Skip to main content
Log in

Lenograstim

A Review of its Use in Chemotherapy-Induced Neutropenia, for Acceleration of Neutrophil Recovery Following Haematopoietic Stem Cell Transplantation and in Peripheral Blood Stem Cell Mobilization

  • Adis Drug Evaluation
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Lenograstim (Granocyte®, Neutrogin®, Myelostim®) is a glycosylated recombinant human granulocyte colony-stimulating factor. This article reviews the pharmacological properties, therapeutic efficacy and tolerability of lenograstim, mainly focusing on its use in chemotherapy-induced neutropenia, acceleration of neutrophil recovery following haematopoietic stem cell transplantation (HSCT), and peripheral blood stem cell (PBSC) mobilization in patients with cancer and healthy donors.

In randomized, multicentre trials in patients with solid tumours, lymphoma or multiple myeloma, the durations of chemotherapy-induced neutropenia, hospitalization for infection and intravenous antibacterial therapy were significantly shorter in patients receiving lenograstim prophylaxis than in those receiving placebo. The time to neutrophil recovery was also significantly shorter in patients with acute myeloid leukaemia or acute lymphoblastic leukaemia who received lenograstim than in those who received placebo or no treatment, according to the results of randomized, multicentre trials. In addition, lenograstim prophylaxis facilitated the administration of dose-intense or dose-dense chemotherapy regimens, with improved clinical outcomes seen in some trials.

In patients with cancer undergoing HSCT, lenograstim accelerated neutrophil recovery post-HSCT and shortened the duration of hospitalization, according to the results of randomized, multicentre trials.

Lenograstim effectively mobilized PBSCs in patients with cancer, demonstrating generally similar efficacy to filgrastim or molgramostim in five randomized trials (although lower dosages of lenograstim than filgrastim were administered in four of the trials). Lenograstim also provided effective PBSC mobilization in healthy donors and was more effective than filgrastim when both drugs were administered at a dosage of 10mg/kg/day. The efficacy and safety of lenograstim for PBSC mobilization in healthy donors was supported by the results of a prospective, longer-term study involving almost 4000 healthy donors.

Lenograstim was generally well tolerated across a variety of treatment settings, including PBSC mobilization in healthy donors, with bone pain being one of the most commonly reported adverse events. In conclusion, lenograstim remains an important option for use in chemotherapy-induced neutropenia, acceleration of neutrophil recovery following HSCT, and PBSC mobilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III
Table IV
Table V
Table VI
Table VII
Table VIII
Table IX
Table X
Table XI

Similar content being viewed by others

References

  1. Turzanski J, Crouch SPM, Fletcher J, et al. Ex vivo neutrophil function in response to three different doses of glycosylated rHuG-CSF (lenograstim). Br J Haematol 1997 Jan; 96(1): 46–54

    Article  PubMed  CAS  Google Scholar 

  2. Ribeiro D, Veldwijk MR, Benner A, et al. Differences in functional activity and antigen expression of granulocytes primed in vivo with filgrastim, lenograstim, or pegfilgrastim. Transfusion (Paris) 2007 Jun; 47(6): 969–80

    Article  CAS  Google Scholar 

  3. Martin-Christin F. Granulocyte colony stimulating factors: how different are they? How to make a decision? Anticancer Drugs 2001 Mar; 12(3): 185–91

    Article  PubMed  CAS  Google Scholar 

  4. Ono M. Physicochemical and biochemical characteristics of glycosylated recombinant human granulocyte colony stimulating factor (lenograstim). Eur J Cancer 1994; 30A Suppl. 3: S7–11

    PubMed  CAS  Google Scholar 

  5. Nissen C. Glycosylation of recombinant human granulocyte colony stimulating factor: implications for stability and potency. Eur J Cancer 1994; 30A Suppl. 3: S12–4

    PubMed  CAS  Google Scholar 

  6. Höglund M. Glycosylated and non-glycosylated recombinant human granulocyte colony-stimulating factor (rhG-CSF): what is the difference? Med Oncol 1998 Dec; 15(4): 229–33

    Article  PubMed  Google Scholar 

  7. Anderlini P. Effects and safety of granulocyte colony-stimulating factor in healthy volunteers. Curr Opin Hematol 2009 Jan; 16(1): 35–40

    Article  PubMed  CAS  Google Scholar 

  8. Hayashi N, Kinoshita H, Yukawa E, et al. Pharmacokinetic and pharmacodynamic analysis of subcutaneous recombinant human granulocyte colony stimulating factor (lenograstim) administration. J Clin Pharmacol 1999 Jun; 39(6): 583–92

    Article  PubMed  CAS  Google Scholar 

  9. Houston AC, Stevens LA, Cour V. Pharmacokinetics of glycosylated recombinant human granulocyte colony-stimulating factor (lenograstim) in healthy male volunteers. Br J Clin Pharmacol 1999 Mar; 47(3): 279–84

    Article  PubMed  CAS  Google Scholar 

  10. Watts MJ, Addison I, Ings SJ, et al. Optimal timing for collection of PBPC after glycosylated G-CSF administration. Bone Marrow Transplant 1998 Feb; 21(4): 365–8

    Article  PubMed  CAS  Google Scholar 

  11. Fossat C, Stoppa AM, Sainty D, et al. In vivo stimulation of neutrophil function by lenograstim (glycosylated rHuG-CSF) in oncohematologic patients: results of a phase I trial. Stem Cells 1994 May; 12(3): 322–8

    Article  PubMed  CAS  Google Scholar 

  12. European Medicines Agency. Granocyte (lenograstim): EU summary of product characteristics. Chugai Pharmaceutical Co., 2009

  13. Oh-eda M, Hasegawa M, Hattori K, et al. O-linked sugar chain of human granulocyte colony-stimulating factor protects it against polymerization and denaturation allowing it to retain its biological activity. J Biol Chem 1990 Jul 15; 265(20): 11432–5

    PubMed  CAS  Google Scholar 

  14. Mire-Sluis AR, Abernethy HA, Dolman C, et al. The effects of environmental influences and post-translational modification on the biological activity of granulocyte colony-stimulating factor. Pharm Pharmacol Commun 1999; 5(1): 45–9

    Article  CAS  Google Scholar 

  15. Nissen C, Carbonare VD, Moser Y. In vitro comparison of the biological potency of glycosylated versus non-glycosylated rG-CSF. Drug Invest 1994; 7(6): 346–52

    Article  CAS  Google Scholar 

  16. Pedrazzoli P, Gibelli N, Pavesi L, et al. Effects of glycosylated and non-glycosylated G-CSFs, alone and in combination with other cytokines, on the growth of human progenitor cells. Anticancer Res 1996 Jul–Aug; 16(4A): 1781–5

    PubMed  CAS  Google Scholar 

  17. Höglund M, Smedmyr B, Bengtsson M, et al. Mobilization of CD34+ cells by glycosylated and nonglycosylated G-CSF in healthy volunteers: a comparative study. Eur J Haematol 1997 Sep; 59(3): 177–83

    Article  PubMed  Google Scholar 

  18. Mire-Sluis AR, Das RG, Thorpe R. The international standard for granulocyte colony stimulating factor (G-CSF): evaluation in an international collaborative study. J Immunol Methods 1995 Feb 13; 179(1): 117–26

    Article  PubMed  CAS  Google Scholar 

  19. Watts MJ, Addison I, Long SG, et al. Crossover study of the haematological effects and pharmacokinetics of glycosylated and non-glycosylated G-CSF in healthy volunteers. Br J Haematol 1997 Aug; 98(2): 474–9

    Article  PubMed  CAS  Google Scholar 

  20. Carulli G, Mattii L, Azzarà A, et al. Actin polymerization in neutrophils from donors of peripheral blood stem cells: divergent effects of glycosylated and nonglycosylated recombinant human granulocyte colony-stimulating factor. Am J Hematol 2006 May; 81(5): 318–23

    Article  PubMed  CAS  Google Scholar 

  21. Decleva E, Cramer R, Zabucchi G. Glycosylation improves the priming effect exerted by recombinant human granulocyte colony-stimulating factor (lenograstim) on human neutrophil superoxide production. Int J Tissue React 1995; 17(5–6): 191–8

    PubMed  CAS  Google Scholar 

  22. Mattii L, Azzarà A, Fazzi R, et al. Glycosylated or nonglycosylated G-CSF differently influence human granulocyte functions through RhoA. Leuk Res 2005 Nov; 29(11): 1285–92

    Article  PubMed  CAS  Google Scholar 

  23. Mattii L, Battolla B, Azzara A, et al. Glycosylation interference on RhoA activation: focus on G-CSF. Leuk Res 2011 Feb; 35(2): 265–7

    Article  PubMed  CAS  Google Scholar 

  24. Chugai Pharmaceutical Co., Ltd. Recombinant human granulocyte colony-stimulating factor preparation (Neutrogin® injection 50 mg, Neutrogin® injection 100 mg, Neutrogin® injection 250 mg): Japanese prescribing information [online]. Available from URL: http://www.esearch.ne.jp/∼jpr/PDF/CHUGAI11.PDF [Accessed 2010 Oct 13]

  25. Akizuki S, Mizorogi F, Inoue T, et al. Pharmacokinetics and adverse events following 5-day repeated administration of lenograstim, a recombinant human granulocyte colony-stimulating factor, in healthy subjects. Bone Marrow Transplant 2000 Nov; 26(9): 939–46

    Article  PubMed  CAS  Google Scholar 

  26. Takatani H, Soda H, Fukuda M, et al. Levels of recombinant human granulocyte colony-stimulating factor in serum are inversely correlated with circulating neutrophil counts. Anti-microb Agents Chemother 1996 Apr; 40(4): 988–91

    CAS  Google Scholar 

  27. Marty M. The optimal dose of glycosylated recombinant human granulocyte colony stimulating factor for use in clinical practice: a review. Eur J Cancer 1994; 30A Suppl. 3: S20–5

    PubMed  Google Scholar 

  28. Seymour A-M, de Campos E, Thatcher N, et al. A singleblind, randomised, vehicle-controlled dose-finding study of recombinant human granulocyte colony-stimulating factor (lenograstim) in patients undergoing chemotherapy for solid cancers and lymphoma. Eur J Cancer 1995 Dec; 31A(13–14): 2157–63

    Article  PubMed  CAS  Google Scholar 

  29. Tominaga T, Ohta K, Yamaguchi S. Clinical effect of recombinant human G-CSF on neutropenia induced by adriamycin-containing chemotherapy in patients with advanced and recurrent breast cancer [in Japanese]. Biotherapy 1993 Nov; 7(12): 1709–16

