Skip to main content
Log in

Peroxisome Proliferator-Activated Receptor-γ Agonists for Management and Prevention of Vascular Disease in Patients with and without Diabetes Mellitus

  • Review Article
  • Published:
American Journal of Cardiovascular Drugs Aims and scope Submit manuscript

Abstract

Inflammation is known to have a pathogenic role in atherosclerosis and the genesis of acute coronary syndromes. The peroxisome proliferator-activated receptor (PPAR)-γ, which is expressed in many constituent cells of atheromatous plaques, inhibits the activation of several proinflammatory genes responsible for atheromatous plaque development and maturation. Agonists of this receptor, such as rosiglitazone and pioglitazone, are currently available for the treatment of type 2 diabetes mellitus, and several lines of evidence have shown that these drugs have antiatherogenic effects. Insulin resistance is associated with inflammation and has a key role in atherogenesis. The antiatherogenic and insulin sensitizing effects of the thiazolidinediones in patients with type 2 diabetes mellitus may be associated with this action. However, in recent years there has been growing evidence that the antiatherogenic effects of PPAR-γ agonists are not confined to patients with diabetes mellitus. PPAR-γ agonists have been shown to downregulate the expression of endothelial activation markers, reduce circulating platelet activity, improve flow-mediated dilatation and attenuate atheromatous plaque progression in patients without diabetes mellitus. These effects of PPAR-γ agonists appear to result from both insulin sensitization and a direct modulation of transcriptional activity in the vessel wall. This review summarizes the current understanding of the role of PPAR-γ agonists in atherogenesis and discusses their potential role in the treatment of coronary artery disease in patients with type 2 diabetes mellitus and in nondiabetic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Fig. 1

Similar content being viewed by others

References

  1. Levi F, Lucchini F, Negri E, et al. Trends in mortality from cardiovascular and cerebrovascular diseases in Europe and other areas of the world. Heart 2002; 88: 119–24.

    Article  PubMed  CAS  Google Scholar 

  2. Ross R. Atherosclerosis: an inflammatory disease. N Engl J Med 1999; 340: 115–26.

    Article  PubMed  CAS  Google Scholar 

  3. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation 2002; 105: 1135–43.

    Article  PubMed  CAS  Google Scholar 

  4. Haffner SM, Miettinen H. Insulin resistance implications for type II diabetes mellitus and coronary heart disease. Am J Med 1997; 103: 152–62.

    Article  PubMed  CAS  Google Scholar 

  5. Marx N, Sukhova G, Murphy C, et al. Macrophages in human atheroma contain PPARgamma: differentiation-dependent peroxisomal proliferator-activated receptor gamma (PPARgamma) expression and reduction of MMP-9 activity through PPARgamma activation in mononuclear phagocytes in vitro. Am J Pathol 1998; 153: 17–23.

    Article  PubMed  CAS  Google Scholar 

  6. Ricote M, Huang J, Fajas L, et al. Expression of the peroxisome proliferator-activated receptor gamma (PPARgamma) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein. Proc Natl Acad Sci U S A 1998; 95: 7614–9.

    Article  PubMed  CAS  Google Scholar 

  7. Braissant O, Foufelle F, Scotto C, et al. Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, — beta, and -gamma in the adult rat. Endocrinology 1996; 137: 354–66.

    Article  PubMed  CAS  Google Scholar 

  8. Giguere V. Orphan nuclear receptors: from gene to function. Endocr Rev 1999; 20: 689–725.

    Article  PubMed  CAS  Google Scholar 

  9. Torra IP, Chinetti G, Duval C, et al. Peroxisome proliferator-activated receptors: from transcriptional control to clinical practice. Curr Opin Lipidol 2001; 12: 245–54.

    Article  PubMed  CAS  Google Scholar 

  10. Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 1990; 347: 645–50.

    Article  PubMed  CAS  Google Scholar 

  11. Keller H, Dreyer C, Medin J, et al. Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers. Proc Natl Acad Sci U S A 1993; 90: 2160–4.

    Article  PubMed  CAS  Google Scholar 

  12. Desvergne B, Wahli W. PPAR: a key nuclear factor in nutrient/gene interactions? In: Bauerle I, editor. Inducible transcription. Boston (MA): Birkhauser, 1995: 142–76.

    Google Scholar 

  13. Miyata KS, McCaw SE, Marcus SL, et al. The peroxisome proliferator-activated receptor interacts with the retinoid X receptor in vivo. Gene 1994; 148: 327–30.

    Article  PubMed  CAS  Google Scholar 

  14. Berger J, Moller DE. The mechanisms of action of PPARs. Annu Rev Med 2002; 53: 409–35.

    Article  PubMed  CAS  Google Scholar 

  15. Auwerx J. PPARγ, the ultimate thrifty gene. Diabetologia 1999; 42: 1033–49.

    Article  PubMed  CAS  Google Scholar 

  16. Tontonoz P, Hu E, Graves RA, et al. mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev 1994; 8: 1224–34.

    Article  PubMed  CAS  Google Scholar 

  17. Nedergaard J, Petrovic N, Lindgren EM, et al. PPARgamma in the control of brown adipocyte differentiation. Biochim Biophys Acta 2005; 1740: 293–304.

    Article  PubMed  CAS  Google Scholar 

  18. Tontonoz P, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 1994; 79: 1147–56.

    Article  PubMed  CAS  Google Scholar 

  19. Wilson TM, Brown PJ, Strenbach DD, et al. The PPARs: from orphan receptors to drug discovery. J Med Chem 2000; 43: 527–50.

    Article  CAS  Google Scholar 

  20. Lehmann JM, Moore LB, Smith-Oliver TA, et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem 1995; 270: 12953–6.

    Article  PubMed  CAS  Google Scholar 

  21. Schoonjans K, Auwerx J. Thiazolidinediones: an update. Lancet 2000; 355: 1008–10.

    Article  PubMed  CAS  Google Scholar 

  22. Saltiel AR, Olefsky JM. Thiazolidinediones in the treatment of insulin resistance and type II diabetes. