Skip to main content
Log in

Closed-loop delivery of insulin

Progress to date for diabetes mellitus therapy

  • Emerging Technology
  • Published:
American Journal of Drug Delivery

Abstract

The importance of exactly matching blood glucose levels in patients with diabetes mellitus with the dose and timing of insulin cannot be overemphasized. This is true for both type 1 and type 2 diabetes. The prevention of the serious consequences of diabetes should be a therapeutic goal because of the personal and national economic costs of treating the disease and its sequelae. Avoidance of sequelae cannot be achieved without so-called intensive treatment of the disease; however, this is a difficult and sometimes hazardous process. An automated and ’safe’ method of achieving intensive treatment (closed-loop insulin delivery) has been an important focus of research for many years since it was realized that the simple replacement of insulin saved the lives of patients with diabetes, but did not guarantee good health.

Following the general successes of organ transplant, the obvious line of enquiry in the last three decades was to replace the pancreas with donor tissue; however, even when superseded by the simpler process of islet transplant, the benefits of this have not been widespread. This is because of the shortcomings and incompatibilities of immunosuppression with the functioning of the graft, among other problems. The two types of rejection that may occur in the presence of the autoimmune type of diabetes further endanger graft function; however, recently there have been advances that have partially solved this problem. Nevertheless, the lifetime risks of immunosuppression and the shortage of donor material still make transplant less attractive than first thought.

Consequently, other approaches to closed-loop insulin delivery have been important. These include implantable pumps coupled with sensors and a range of devices incorporating glucose-sensitive materials that could be engineered into delivery systems to work by closed loop. Each of these has relative advantages and drawbacks, but some have the capacity to reach the market for clinical use. Of these, the MiniMed pump would appear to be in the lead, and is at present undergoing clinical trials that have given promising results but that have not yet entirely solved the closed-loop problem. Other designs may yet become important contenders in this interesting contest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lifetime benefits and costs of intensive therapy as practiced in the Diabetes Control and Complications Trial. The Diabetes Control and Complications Trial Research Group. JAMA 1996; 276: 1409–15

  2. DeFronzo RA. Implications of the United Kingdom Prospective Diabetes Study. Prim Care 1999; 26: 809–27

    Article  Google Scholar 

  3. Orchard T, Forrest K, Ellis D, et al. Cumulative glycemic exposure and microvascular complications in insulin-dependent diabetes mellitus: the glycemic threshold revisited. Arch Intern Med 1997; 157: 1851–6

    Article  PubMed  CAS  Google Scholar 

  4. Trehan A, Ali A. Recent approaches in insulin delivery. Drug Dev Ind Pharm 1998; 24: 589–97

    Article  PubMed  CAS  Google Scholar 

  5. Renard E, Costalat G, Bringer J. From external to implantable insulin pump, can we close the loop? Diabetes Metab 2002; 28: 2S19–25

    PubMed  CAS  Google Scholar 

  6. Daneman D. Islet cell transplantation and other new technologies for treating type 1 diabetes: a paediatric view. Horm Res 2002; 57 Suppl 1: 54–9.

    Article  PubMed  CAS  Google Scholar 

  7. Miyamoto M. Current progress and perspectives in cell therapy for diabetes mellitus. Hum Cell 2001; 14: 293–300

    PubMed  CAS  Google Scholar 

  8. Petrovsky N, Silva D, Schatz DA. Prospects for the prevention and reversal of type 1 diabetes mellitus. Drugs 2002; 62: 2617–35

    Article  PubMed  CAS  Google Scholar 

  9. Williams G, Pickup JC. Handbook of diabetes. Oxford: Blackwell Science, 1999

    Google Scholar 

  10. Kelly WD, Lillehei RC, Merkel FK, et al. Allotransplantation of the pancreas and duodenum along with the kidney in diabetic neuropathy. Surgery 1967; 61: 827–37

    PubMed  CAS  Google Scholar 

  11. Bilous R, Mauer SM, Sutherland DE, et al. The effects of pancreas transplantation on the glomerular structure of renal-allografts in patients with insulin-dependent diabetes. N Engl J Med 1989; 321: 80–5

    Article  PubMed  CAS  Google Scholar 

  12. Paty BW, Lanz K, Kendall DM, et al. Restored hypoglycemic counterregulation is stable in successful pancreas transplant recipients for up to 19 years after transplantation. Transplantation 2001; 72: 1103–7

    Article  PubMed  CAS  Google Scholar 

  13. Al-Shurafa HA, Jawdat MT, Bassas AF, et al. Innovations in pancreas transplantation. Saudi Med J 2002; 23: 265–71

    PubMed  Google Scholar 

  14. Larsen J, Lane J, Mack-Shipman L. Pancreas and kidney transplantation. Curr Diab Rep 2002; 2: 359–64

    Article  PubMed  Google Scholar 

  15. Pileggi A, Ricordi C, Alessiani M, et al. Factors influencing Islet of Langerhans graft function and monitoring. Clin Chim Acta 2001; 310: 3–16