    Google Scholar 

  30. Yamaguchi T, Kurita Y, Saito R, et al. Clinical effect of recombinant human G-CSF on neutropenia induced by chemotherapy in small-cell lung cancer patients [in Japanese]. Biotherapy 1994 Nov; 8(11): 1423–9

    Google Scholar 

  31. Nakajima H, Ikeda Y, Hirashima K, et al. A randomized controlled study of rG.CSF in patients with neutropenia after induction therapy for acute myelogenous leukemia. (rG.CSF Clinical Study Group) [in Japanese]. Rinsho Ketsueki 1995 Jun; 36(6): 597–605

    PubMed  CAS  Google Scholar 

  32. Takeshita A, Ohno R, Hirashima K, et al. A randomized double-blind controlled study of recombinant human granulocyte colony-stimulating factor in patients with neutropenia induced by consolidation chemotherapy for acute myeloid leukemia. (rG.CSF clinical study group) [in Japanese]. Rinsho Ketsueki 1995 Jun; 36(6): 606–14

    PubMed  CAS  Google Scholar 

  33. Bui BN, Chevallier B, Chevreau C, et al. Efficacy of leno-grastim on hematologic tolerance to MAID chemotherapy in patients with advanced soft tissue sarcoma and consequences on treatment dose-intensity. J Clin Oncol 1995 Oct; 13(10): 2629–36

    PubMed  CAS  Google Scholar 

  34. Chevallier B, Chollet P, Merrouche Y, et al. Lenograstim prevents morbidity from intensive induction chemotherapy in the treatment of inflammatory breast cancer. J Clin Oncol 1995 Jul; 13(7): 1564–71

    PubMed  CAS  Google Scholar 

  35. Gatzemeier U, Kleisbauer JP, Drings P, et al. Lenograstim as support for ACE chemotherapy of small-cell lung cancer: a phase III, multicenter, randomized study. Am J Clin Oncol 2000 Aug; 23(4): 393–400

    Article  PubMed  CAS  Google Scholar 

  36. Gisselbrecht C, Haioun C, Lepage E, et al. Placebo-controlled phase III study of lenograstim (glycosylated recombinant human granulocyte colony-stimulating factor) in aggressive non-Hodgkin’s lymphoma: factors influencing chemotherapy administration. Leuk Lymphoma 1997 Apr; 25(3–4): 289–300

    PubMed  CAS  Google Scholar 

  37. Takagi T, Sawamura M, Sezaki T, et al. Clinical benefits of lenograstim in patients with neutropenia due to chemotherapy for multiple myeloma (MM). Support Care Cancer 2001 Jul; 9(5): 397–9

    Article  PubMed  CAS  Google Scholar 

  38. Chevreau C, Bui BN, Chevallier B, et al. Phase I–II trial of intensification of the MAID regimen with support of lenograstim (rHuG-CSF) in patients with advanced soft-tissue sarcoma (STS). Am J Clin Oncol 1999 Jun; 22(3): 267–72

    Article  PubMed  CAS  Google Scholar 

  39. Culine S, Romieu G, Fabbro M, et al. Reducing the time interval between cycles using standard doses of docetaxel and lenogastrim support: a feasibility study. Cancer 2004 Jul 1; 101(1): 178–82

    Article  PubMed  CAS  Google Scholar 

  40. Heigener DF, Manegold C, Jäger E, et al. Multicenter randomized open-label phase III study comparing efficacy, safety, and tolerability of conventional carboplatin plus etoposide versus dose-intensified carboplatin plus etoposide plus lenograstim in small-cell lung cancer in ‘extensive disease’ stage. Am J Clin Oncol 2009 Feb; 32(1): 61–4

    Article  PubMed  CAS  Google Scholar 

  41. Itoh K, Ohtsu T, Fukuda H, et al. Randomized phase II study of biweekly CHOP and dose-escalated CHOP with prophylactic use of lenograstim (glycosylated G-CSF) in aggressive non-Hodgkin’s lymphoma: Japan Clinical Oncology Group Study 9505. Ann Oncol 2002 Sep; 13(9): 1347–55

    Article  PubMed  CAS  Google Scholar 

  42. Thatcher N, Girling DJ, Hopwood P, et al. Improving survival without reducing quality of life in small-cell lung cancer patients by increasing the dose-intensity of chemotherapy with granulocyte colony-stimulating factor support: results of a British Medical Research Council multicenter randomized trial. J Clin Oncol 2000 Jan; 18(2): 395–404

    PubMed  CAS  Google Scholar 

  43. Woll PJ, Hodgetts J, Lomax L, et al. Can cytotoxic dose-intensity be increased by using granulocyte colony-stimulating factor? A randomized controlled trial of lenograstim in small-cell lung cancer. J Clin Oncol 1995 Mar; 13(3): 652–9

    PubMed  CAS  Google Scholar 

  44. Milla-Santos A, Milla L, Rallo L, et al. High-dose epirubicin plus docetaxel at standard dose with lenograstim support as first-line therapy in advanced breast cancer. Am J Clin Oncol 2001; 24(2): 138–42

    Article  PubMed  CAS  Google Scholar 

  45. Mori K, Saitoh Y, Tominaga K. Recombinant human granulocyte colony-stimulating factor in patients receiving intensive chemotherapy for non-small cell lung cancer. Eur J Cancer 1993; 29A(5): 677–80

