres-
sion in lung epithelial cells induced fibrosis in mice, in
which a caspase inhibitor could attenuate apoptosis and fi-
brosis when it was administered from day 0 but not from
day 5 after TGF-β1 overexpression (60). Semaphorin 7A
and its receptors are induced by TGF-β1 and play a central
role in PI3K/PKB/AKT dependent pathway that contributes
to TGF-β1-induced apoptosis and remodeling (61). MMP-12
is required for the activation of profibrotic genes egr-1 and
cyr61 (62). Bax, Bid and MMP-12 play key roles in the
pathogenesis of TGF-β1-induced apoptosis and fibrosis (63).
These results indicate that TGF-β1-induced epithelial cell
apoptosis is a critical early event in pulmonary fibrosis.

5. Oxidative Stress and Apoptosis

Lung epithelial cells are constantly exposed to a variety
of stresses and are a primary target for reactive oxygen spe-
cies (ROS). High intracellular and extracellular levels of an-
tioxidants protect lung epithelial cells. The generation of
ROS is increased in conditions such as inflammation, or ex-
posure to air pollutants and cigarette smoke. ROS and their
reactions with lung epithelial cells participate in the patho-
physiology of several lung diseases. There have been a num-
ber of studies demonstrating the increased oxidative stress in
IPF. The spontaneous production of oxidants by lung in-
flammatory cells and the myeloperoxidase concentration are
both increased in the alveolar epithelial lining fluid of pa-
tients with IPF (64). Nitrotyrosine, a byproduct of protein
nitration by peroxynitrite, is increased in the lungs of pa-
tients with IPF (65). In contrast, there is a marked reduction
in antioxidant capacity, measured as Trolox equivalent anti-
oxidant capacity, in the plasma and BALF from patients
with IPF (66). These results demonstrate the evidence of in-
creased oxidative stress and of oxidant / antioxidant imbal-
ance in patients with IPF.
Apoptosis plays a central role in hyperoxic lung injury

(67). Type I alveolar epithelial cells and endothelial cells are
susceptible to hyperoxia. Type II epithelial cells present
DNA damage induced by hyperoxia (68). Hyperoxia exag-
gerates ventilator-induced cytokine production, neutrophil
influx, and apoptosis through activation of the JNK and
ERK pathway (69). Hyperoxia induces epithelial cell apop-
tosis in the lungs of neonatal rats, in which the expression
of Bax, ceramide, and bcl-2 were upregulated. The rise in
Bax and ceramide overcomes the anti-apoptotic effect of
bcl-2 (70). In vivo activation of A2A adenosine receptor

confers protection against reperfusion lung injury through
decreased apoptosis associated with ERK activation (71).
Thioredoxin-1 is an important radical scavenger.
Thioredoxin-1 transgenic mice had decreased alveolar dam-
age after exposure to hyperoxia. Bcl-2 protein and mRNA
levels in the lung were more significantly increased in trans-
genic mice than in wild type mice (72).
Glutathione (GSH) is one of the major antioxidant mole-
cules present in normal epithelial lining fluid. GSH and N-
acetylcysteine (NAC), the GSH precursor, inhibit hydrogen
peroxide-mediated induction of ceramide and apoptosis (73).
NAC ameliorates the acute pulmonary inflammation induced
by bleomycin injection via the repression of chemokines and
lipid hydroperoxide production, resulting in the attenuation
of pulmonary fibrosis in mice (74). NAC inhibited MPO ac-
tivity and lipid peroxidation, which resulted in the reduction
of apoptosis in the lung in the cecal ligation and puncture-
induced sepsis model (75). In this regard, strategies to re-
duce oxidants may be beneficial in decreasing alveolar epi-
thelial cell injury and may consequently reduce the progres-
sive deterioration of patients with IPF.
Heme oxygenase-1 (HO-1) confers protection against a
variety of oxidant-induced cell death and tissue injury
mechanisms. HO-1 overexpression using adenovirus exhibits
attenuation of hyperoxia-induced neutrophil inflammation
and apoptosis (76). CO, a major by-product of heme cataly-
sis by HO-1, exhibits a marked attenuation of hyperoxia-
induced neutrophil infiltration into the airways and total
lung apoptotic index (77). CO utilizes p38 MAPK and
caspase-3 in exerting its anti-apoptotic effect both in vitro
and in vivo during ischemia-reperfusion injury (68, 78).
Since redox regulation is closely associated with apoptosis,
a cytoprotective strategy against oxidative damage is a
promising strategy against lung injury and fibrosis.