    Article  PubMed  CAS  Google Scholar 

  16. Ryan EA, Lakey JR, Rajotte RV, et al. Clinical outcomes and insulin secretion after islet transplantation with the Edmonton protocol. Diabetes 2001; 50:710–9

    Article  PubMed  CAS  Google Scholar 

  17. Humar A, Khwaja K, Ramcharan T, et al. Chronic rejection: the next major challenge for pancreas transplant recipients. Transplantation 2003; 76: 918–23

    Article  PubMed  Google Scholar 

  18. Bakr MA, Refaie A, Ihab MH, et al. Experimental islet cell transplantation in rats. Transplant Proc 1997; 29: 2908–11

    Article  PubMed  CAS  Google Scholar 

  19. Calafiore R, Luca G, Calvitti M, et al. Cellular support systems for alginate microcapsules containing islets, as composite bioartificial pancreas. Ann NY Acad Sci 2001; 944: 240–51

    Article  PubMed  CAS  Google Scholar 

  20. Burridge PW, Shapiro AM, Ryan EA, et al. Future trends in clinical islet transplantation. Transplant Proc 2002; 34: 3347–8

    Article  PubMed  CAS  Google Scholar 

  21. Robertson RP, Lanz KJ, Sutherland DE, et al. Prevention of diabetes for up to 13 years by autoislet transplantation after pancreatectomy for chronic pancreatitis. Diabetes 2001; 50: 47–50

    Article  PubMed  CAS  Google Scholar 

  22. Robertson RP. Islet transplantation: travels up the learning curve. Curr Diab Rep 2002; 2: 365–70

    Article  PubMed  Google Scholar 

  23. Gill I, Ballesteros A. Bioencapsulation within synthetic polymers (Pt 1): sol-gel encapsulated biologicals. Trends Biotechnol 2000; 18: 282–96

    Article  PubMed  CAS  Google Scholar 

  24. Soon-Shiong P. Treatment of type 1 diabetes using encapsulated islets. Adv Drug Deliv Rev 1993; 35: 259–70

    Article  Google Scholar 

  25. Soon-Shiong P, Feldman E, Nelson R, et al. Long-term reversal of diabetes by the injection of immunoprotected islets. Proc Natl Acad Sci USA 1993; 90: 5843–7

    Article  PubMed  CAS  Google Scholar 

  26. Mullen Y, Maruyama M, Smith CV. Current progress and perspectives in immunoisolated islet transplantation. J Hepatobiliary Pancreat Surg 2000; 7: 347–57

    Article  PubMed  CAS  Google Scholar 

  27. Pope EJA, Braun K, Peterson C. Bioartificial organs (I). Silica gel encapsulated pancreatic islets for the treatment of diabetes mellitus. J Sol Gel Sci Technol 1997; 8: 635–9

    CAS  Google Scholar 

  28. Tao SL, Desai TA. Microfabricated drug delivery systems: from particles to pores. Adv Drug Deliv Rev 2003; 55: 315–28

    Article  PubMed  CAS  Google Scholar 

  29. Contreras JL, Bilbao G, Smyth CA, et al. Cytoprotection of pancreatic islets before and early after transplantation using gene therapy. Kidney Int Suppl 2002; 61 Suppl. 1: 79–84

    Article  Google Scholar 

  30. Bonner-Weir S, Sharma A. Pancreatic stem cells. J Pathol 2002; 197: 519–26

    Article  PubMed  Google Scholar 

  31. Efrat S. Cell replacement therapy for type 1 diabetes. Trends Mol Med 2002; 8: 334–40

    Article  PubMed  CAS  Google Scholar 

  32. Efrat S. Preventing type 1 diabetes mellitus: the promise of gene therapy. Am J Pharmacogenomics 2002; 2: 129–34

    Article  PubMed  Google Scholar 

  33. Gu YJ, Cui WX, Miyamoto M, et al. Development of a new bioartificial pancreas possessing angiogenesis-inducing function [abstract]. Transplant Proc 2000; 32: 2475

    Article  PubMed  CAS  Google Scholar 

  34. Thivolet C. New therapeutic approaches to type 1 diabetes: from prevention to cellular or gene therapies. Clin Endocrinol (Oxf) 2001; 55: 565–74

    Article  CAS  Google Scholar 

  35. Mahato RI, Henry J, Narang AS, et al. Cationic lipid and polymer-based gene delivery to human pancreatic islets. Mol Ther 2003; 7: 89–100

    Article  PubMed  CAS  Google Scholar 

  36. Fleischer N, Chen C, Surana M, et al. Functional analysis of a conditionally transformed pancreatic beta-cell line. Diabetes 1998; 47: 1419–25

    Article  PubMed  CAS  Google Scholar 

  37. Taniguchi H, Yamato E, Tashiro F, et al. Beta-cell neogenesis induced by adenovirus-mediated gene delivery of transcription factor pdx-1 into mouse pancreas. Gene Ther 2003; 10: 15–23