    Article  PubMed  CAS  Google Scholar 

  46. Thatcher N, Anderson H, Bleehen NM, et al. The feasibility of using glycosylated recombinant human granulocyte colony-stimulating factor (G-CSF) to increase the planned dose intensity of doxorubicin, cyclophosphamide and etoposide (ACE) in the treatment of small cell lung cancer. Eur J Cancer 1995; 31A(2): 152–6

    Article  PubMed  CAS  Google Scholar 

  47. Ardizzoni A, Favaretto A, Boni L, et al. Platinum-etoposide chemotherapy in elderly patients with small-cell lung cancer: results of a randomized multicenter phase II study assessing attenuated-dose or full-dose with lenograstim prophylaxis — a Forza Operativa Nazionale Italiana Carcinoma Polmonare and Gruppo Studio Tumori Polmonari Veneto (FONICAP-GSTPV) study. J Clin Oncol 2005 Jan 20; 23(3): 569–75

    Article  PubMed  CAS  Google Scholar 

  48. Toner GC, Shapiro JD, Laidlaw CR, et al. Low-dose versus standard-dose lenograstim prophylaxis after chemotherapy: a randomized, crossover comparison. J Clin Oncol 1998 Dec; 16(12): 3874–9

    PubMed  CAS  Google Scholar 

  49. Juan O, Campos JM, Carañana V, et al. A randomized, crossover comparison of standard-dose versus low-dose lenograstim in the prophylaxis of post-chemotherapy neutropenia. Support Care Cancer 2001 Jun; 9(4): 241–6

    Article  PubMed  CAS  Google Scholar 

  50. Hashino S, Morioka M, Irie T, et al. Cost benefit and clinical efficacy of low-dose granulocyte colony-stimulating factor after standard chemotherapy in patients with non-Hodgkin’s lymphoma. Int J Lab Hematol 2008 Aug; 30(4): 292–9

    Article  PubMed  CAS  Google Scholar 

  51. Amadori S, Suciu S, Jehn U, et al. Use of glycosylated recombinant human G-CSF (lenograstim) during and/or after induction chemotherapy in patients 61 years of age and older with acute myeloid leukemia: final results of AML-13, a randomized phase-3 study. Blood 2005 Jul 1; 106(1): 27–34

    Article  PubMed  CAS  Google Scholar 

  52. Bradstock K, Matthews J, Young G, et al. Effects of glycosylated recombinant human granulocyte colonystimulating factor after high-dose cytarabine-based induction chemotherapy for adult acute myeloid leukaemia. Leukemia 2001 Sep; 15(9): 1331–8

    Article  PubMed  CAS  Google Scholar 

  53. Dombret H, Chastang C, Fenaux P, et al. A controlled study of recombinant human granulocyte colony-stimulating factor in elderly patients after treatment for acute myelogenous leukemia. N Engl J Med 1995 Jun 22; 332(25): 1678–83

    Article  PubMed  CAS  Google Scholar 

  54. Wheatley K, Goldstone AH, Littlewood T, et al. Randomized placebo-controlled trial of granulocyte colony stimulating factor (G-CSF) as supportive care after induction chemotherapy in adult patients with acute myeloid leukaemia: a study of the United Kingdom Medical Research Council Adult Leukaemia Working Party. Br J Haematol 2009 Jun; 146(1): 54–63

    Article  PubMed  CAS  Google Scholar 

  55. Hofmann WK, Seipelt G, Langenhan S, et al. Prospective randomized trial to evaluate two delayed granulocyte colony stimulating factor administration schedules after high-dose cytarabine therapy in adult patients with acute lymphoblastic leukemia. Ann Hematol 2002 Oct; 81(10): 570–4

    Article  PubMed  CAS  Google Scholar 

  56. Holowiecki J, Giebel S, Krzemien S, et al. G-CSF administered in time-sequenced setting during remission induction and consolidation therapy of adult acute lymphoblastic leukemia has beneficial influence on early recovery and possibly improves long-term outcome: a randomized multicenter study. Leuk Lymphoma 2002 Feb; 43(2): 315–25

    Article  PubMed  CAS  Google Scholar 

  57. Ohno R, Tomonaga M, Ohshima T, et al. A randomized controlled study of granulocyte colony stimulating factor after intensive induction and consolidation therapy in patients with acute lymphoblastic leukemia. Int J Hematol 1993 Aug; 58(1-2): 73–81

    PubMed  CAS  Google Scholar 

  58. Linch DC, Scarffe H, Proctor S, et al. Randomised vehicle-controlled dose-finding study of glycosylated recombinant human granulocyte colony-stimulating factor after bone marrow transplantation. Bone Marrow Transplant 1993 Apr; 11(4): 307–11

    PubMed  CAS  Google Scholar 

  59. Gisselbrecht C, Prentice HG, Bacigalupo A, et al. Placebo-controlled phase III trial of lenograstim in bone-marrow transplantation. Lancet 1994 Mar 19; 343(8899): 696–700

    Article  PubMed  CAS  Google Scholar 

  60. Linch DC, Milligan DW, Winfield DA, et al. G-CSF after peripheral blood stem cell transplantation in lymphoma patients significantly accelerated neutrophil recovery and shortened time in hospital: results of a randomized BNLI trial. Br J Haematol 1997 Dec; 99(4): 933–8