6. Angiotensin II

Angiotensin-converting enzyme (ACE) levels in BALF
and serum are increased in fibrosing lung diseases, including
sarcoidosis, IPF, asbestosis, silicosis and ARDS. Angiotensin
II concentrations increase during radiation-induced pulmo-
nary fibrosis (79). Angiotensin II and angiotensinogen in-
duce apoptosis in alveolar epithelial cells in vitro (80). Fur-
thermore, angiotensin II induces human lung fibroblast pro-
liferation in vitro via activation of the angiotensin type I (AT
1) receptor and the autocrine action of TGF-β (81) ACE in-
hibitors inhibit Fas- and TNF-induced apoptosis of human
lung epithelial cells in vitro (82, 83), and also inhibit the ac-
cumulation of collagens and mast cells in the irradiated rat
lung (84). The ACE inhibitor captopril ameliorates pulmo-
nary fibrosis induced by monocrotaline or amiodarone in
rats (85, 86), and also attenuates ventilator-induced lung in-
jury in rats (87). The angiotensin receptor AT1 antagonist
ameliorates apoptosis and pulmonary fibrosis induced by
bleomycin (88). Angiotensinogen protein and mRNA are ex-
pressed in alveolar epithelial cells and myofibroblasts in
bleomycin-induced pulmonary fibrosis in mice and also in
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humans with IPF (89). Additionally, intratracheal instillation
of antisense oligonucleotide against angiotensinogen mRNA
attenuates bleomycin-induced pulmonary fibrosis in rats
(90). Angiotensin may be one of the promising strategies
against pulmonary fibrosis.

7. Epithelium-Fibroblast Interaction

Severe injury and insufficient repair of lung epithelial
cells disturb normal epithelial-fibroblast interaction, which
leads to pulmonary fibrosis. If epithelial cell repair does not
proceed smoothly and completely, fibroblasts will prolifer-
ate, eventually leading to pulmonary fibrosis. Studies on the
re-population of denuded tracheal explants by epithelial cells
show that the denuded tracheal implants are rapidly replaced
by fibroblasts, unless enough epithelial cells are introduced
into the lumen to control fibroblast proliferation (91). Alter-
natively, epithelial cells may control fibroblasts by releasing
cytokines that downregulate fibroblast activity. Mouse lung
explants with severe epithelial damage induced by prior hy-
peroxic lung injury exhibit marked fibroblast proliferation
and collagen deposition in culture, whereas less severely in-
jured explants do not (92). Normal repair of the epithelial
layer occurs through the proliferation and differentiation of
type II alveolar epithelial cells. This process is affected by
factors produced by lung fibroblasts (93, 94).
Abnormal fibroblast phenotypes isolated from the fibrotic

human lung produce factors capable of inducing apoptosis
and necrosis of alveolar epithelial cells in vitro (95). The

cuboidal epithelium of the fibrotic human lung is composed
of both proliferating and dying cells, and apoptotic and ne-
crotic epithelial cells are observed in proximity to fibroblas-
tic foci (96). Neither inflammation nor fibrosis correlate
with survival, and the only pathological data that shows a
significant correlation with mortality are numbers of areas
with fibroblastic foci (97). These abnormal epithelial-
mesenchymal interactions contribute to the pathogenesis and
exacerbation of fibrotic lung disease by preventing normal
epithelial repair and progression of abnormal fibroblast pro-
liferation.

Conclusion

Death receptors/ligands, death signals such as reactive
oxygen species, nitrogen species, proinflammatory cytoki-
nes, and signaling molecules associated with mitochondria-
mediated cell death are involved in the remodeling process
after lung injury. Promotion of inflammatory cell apoptosis
and protection of parenchymal cells from cell death may be
an effective therapeutic strategy against inflammatory lung
diseases accompanied by fibrosis. Once parenchymal cells
are damaged, accelerating the repair and regeneration in
damaged tissues could also be an effective treatment. How-
ever, when parenchymal cells are severely damaged, rescue
of these cells may not be sufficient for normal repair or may
lead to carcinogenesis. To avoid this problem, inhibiting
apoptosis at an early stage may be an effective strategy
against devastating lung diseases accompanied by fibrosis.
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