    Article  PubMed  CAS  Google Scholar 

  38. Xu R, Li H, Tse LY, et al. Diabetes gene therapy: potential and challenges. Curr Gene Ther 2003; 3: 65–82

    Article  PubMed  CAS  Google Scholar 

  39. Gros L, Riu E, Montoliu L, et al. Insulin production by engineered muscle cells. Hum Gene Ther 1999; 10: 1207–17

    Article  PubMed  CAS  Google Scholar 

  40. Riu E, Mas A, Ferre T, et al. Counteraction of type 1 diabetic alterations by engineering skeletal muscle to produce insulin: insights from transgenic mice. Diabetes 2002; 51: 704–11

    Article  PubMed  CAS  Google Scholar 

  41. Falqui L, Martinenghi S, Severini GM, et al. Reversal of diabetes in mice by implantation of human fibroblasts genetically engineered to release mature human insulin. Hum Gene Ther 1999; 10: 1753–62

    Article  PubMed  CAS  Google Scholar 

  42. Thulé PM, Liu JM. Regulated hepatic insulin gene therapy of STZ-diabetic rats. Gene Ther 2000; 7: 1744–52

    Article  PubMed  Google Scholar 

  43. Sasaki S, Nio Y, Hirahara N, et al. Intraperitoneally implanted artificial pancreas with transkaryotic beta-cells on microcarrier beads in a diffusion chamber improves hyperglycemia after 90% pancreatectomy in rats. In Vivo 2000; 14: 535–41

    PubMed  CAS  Google Scholar 

  44. Wang W, Gu Y, Tabata Y, et al. Reversal of diabetes in mice by xenotransplantation of a bioartificial pancreas in a prevascularized subcutaneous site. Transplantation 2002; 73: 122–9

    Article  PubMed  Google Scholar 

  45. Stoffers DA, Kieffer TJ, Hussain MA, et al. Insulinotropic glucagon-like peptide 1 agonists stimulate expression of homeodomain protein IDX-1 and increase islet size in mouse pancreas. Diabetes 2000; 49: 741–8

    Article  PubMed  CAS  Google Scholar 

  46. Thulé PM, Liu J, Phillips LS. Glucose regulated production of human insulin in rat hepatocytes. Gene Ther 2000; 7: 205–14

    Article  PubMed  Google Scholar 

  47. Alam T, Sollinger HW. Glucose-regulated insulin production in hepatocytes. Transplantation 2002; 74: 1781–7

    Article  PubMed  CAS  Google Scholar 

  48. Guan J, Behme MT, Zucker P, et al. Glucose turnover and insulin sensitivity in rats with pancreatic islet transplants. Diabetes 1998; 47: 1020–6

    Article  PubMed  CAS  Google Scholar 

  49. UK Department of Health. Diabetes national service framework [online]. Available from URL: http://www.doh.gov.uk/nsf/diabetes/index.htm [Accessed 2004 Jan 06]

  50. Pickup J, Keen H. Continuous subcutaneous insulin infusion at 25 years: evidence base for the expanding use of insulin pump therapy in type 1 diabetes. Diabetes Care 2002; 25: 593–8

    Article  PubMed  Google Scholar 

  51. Pinget M, Jeandidier N. Long term safety and efficacy of intraperitoneal insulin infusion by means of implantable pumps. Horm Metab Res 1998; 30: 475–86

    Article  PubMed  CAS  Google Scholar 

  52. Bode BW, Sabbah HT, Gross TM, et al. Diabetes management in the new millennium using insulin pump therapy. Diabetes Metab Res Rev 2002; 18 Suppl. 1: S14–20

    Article  Google Scholar 

  53. Udelsman R, Chen H, Loman K, et al. Implanted programmable insulin pumps: one hundred and fifty-three years of surgical experience. Surgery 1997; 122: 1005–11

    Article  PubMed  CAS  Google Scholar 

  54. Mason TM, Gupta N, Goh T, et al. Chronic intraperitoneal insulin delivery, as compared with subcutaneous delivery, improves hepatic glucose metabolism in streptozotocin diabetic rats. Metabolism 2000; 49: 1411–6

    Article  PubMed  CAS  Google Scholar 

  55. Lassman-Vague V, Guerci B, Hanaire-Broutin H, et al. Use of implantable insulin pumps: the EVADIAC position. Diabetes Metab 1997; 23: 234–50

    Google Scholar 

  56. Robert JJ, Chauvet D, Darmaun D, et al. Hepatic glucose production during intraperitoneal and intravenous closed-loop insulin regulation of blood glucose in type 1 (insulin-dependent) diabetic patients. Diabetologia 1993; 36: 1185–90

    Article  PubMed  CAS  Google Scholar 

  57. Jeandidier N, Boullu S, Delatte E, et al. High antigenicity of intraperitoneal insulin infusion via implantable devices: preliminary rat studies. Horm Metab Res 2001; 33: 34–8