    Article  PubMed  CAS  Google Scholar 

  61. Schmitz N, Ljungman P, Cordonnier C, et al. Lenograstim after autologous peripheral blood progenitor cell transplantation: results of a double-blind, randomized trial. Bone Marrow Transplant 2004 Dec; 34(11): 955–62

    Article  PubMed  CAS  Google Scholar 

  62. Himmelmann B, Himmelmann A, Furrer K, et al. Late G-CSF after allogeneic bone marrow or peripheral blood stem cell transplantation: a prospective controlled trial. Bone Marrow Transplant 2002 Oct; 30(8): 491–6

    Article  PubMed  CAS  Google Scholar 

  63. Jang G, Ko OB, Kim S, et al. Prospective randomized comparative observation of singleversus split-dose lenograstim to enhance engraftment after autologous stem cell transplantation in patients with multiple myeloma or nonHodgkin’s lymphoma. Transfusion (Paris) 2008 Apr; 48(4): 640–6

    Article  Google Scholar 

  64. Valteau-Couanet D, Faucher C, Aupérin A, et al. Cost effectiveness of day 5 G-CSF (lenograstim®) administration after PBSC transplantation: results of a SFGM-TC randomised trial. Bone Marrow Transplant 2005 Sep; 36(6): 547–52

    Article  PubMed  CAS  Google Scholar 

  65. Narabayashi M, Takeyama K, Fukutomi T, et al. A dosefinding study of lenograstim (glycosylated rHuG-CSF) for peripheral blood stem cell mobilization during postoperative adjuvant chemotherapy in patients with breast cancer. Jpn J Clin Oncol 1999 Jun; 29(6): 285–90

    Article  PubMed  CAS  Google Scholar 

  66. Karanth M, Chakrabarti S, Lovell RA, et al. A randomised study comparing peripheral blood progenitor mobilisation using intermediate-dose cyclophosphamide plus lenograstim with lenograstim alone. Bone Marrow Transplant 2004 Sep; 34(5): 399–403

    Article  PubMed  CAS  Google Scholar 

  67. Kim S, Kim H-J, Park JS, et al. Prospective randomized comparative observation of singlevs split-dose lenograstim to mobilize peripheral blood progenitor cells following chemotherapy in patients with multiple myeloma or non-Hodgkin’s lymphoma. Ann Hematol 2005 Oct; 84(11): 742–7

    Article  PubMed  CAS  Google Scholar 

  68. Kim JE, Yoo C, Kim S, et al. Optimal timing of G-CSF administration for effective autologous stem cell collection. Bone Marrow Transplant. Epub 2010 Aug 9

  69. Takeyama K, Ogura M, Morishima Y, et al. A dose-finding study of glycosylated G-CSF (lenograstim) combined with CHOP therapy for stem cell mobilization in patients with non-Hodgkin’s lymphoma. Jpn J Clin Oncol 2003 Feb; 33(2): 78–85

    Article  PubMed  Google Scholar 

  70. Ataergin S, Arpaci F, Turan M, et al. Reduced dose of lenograstim is as efficacious as standard dose of filgrastim for peripheral blood stem cell mobilization and transplantation: a randomized study in patients undergoing autologous peripheral stem cell transplantation. Am J Hematol 2008 Aug; 83(8): 644–8

    Article  PubMed  CAS  Google Scholar 

  71. de Arriba F, Lozano ML, Ortuño F, et al. Prospective randomized study comparing the efficacy of bioequivalent doses of glycosylated and nonglycosylated rG-CSF for mobilizing peripheral blood progenitor cells. Br J Haematol 1997 Feb; 96(2): 418–20

    Article  PubMed  Google Scholar 

  72. Hovenga S, de Wolf JT, Guikema JE, et al. Autologous stem cell transplantation in multiple myeloma after VAD and EDAP courses: a high incidence of oligoclonal serum Igs post transplantation. Bone Marrow Transplant 2000 Apr; 25(7): 723–8

    Article  PubMed  CAS  Google Scholar 

  73. Kopf B, De Giorgi U, Vertogen B, et al. A randomized study comparing filgrastim versus lenograstim versus molgramostim plus chemotherapy for peripheral blood progenitor cell mobilization. Bone Marrow Transplant 2006 Sep; 38(6): 407–12

    Article  PubMed  CAS  Google Scholar 

  74. Orciuolo E, Buda G, Marturano E, et al. Lenograstim reduces the incidence of febrile episodes, when compared with filgrastim, in multiple myeloma patients undergoing stem cell mobilization. Leuk Res. Epub 2010 Dec 4

  75. Ria R, Gasparre T, Mangialardi G, et al. Comparison between filgrastim and lenograstim plus chemotherapy for mobilization of PBPCs. Bone Marrow Transplant 2010 Feb; 45(2): 277–81

    Article  PubMed  CAS  Google Scholar 

  76. Watts MJ, Sullivan AM, Jamieson E, et al. Progenitor-cell mobilization after low-dose cyclophosphamide and granulocyte colony-stimulating factor: an analysis of progenitor-cell quantity and quality and factors predicting for these parameters in 101 pretreated patients with malignant lymphoma. J Clin Oncol 1997 Feb; 15(2): 535–46

    PubMed  CAS  Google Scholar 

  77. Basara N, Schmetzer B, Blau IW, et al. Lenograstim-mobilized peripheral blood progenitor cells in volunteer donors: an open label randomized split dose escalating study. Bone Marrow Transplant 2000 Feb; 25(4): 371–6

    Article  PubMed  CAS  Google Scholar 

  78. Höglund M, Smedmyr B, Simonsson B, et al. Dosedependent mobilisation of haematopoietic progenitor cells in healthy volunteers receiving glycosylated rHuG-CSF. Bone Marrow Transplant 1996 Jul; 18(1): 19–27

    PubMed  Google Scholar 

  79. Fischer JC, Frick M, Wassmuth R, et al. Superior mobilisation of haematopoietic progenitor cells with glycosylated G-CSF in male but not female unrelated stem cell donors. Br J Haematol 2005 Sep; 130(5): 740–6

    Article  PubMed  CAS  Google Scholar 

  80. Ings SJ, Balsa C, Leverett D, et al. Peripheral blood stem cell yield in 400 normal donors mobilised with granulo-cyte colony-stimulating factor (G-CSF): impact of age, sex, donor weight and type of G-CSF used. Br J Haematol 2006 Sep; 134(5): 517–25

    Article  PubMed  Google Scholar 

  81. Martino M, Console G, Irrera G, et al. Harvesting peripheral blood progenitor cells from healthy donors: retrospective comparison of filgrastim and lenograstim. J Clin Apheresis 2005 Oct; 20(3): 129–36

    Article  PubMed  Google Scholar 

  82. Hölig K, Kramer M, Kroschinsky F, et al. Safety and efficacy of hematopoietic stem cell collection from mobilized peripheral blood in unrelated volunteers: 12 years of single-center experience in 3928 donors. Blood 2009 Oct 29; 114(18): 3757–63

    Article  PubMed  CAS  Google Scholar 

  83. Martino M, Console G, Dattola A, et al. Short and long-term safety of lenograstim administration in healthy peripheral haematopoietic progenitor cell donors: a single centre experience. Bone Marrow Transplant 2009 Aug; 44(3): 163–8

    Article  PubMed  CAS  Google Scholar 

  84. Platzbecker U, Bornhäuser M, Zimmer K, et al. Second donation of granulocyte-colony-stimulating factor-mobilized peripheral blood progenitor cells: risk factors associated with a low yield of CD34+ cells. Transfusion (Paris) 2005 Jan; 45(1): 11–5

    Article  Google Scholar 

  85. Kuderer NM, Dale DC, Crawford J, et al. Impact of primary prophylaxis with granulocyte colony-stimulating factor on febrile neutropenia and mortality in adult cancer patients receiving chemotherapy: a systematic review. J Clin Oncol 2007 Jul 20; 25(21): 3158–67

    Article  PubMed  CAS  Google Scholar 

  86. Zielinski CC, Awada A, Cameron DA, et al. The impact of new European Organisation for Research and Treatment of Cancer guidelines on the use of granulocyte colony-stimulating factor on the management of breast cancer patients. Eur J Cancer 2008 Feb; 44(3): 353–65

    Article  PubMed  CAS  Google Scholar 

  87. Pettengell R, Aapro M, Brusamolino E, et al. Implications of the European Organisation for Research And Treatment Of Cancer (EORTC) guidelines on the use of granulocyte colony-stimulating factor (G-CSF) for lymphoma care. Clin Drug Investig 2009; 29(8): 491–513

    Article  PubMed  CAS  Google Scholar 

  88. Aapro MS, Bohlius J, Cameron DA, et al. 2010 update of EORTC guidelines for the use of granulocyte-colony stimulating factor to reduce the incidence of chemotherapy-induced febrile neutropenia in adult patients with lymphoproliferative disorders and solid tumours. Eur J Cancer 2011 Jan; 47(1): 8–32

    Article  PubMed  CAS  Google Scholar 

  89. Smith TJ, Khatcheressian J, Lyman GH, et al. 2006 update of recommendations for the use of white blood cell growth factors: an evidence-based clinical practice guideline. J Clin Oncol 2006 Jul 1; 24(19): 3187–205

    Article  PubMed  CAS  Google Scholar 

  90. Löwenberg B, van Putten W, Theobald M, et al. Effect of priming with granulocyte colony-stimulating factor on the outcome of chemotherapy for acute myeloid leukemia. N Engl J Med 2003 Aug 21; 349(8): 743–52

    Article  PubMed  Google Scholar 

  91. Soda H, Oka M, Fukuda M, et al. Optimal schedule for administering granulocyte colony-stimulating factor in chemotherapy-induced neutropenia in non-small-cell lung cancer. Cancer Chemother Pharmacol 1996; 38(1): 9–12

    Article  PubMed  CAS  Google Scholar 

  92. Clark OA, Lyman GH, Castro AA, et al. Colony-stimulating factors for chemotherapy-induced febrile neutropenia: a meta-analysis of randomized controlled trials. J Clin Oncol 2005 Jun 20; 23(18): 4198–214

    Article  PubMed  CAS  Google Scholar 

  93. Trivedi M, Martinez S, Corringham S, et al. Optimal use of G-CSF administration after hematopoietic SCT. Bone Marrow Transplant 2009 Jun; 43(12): 895–908

    Article  PubMed  CAS  Google Scholar 

  94. Hüttmann A, Schirsafi K, Seeber S, et al. Comparison of lenograstim and filgrastim: effects on blood cell recovery after high-dose chemotherapy and autologous peripheral blood stem cell transplantation. J Cancer Res Clin Oncol 2005 Mar; 131(3): 152–6