    Article  PubMed  CAS  Google Scholar 

  58. Waxman K, Soliman MH, Nguyen KH. Absorption of insulin in the peritoneal cavity in a diabetic animal model. Artif Organs 1993; 17: 925–8

    Article  PubMed  CAS  Google Scholar 

  59. Renard E, Rostane T, Carriere C, et al. Implantable insulin pumps: infections most likely due to seeding from skin flora determine severe outcomes of pump-pocket seromas. Diabetes Metab 2001; 27: 62–5

    PubMed  CAS  Google Scholar 

  60. Renard E, Bouteleau S, Jacques-Apostol D, et al. Insulin underdelivery from implanted pumps using peritoneal route: determinant role of insulin pump compatibility. Diabetes Care 1996; 19: 812–7

    Article  PubMed  CAS  Google Scholar 

  61. Renard E, Baldet P, Picot MC, et al. Catheter complications associated with implantable systems for peritoneal insulin delivery: an analysis of frequency, predisposing factors, and obstructing materials. Diabetes Care 1995; 18: 300–6

    Article  PubMed  CAS  Google Scholar 

  62. Lougheed W, Woulfe-Flanagan H, Clement J, et al. Insulin aggregation in artificial delivery systems. Diabetologia 1980; 19: 1–19

    Article  PubMed  CAS  Google Scholar 

  63. Sluzky V, Klibanov AM, Langer R. Mechanism of insulin aggregation and stabilisation in agitated aqueous solutions. Biotechnol Bioeng 1992; 40: 895–903

    Article  PubMed  CAS  Google Scholar 

  64. Gin H, Melki V. Clinical evaluation of a newly designed compliant side port catheter for an insulin implantable pump [letter]. Diabetes Care 2001; 24: 175

    Article  PubMed  CAS  Google Scholar 

  65. Boivin S, Belicar P, Melki V. Assessment of in vivo stability of a new insulin preparation for implantable insulin pumps: a randomized multicenter prospective trial. EVADIAC Group (Evaluation dans le Diabete du Traitement par Implants Actifs). Diabetes Care 1999; 22: 2089–90

    Article  PubMed  CAS  Google Scholar 

  66. Hanaire-Broutin H, Broussolle C, Jeandidier N, et al. Feasibility of intraperitoneal insulin therapy with programmable implantable pumps in IDDM: a multicenter study. The EVADIAC Study Group (Evaluation dans le Diabete du Traitement par Implants Actifs). Diabetes Care 1995; 18: 388–92

    Article  PubMed  CAS  Google Scholar 

  67. Jeandidier N, Boullu S, Busch-Brafin MS, et al. Comparison of antigenicity of Hoechst 21PH insulin using either implantable intraperitoneal pump or subcutaneous external pump infusion in type 1 diabetic patients. Diabetes Care 2002; 25: 84–8

    Article  PubMed  CAS  Google Scholar 

  68. Mimura A, Kageyama S, Itoh K, et al. Role of growth hormone in the pathogenesis of dawn phenomenon in IDDM. Nippon Naibunpi Gakkai Zasshi 1992; 68: 600–6

    PubMed  CAS  Google Scholar 

  69. Heinemann L, Ampudia-Blasco FJ. Glucose clamps with the Biostator: a critical reappraisal. Horm Metab Res 1994; 26: 579–83

    Article  PubMed  CAS  Google Scholar 

  70. Gin H, Catargi B, Rigalleau V, et al. Experience with the Biostator for diagnosis and assisted surgery of 21 insulinomas. Eur J Endocrinol 1998; 139: 371–7

    Article  PubMed  CAS  Google Scholar 

  71. Meyerhoff C, Mennel FJ, Sternberg F, et al. Current status of the glucose sensor. Endocrinologist 1996; 6: 332–9

    Article  Google Scholar 

  72. Selam JL. Management of diabetes with glucose sensors and implantable insulin pumps: from the dream of the 60s to the realities of the 90s. ASAIO J 1997; 43: 137–42

    PubMed  CAS  Google Scholar 

  73. Gough DA, Armour JC, Baker DA. Advances and prospects in glucose assay technology. Diabetologia 1997; 40: S102–7

    Article  PubMed  CAS  Google Scholar 

  74. Karnati VV, Gao X, Gao S, et al. A glucose-selective fluorescence sensor based on boronic acid-diol recognition. Bioorg Med Chem Lett 2002; 12: 3373–7

    Article  PubMed  CAS  Google Scholar 

  75. Tolosa L, Gryczynski I, Eichhorn LR, et al. Glucose sensor for low-cost lifetime-based sensing using a genetically engineered protein. Anal Biochem 1999; 267: 114–20

    Article  PubMed  CAS  Google Scholar 

  76. Sosnitza P, Farooqui M, Saleemuddin M, et al. Application of reversible immobilization techniques for biosensors. Anal Chim Acta 1998; 368: 197–203

    Article  CAS  Google Scholar 

  77. Renard E. Implantable closed-loop glucose-sensing and insulin delivery: the future for insulin pump therapy. Curr Opin Pharmacol 2002; 2: 708–16

    Article  PubMed  CAS  Google Scholar 

  78. Gerritsen M, Jansen JA, Kros A, et al. Performance of subcutaneously implanted glucose sensors: a review. J Invest Surg 1998; 11: 163–74

    Article  PubMed  CAS  Google Scholar 

  79. Freckmann G, Kalatz B, Pfeiffer B, et al. Recent advances in continuous glucose monitoring. Exp Clin Endocrinol Diabetes 2001; 109: S347–57

    Article  PubMed  CAS  Google Scholar 

  80. Kessler L, Passemard R, Oberholzer J, et al. Reduction of blood glucose variability in type 1 diabetic patients treated by pancreatic islet transplantation: interest of continuous glucose monitoring. Diabetes Care 2002; 25: 2256–62

    Article  PubMed  CAS  Google Scholar 

  81. Rebrin K, Steil GM, van Antwerp WP, et al. Subcutaneous glucose predicts plasma glucose independent of insulin: implications for continuous monitoring. Am J Physiol 1999; 277: E561–71

    PubMed  CAS  Google Scholar 

  82. Monsod TP, Flanagan DE, Rife F, et al. Do sensor glucose levels accurately predict plasma glucose concentrations during hypoglycemia and hyperinsulinemia? Diabetes Care 2002; 25: 889–93

    Article  PubMed  CAS  Google Scholar 

  83. Khalil OS. Spectroscopic and clinical aspects of noninvasive glucose measurements. Clin Chem 1999; 45: 165–77

    PubMed  CAS  Google Scholar 

  84. Jaremko J, Rorstad O. Advances toward the implantable artificial pancreas for treatment of diabetes. Diabetes Care 1998; 21: 444–50

    Article  PubMed  CAS  Google Scholar 

  85. Marquait LA, Arnold M, Small G. Near infra-red spectroscopic measurement of glucose in a protein matrix. Anal Chem 1993; 65: 3271–8

    Article  Google Scholar 

  86. Renard E, Shah R, Miller M et al. Sustained safety and accuracy of central IV glucose sensors connected to implanted insulin pumps and short-term closed-loop trials in diabetic patients. 63rd Annual Scientific Sessions of the American Diabetes Association; 2003 Jun 13–17; New Orleans, 155-OR.

  87. Sah H, Chien Y, Park K, et al. New generation therapies. In: Hillery A, Lloyd A, Swarbrick J, editors. Drug delivery and targeting for pharmacists and pharmaceutical scientists. London: Taylor & Francis, 2001

    Google Scholar 

  88. Kost J, Langer R. Responsive polymeric delivery systems. Adv Drug Deliv Rev 2001; 46: 125–48

    Article  PubMed  CAS  Google Scholar 

  89. Groning R, Walz C. Development of experimental insulin pumps with glucose-controlled release. Int J Pharm 1995; 119: 127–31

    Article  Google Scholar 

  90. Albin G, Horbett TA, Ratner BD. Glucose sensitive membranes for controlled delivery of insulin: insulin transport studies. J Control Release 1985; 2: 153–64

    Article  CAS  Google Scholar 

  91. Albin GW, Horbett TA, Miller SR, et al. Theoretical and experimental studies of glucose sensitive membranes. J Control Release 1987; 6: 267–91

    Article  CAS  Google Scholar 

  92. Albin G, Horbett T, Ratner B. Glucose sensitive membranes for controlled release of insulin. In: Kost J, editor. Pulsed and self regulated drug delivery. Boca Raton (FL): CRC Press, 1990: 159–85

    Google Scholar 

  93. Siegel R. pH-sensitive gels: swelling equilibria, kinetics, and applications for drug delivery. In: Kost J, editor. Pulsed and self regulated drug delivery. Boca Raton (FL): CRC Press, 1990: 129–57

    Google Scholar 

  94. Ishihara K, Matsui K. Glucose-responsive insulin release from polymer capsule. J Polymer Sci (C) 1986; 24: 413–7

    CAS  Google Scholar 

  95. Ishihara K, Kobayashi M, Ishimaru N, et al. Glucose-induced permeation control of insulin through a complex membrane consisting of immobilized glucose-oxidase and a poly(amine). Polym J 1984; 16: 625–31

    Article  CAS  Google Scholar 

  96. Podual K, Doyle FJ, Peppas N. Glucose-sensitivity of glucose oxidase-containing cationic copolymer hydrogels having poly(ethylene glycol) grafts. J Control Release 2000; 67: 9–17

    Article  PubMed  CAS  Google Scholar 

  97. Shimada K, Matsuo S, Sadzuka Y, et al. Determination of incorporated amounts of poly(ethylene glycol)-derivatized lipids in liposomes for the physicochemical characterization of stealth liposomes. Int J Pharm 2000; 203: 255–63