    Article  PubMed  CAS  Google Scholar 

  95. Kim IH, Park SK, Suh OK, et al. Comparison of lenograstim and filgrastim on haematological effects after autologous peripheral blood stem cell transplantation with high-dose chemotherapy. Curr Med Res Opin 2003; 19(8): 753–9

    Article  PubMed  CAS  Google Scholar 

  96. Ocheni S, Zabelina T, Bacher U, et al. Pegfilgrastim compared to lenograstim after allogeneic peripheral blood stem-cell transplantation from unrelated donors. Leuk Lymphoma 2009 Apr; 50(4): 612–8

    Article  PubMed  CAS  Google Scholar 

  97. Rosenbeck LL, Srivastava S, Kiel PJ. Peripheral blood stem cell mobilization tactics. Ann Pharmacother 2010 Jan; 44(1): 107–16

    Article  PubMed  CAS  Google Scholar 

  98. Vose JM, Ho AD, Coiffier B, et al. Advances in mobilization for the optimization of autologous stem cell transplantation. Leuk Lymphoma 2009 Sep; 50(9): 1412–21

    Article  PubMed  CAS  Google Scholar 

  99. Cashen AF, Lazarus HM, Devine SM. Mobilizing stem cells from normal donors: is it possible to improve upon G-CSF? Bone Marrow Transplant 2007 May; 39(10): 577–88

    Article  PubMed  CAS  Google Scholar 

  100. European Medicines Agency. Mozobil (plerixafor) 20 mg/mL solution for injection: EU summary of product characteristics [online]. Available from URL: http://www.ema.europa [Accessed 2010 Oct 26]

  101. DiPersio JF, Micallef IN, Stiff PJ, et al. Phase III prospective randomized double-blind placebo-controlled trial of plerixafor plus granulocyte colony-stimulating factor compared with placebo plus granulocyte colonystimulating factor for autologous stem-cell mobilization and transplantation for patients with non-Hodgkin’s lymphoma. J Clin Oncol 2009 Oct 1; 27(28): 4767–73

    Article  PubMed  CAS  Google Scholar 

  102. DiPersio JF, Stadtmauer EA, Nademanee A, et al. Plerixafor and G-CSF versus placebo and G-CSF to mobilize hematopoietic stem cells for autologous stem cell transplantation in patients with multiple myeloma. Blood 2009 Jun 4; 113(23): 5720–6

    PubMed  CAS  Google Scholar 

  103. Wells JC, Shaw BE, Smith MA. The effect of mobilisation using plerixafor in combination with G-CSF on the efficiency of haematopoietic progenitor cell harvesting [abstract no. PO26]. Tranfusion Medicine 2009 Oct; 19 Suppl. 1: 32

    Google Scholar 

  104. Sato Y, Kobayashi A, Yamamoto K. Stability of a new formulation of lenograstim at room temperature for 2 years. J Drug Assess 2003; 6: 49–58

    Google Scholar 

  105. Electronic Medicines Compendium. Neupogen (filgrastim) 30 MU (0.3 mg/mL) and 48 MU (0.3 mg/mL) solution for injection: UK summary of product characteristics [online]. Available from URL: http://www.medicines.org.uk/EMC/medicine/23294/SPC/Neupogen+30+MU+(0.3+mg+ml)+and+48+MU+(0.3+mg+ml).+Solution+for+injection/ [Accessed 2011 Jan 10]

  106. Electronic Medicines Compendium. Neulasta (pegfilgrastim) 6 mg solution for injection: UK summary of product characteristics [online]. Available from URL: http://www.medicines.org.uk/EMC/medicine/11783/SPC/NEULASTA/ [Accessed 2011 Jan 10]

  107. Heuser M, Ganser A, Bokemeyer C. Use of colony-stimulating factors for chemotherapy-associated neutropenia: review of current guidelines. Semin Hematol 2007 Jul; 44(3): 148–56

    Article  PubMed  CAS  Google Scholar 

  108. Halter J, Kodera Y, Ispizua AU, et al. Severe events in donors after allogeneic hematopoietic stem cell donation. Haematologica 2009 Jan; 94(1): 94–101

    Article  PubMed  Google Scholar 

  109. de la Rubia J, de Arriba F, Arbona C, et al. Follow-up of healthy donors receiving granulocyte colony-stimulating factor for peripheral blood progenitor cell mobilization and collection.Results of the Spanish Donor Registry. Haematologica 2008 May; 93(5): 735–40

    Article  PubMed  CAS  Google Scholar 

  110. Bessho M, Hotta T, Ohyashiki K, et al. Multicenter prospective study of clonal complications in adult aplastic anemia patients following recombinant human granulocyte colony-stimulating factor (lenograstim) administration. Int J Hematol 2003 Feb; 77(2): 152–8

    PubMed  CAS  Google Scholar 

  111. Beekman R, Touw IP. G-CSF and its receptor in myeloid malignancy. Blood 2010 Jun 24; 115(25): 5131–6

    Article  PubMed  CAS  Google Scholar 

  112. Lyman GH, Dale DC, Wolff DA, et al. Acute myeloid leukemia or myelodysplastic syndrome in randomized controlled clinical trials of cancer chemotherapy with granulocyte colony-stimulating factor: a systematic review. J Clin Oncol 2010 Jun 10; 28(17): 2914–24