    Article  PubMed  CAS  Google Scholar 

  98. Lowman AM, Morishita M, Kajita M, et al. Oral delivery of insulin using pH-responsive complexation gels. J Pharm Sci 1999; 88: 933–7

    Article  PubMed  CAS  Google Scholar 

  99. Dorski CM, Doyle FJ, Peppas NA. Preparation and characterization of glucose-sensitive P(MAA-g-EG) hydrogels. Polym Mater Sci Eng Proceed 1997; 76: 281–2

    CAS  Google Scholar 

  100. Iwata H, Amemiya H, Hata Y, et al. Development of novel semipermeable membranes for self-regulated insulin delivery systems. Proceed Intern Symp Control Rel Bioact Mater 1988; 15: 170–1

    Google Scholar 

  101. Iwata H, Matsuda T. Preparation and properties of novel environment-sensitive membranes prepared by graft-polymerization onto a porous membrane. J Membr Sci 1988; 38: 185–99

    Article  CAS  Google Scholar 

  102. Ito Y, Park YS, Imanishi Y. Visualization of critical pH-controlled gating of a porous membrane grafted with polyelectrolyte brushes. J Am Chem Soc 1997; 119: 2739–40

    Article  CAS  Google Scholar 

  103. Kim C, Im E, Lim S, et al. Development of glucose-triggered pH-sensitive liposomes for a potential insulin delivery. Int J Pharm 1994; 101: 191–7

    Article  CAS  Google Scholar 

  104. Chung D-J, Ito Y, Imanishi Y. An insulin-releasing membrane system on the basis of oxidation reaction of glucose. J Control Release 1992; 18: 45–54

    Article  CAS  Google Scholar 

  105. Ito Y, Imanishi Y. Protein device for glucose-sensitive release of insulin. ACS Symp Ser 1994; 545: 47–54

    Article  CAS  Google Scholar 

  106. Fischel-Ghodsian F. Enzymatically controlled drug delivery. Proc Natl Acad Sci USA 1988; 85(7): 2403–6

    Article  PubMed  CAS  Google Scholar 

  107. Brown LR, Edelman ER, Fischel-Ghodsian F, et al. Characterization of glucose-mediated insulin release from implantable polymers. J Pharm Sci 1996; 85: 1341–5

    Article  PubMed  CAS  Google Scholar 

  108. Kitano S, Kataoka K, Koyama Y, et al. Glucose responsive complex formation between poly(vinyl alcohol) and poly(N-vinyl-2-pyrrolidone) with pendent phenylboronic acid moieties. Makromol Chem Rapid Commun 1991; 12: 227–33

    Article  CAS  Google Scholar 

  109. Kitano S, Koyama Y, Kataoka K, et al. A novel drug delivery system utilising a glucose responsive complex formation between poly(vinyl alcohol) and poly(N-vinyl-2-pyrrolidone) with a pendent phenylboronic acid moiety. J Control Release 1992; 19: 162–70

    Article  Google Scholar 

  110. Shiino D, Murata Y, Kubo A, et al. Amine containing phenylboronic acid gel for glucose-responsive insulin release under physiological pH. J Control Release 1995; 37: 269–76

    Article  CAS  Google Scholar 

  111. Shiino D, Kubo A, Murata Y, et al. Amine effect on phenylboronic acid compiler with glucose under physiological pH in aqueous solution. J Biomater Sci Polym Ed 1996; 7: 697–705

    Article  PubMed  CAS  Google Scholar 

  112. Mayes A, Andersson L, Mosbach K. Sugar binding polymers showing high anomeric and epimeric discrimination obtained by noncovalent molecular imprinting. Anal Biochem 1994; 222: 483–8

    Article  PubMed  CAS  Google Scholar 

  113. Weatherman RV, Mortell KH, Chervenak M, et al. Specificity of C-glycoside complexation by mannose-glucose specific lectins. Biochemistry 1996; 35: 3619–24

    Article  PubMed  CAS  Google Scholar 

  114. Brownlee M, Cerami A. A glucose controlled insulin delivery system: semisynthetic insulin bound to lectin. Science 1979; 206: 1190–1

    Article  PubMed  CAS  Google Scholar 

  115. Brownlee M, Cerami A. Glycosylated insulin complexed to concanavalin A: biochemical basis for a closed-loop insulin delivery system. Diabetes 1983; 32: 499–504

    Article  PubMed  CAS  Google Scholar 

  116. Jeong SY, Kim SW. Self regulating insulin delivery systems (I): synthesis and characterisation of glycosylated insulin. J Control Release 1984; 1: 57–66

    Article  CAS  Google Scholar 

  117. Jeong SY, Kim SW, Holmberg DL, et al. Self-regulating insulin delivery systems (III): in-vivo studies. J Control Release 1985; 2: 143–52

    Article  CAS  Google Scholar 

  118. Kim S, Jeong S, Sato S, et al. Self-regulating insulin delivery system: a chemical approach. In: Anderson J, Kim S, editors. Recent advances in drug delivery systems. New York: Plenum Press, 1984: 123–36

    Chapter  Google Scholar 

  119. Kim SW, Pai CM, Makino K, et al. Self-regulated glycosylated insulin delivery. In: Anderson J, Kim S, Knutson K, editors. Fourth international symposium on recent advances in drug delivery systems. Amsterdam: Elsevier, 1990: 193–201

    Google Scholar 

  120. Kim S, Jacobs H. Self-regulated insulin delivery: artificial pancreas. Drug Dev Ind Pharm 1994; 20: 575–80

    Article  CAS  Google Scholar 

  121. Pai CM, Bae YH, Mack EJ, et al. Concanavalin A microspheres for a self-regulating insulin delivery system. J Pharm Sci 1992; 81: 532–6

    Article  PubMed  CAS  Google Scholar 

  122. Sato S, Jeong SY, McRea JC, et al. Glucose-stimulated insulin delivery systems. Pure Appl Chem 1984; 56(10): 1323–1328

    Article  CAS  Google Scholar 

  123. Sato S, Jeong SY, McRae JC, et al. Self-regulating insulin delivery systems (II): in vitro studies. J Control Release 1984; 1: 67–77

    Article  CAS  Google Scholar 

  124. Seminoff LA, Olsen GB, Kim SW. A self-regulating insulin delivery system (I): characterization of a synthetic glycosylated insulin derivative. Int J Pharm 1989; 54: 241–50

    Article  CAS  Google Scholar 

  125. Kokufata E, Zhang Y, Tanaka T. Saccharide-sensitive phase transition of a lectin loaded gel. Nature 1991; 351: 302–4

    Article  CAS  Google Scholar 

  126. Nakamae K, Miyata T, Jikihara A, et al. Formation of poly(glucosyloxyethyl methacrylate): concanavalin A complex and its glucose-sensitivity. J Biomater Sci Polym Ed 1994; 6: 79–90

    Article  PubMed  CAS  Google Scholar 

  127. Okahata Y, Nakamura G, Noguchi H. Functional capsule membranes (Pt 29): concanavalin-A-induced permeability control of capsule membranes corked with synthetic glycolipid bilayers or grafted with synthetic glycopolymers. J Chem Soc Perkin 2 Trans 1987: 1317–22

    Google Scholar 

  128. Tomioka K, Fukuda H, Taniguchi H. Insulin delivery system based on an affinity chemical valve. J Ferment Bioeng 1994; 77: 442–4

    Article  CAS  Google Scholar 

  129. Miyata T, Jikihara A, Nakamae K, et al. Preparation of poly(2-glucoyloxyethyl methacrylate) concanavalin A complex hydrogel and its glucose-sensitivity. Macromol Chem Phys 1996; 197: 1135–46

    Article  CAS  Google Scholar 

  130. Beyer U, Ehwald R, Fleischer L-G. Post-stress thickening of dextran/concanavalin A solutions used as sensitive fluids in a viscosimetric affinity assay for glucose. Biotechnol Prog 1997; 13: 722–6

    Article  CAS  Google Scholar 

  131. Valuev IL, Chupov VV, Sytov GA, et al. Phase-reversible hydrogels based on acrylamide-N-(2-D-glucose)acrylamide copolymers. Polym Sci Ser B 1997; 39: 156–58

    Google Scholar 

  132. Ballerstadt R, Ehwald R. Suitability of aqueous dispersions of dextran and concanavalin A for glucose sensing in different variants of the affinity sensor. Biosens Bioelectron 1994; 9: 557–67

    Article  Google Scholar 

  133. Beyer U, Ehwald R. Compensation of temperature and concanavalin A concentratration effects for glucose determination by the viscometric affinity assay. Biotechnol Prog 2000; 16: 1119–23

    Article  PubMed  CAS  Google Scholar 

  134. Ehwald R, Ballerstadt R, Dautzenberg H. Viscosimetric affinity assay. Anal Biochem 1996; 234: 1–8

    Article  PubMed  CAS  Google Scholar 

  135. Taylor M, De Montfort University. Drug system. Patent application 9200638.6 (drug system I), patent WO 93/13803. US patent 5,830,506, 1998 (divisional 09/124,694 pending). European Patent No. EP0,626,862 Bl 1999 (issued 1992)

  136. Taylor MJ, Tanna S, Cockshott S, et al. A novel self regulated delivery system using unmodified solutes in glucose sensitive gel membranes. In: Sam A, editor. Proceedings of the Third European Symposium on Controlled Drug Delivery; 1994 Apr 6–8. Noordwijk: Controlled Release Society, 1994: 240–5

  137. Taylor MJ, Tanna S. A self regulated delivery system using unmodified solutes in glucose sensitive gel membranes [abstract]. J Pharm Pharmacol 1994; 46: 1051A

    Google Scholar 

  138. Tanna S, Taylor MJ. A self regulating delivery system using high molecular weight solutes in glucose sensitive gel membranes [abstract]. J Pharm Pharmacol 1994; 46: 1051B