    Article  PubMed  Google Scholar 

  113. Bacigalupo A, Broccia G, Corda G, et al. Antilymphocyte globulin, cyclosporin, and granulocyte colony-stimulating factor in patients with acquired severe aplastic anemia (SAA): a pilot study of the EBMT SAA Working Party. Blood 1995 Mar 1; 85(5): 1348–53

    PubMed  CAS  Google Scholar 

  114. Teramura M, Kimura A, Iwase S, et al. Treatment of severe aplastic anemia with antithymocyte globulin and cyclosporin A with or without G-CSF in adults: a multicenter randomized study in Japan. Blood 2007 Sep 15; 110(6): 1756–61

    Article  PubMed  CAS  Google Scholar 

  115. Kojima S, Matsuyama T, Kato S, et al. Outcome of 154 patients with severe aplastic anemia who received transplants from unrelated donors: the Japan Marrow Donor Program. Blood 2002 Aug 1; 100(3): 799–803

    Article  PubMed  CAS  Google Scholar 

  116. Gluckman E, Rokicka-Milewska R, Hann I, et al. Results and follow-up of a phase III randomized study of recombinant human-granulocyte stimulating factor as support for immunosuppressive therapy in patients with severe aplastic anaemia. Br J Haematol 2002 Dec; 119(4): 1075–82

    Article  PubMed  CAS  Google Scholar 

  117. Dubreuil-Lemaire M-L, Gori A, Vittecoq D, et al. Lenograstim for the treatment of neutropenia in patients receiving ganciclovir for cytomegalovirus infection: a randomised, placebo-controlled trial in AIDS patients. Eur J Haematol 2000 Nov; 65(5): 337–43

    Article  PubMed  CAS  Google Scholar 

  118. Carlsson G, Åhlin A, Dahllöf G, et al. Efficacy and safety of two different rG-CSF preparations in the treatment of patients with severe congenital neutropenia. Br J Haematol 2004 Jul; 126(1): 127–32

    Article  PubMed  CAS  Google Scholar 

  119. Tsukimoto I, Hanawa Y, Takaku F, et al. Clinical evaluation of recombinant human G-CSF in children with cancer [in Japanese]. Rinsho Ketsueki 1990 Oct; 31(10): 1647–55

    PubMed  CAS  Google Scholar 

  120. Michel G, Landman-Parker J, Auclerc MF, et al. Use of recombinant human granulocyte colony-stimulating factor to increase chemotherapy dose-intensity: a randomized trial in very high-risk childhood acute lymphoblastic leukemia. J Clin Oncol 2000 Apr; 18(7): 1517–24

    PubMed  CAS  Google Scholar 

  121. Rutkowski J, Derylo L, Fedyna M, et al. Cost-effectiveness of lenograstim neutropenia duration in adults receiving chemotherapy for leukemia [abstract no. PCN88]. 15th Annual International Meeting of the International Society for Pharmacoeconomics and Outcomes Research; 2010 May 15–19; Atlanta (GA)

  122. Rutkowski J, Derylo L, Fedyna M, et al. Cost-effectiveness of lenograstym on neutropenia duration in adults receiving chemotherapy for solid tumors or lymphomas [abstract no. PCN83]. 15th Annual International Meeting of the International Society for Pharmacoeconomics and Outcomes Research; 2010 May 15–19; Atlanta (GA)

  123. Rutkowski J, Derylo L, Fedyna M, et al. Cost-effectiveness of lenograstym on neutropenia duration in children receiving chemotherapy for leukemia [abstract no. PCN69]. 15th Annual International Meeting of the International Society for Pharmacoeconomics and Outcomes Research; 2010 May 15–19; Atlanta (GA)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gillian M. Keating.

Additional information

Various sections of the manuscript reviewed by: A.G. Favaretto, Oncologia Medica II, Istituto Oncologico Veneto IRCCS, Padova, Italy; D.F. Heigener, Department of Thoracic Oncology, Krankenhaus Grosshansdorf, Grosshansdorf, Schleswig-Holstein, Germany; K. Hölig, Department of Internal Medicine I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; K. Itoh, Division of Oncology and Hematology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan; D.C. Linch, Department of Haematology, UCL Cancer Institute, London, UK; C. Suh, Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.

Data Selection

Sources: Medical literature (including published and unpublished data) on lenograstim was identified by searching databases since 1986 (including MEDLINE, EMBASE and in-house AdisBase), bibliographies from published literature, clinical trial registries/databases and websites (including those of regional regulatory agencies and the manufacturer). Additional information (including contributory unpublished data) was also requested from the company developing the drug.

Search strategy: MEDLINE, EMBASE and AdisBase search terms were ‘lenograstim’ and ‘neutropenia’. Searches were last updated 28 March 2011.

Selection: Studies in patients who received lenograstim for prophylaxis of chemotherapy-induced neutropenia, acceleration of neutrophil recovery following haematopoietic stem cell transplantation and peripheral blood stem cell mobilization. Inclusion of studies was based mainly on the methods section of the trials. When available, large, well controlled trials with appropriate statistical methodology were preferred. Relevant pharmacodynamic and pharmacokinetic data are also included.

Index terms: Lenograstim, chemotherapy-induced neutropenia, haematopoietic stem cell transplantation, peripheral blood stem cell mobilization, pharmacodynamics, pharmacokinetics, therapeutic use, tolerability.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keating, G.M. Lenograstim. Drugs 71, 679–707 (2011). https://doi.org/10.2165/11206870-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11206870-000000000-00000

Keywords

Navigation