    Google Scholar 

  139. Tang M, Zhang R, Bowyer A, et al. A reversible hydrogel membrane for controlling the delivery of macromolecules. Biotechnol Bioeng 2003; 82: 47–53

    Article  PubMed  CAS  Google Scholar 

  140. Obaidat A, Park K. Glucose-dependent release of proteins through glucose-sensitive phase-reversible hydrogel membranes [abstract no. 160]. American Chemical Society 2nd International Symposium on Biorelated Polymers: Advances in Polymeric Drugs and Drug Design; 1996 Aug 25–30; Orlando

  141. Obaidat AA, Park K. Characterization of glucose dependent gel-sol phase transition of the polymeric glucose-concanavalin A hydrogel system. Pharm Res 1996; 13: 989–95

    Article  PubMed  CAS  Google Scholar 

  142. Kim JJ, Park K. Glucose-binding property of pegylated concanavalin A. Pharm Res 2001; 18: 794–9

    Article  PubMed  CAS  Google Scholar 

  143. Kim JJ, Park K. Modulated insulin delivery from glucose-sensitive hydrogel dosage forms. J Control Release 2001; 77: 39–47

    Article  PubMed  CAS  Google Scholar 

  144. Taylor MJ, Tanna S, Taylor PM, et al. The delivery of insulin from aqueous and non-aqueous reservoirs governed by a glucose sensitive gel membrane. J Drug Target 1995; 3: 209–16

    Article  PubMed  CAS  Google Scholar 

  145. Taylor M, De Montfort University. Drug system II. Patent application 9313484.9, patent WO 95/01186. US patent 5,902,607 1999 (divisional 09/124,445 pending). European Patent Application No. 94,918,945.0; PCT EP0706401 (pending), 1993

  146. Tanna S, Taylor M. Characterization of model solute and insulin delivery across covalently modified lectin-polysaccharide gels sensitive to glucose. J Pharm Pharmacol Commun 1998; 4: 117–22

    CAS  Google Scholar 

  147. Tanna S, Taylor M, Adams G. Insulin delivery governed by covalently modified lectin-glycogen gels sensitive to glucose. J Pharm Pharmacol 1999; 51: 1093–8

    Article  PubMed  CAS  Google Scholar 

  148. Kim J, Park K. Immobilization of concanavalin A to glucose containing polymers. Makromol Symp 2001; 172: 95–102

    Article  CAS  Google Scholar 

  149. Tang M, Zhang R, Bowyer A, et al. A reversible hydrogel membrane for controlling the delivery of macromolecules. Biotechnol Bioeng 2003; 82: 47–53

    Article  PubMed  CAS  Google Scholar 

  150. Miyata T, Asami N, Uragami T. A reversibly antigen-responsive hydrogel. Nature 1999; 399: 766–9

    Article  PubMed  CAS  Google Scholar 

  151. Tanna S, Sahota T, Clark J, et al. Covalent coupling of concanavalin A to a carbopol 934P and 941P carrier in glucose-sensitive gels for delivery of insulin. J Pharm Pharmacol 2002; 54: 1461–9

    Article  PubMed  CAS  Google Scholar 

  152. Tanna S, Sahota T, Clark J, et al. A covalently stabilised glucose responsive gel formulation with a carbopol carrier. J Drug Target 2002; 10: 411–8

    Article  PubMed  CAS  Google Scholar 

  153. Tanna S, Taylor MJ, Sahota TS. Viscoelastic properties of a novel glucose-sensitive gel for self-regulated insulin delivery [abstract]. J Pharm Pharmacol 2002; 54: S17

    Article  CAS  Google Scholar 

  154. Taylor MJ, Clark J, Sahota TS, et al. Self-regulated insulin delivery in-vivo [abstract]. J Pharm Pharmacol 2002; 54: S20

    Google Scholar 

  155. Taylor M. Improving insulin therapy. Drug Deliv Syst Sci 2002; 1: 101–5

    Google Scholar 

  156. Taylor M, Clark J, Tanna S, et al. Closed loop insulin delivery in vivo. Drug Deliv Syst Sci 2003; 3: 11–7

    CAS  Google Scholar 

  157. Seong H, Lee HB, Park K. Glucose binding to molecularly imprinted polymers. J Biomater Sci Polym Ed 2002; 13: 637–49

    Article  PubMed  CAS  Google Scholar 

  158. Li T, Lee HB, Park K. Comparative stereochemical analysis of glucose-binding proteins for rational design of glucose-specific agents. J Biomater Sci Polym Ed 1998; 9: 327–44

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this manuscript. The authors have no conflicts of interest that are directly relevant to the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Joan Taylor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, M.J., Tanna, S. & Sahota, T.S. Closed-loop delivery of insulin. Am J Drug Deliv 2, 1–13 (2004). https://doi.org/10.2165/00137696-200402010-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00137696-200402010-00001

Keywords

Navigation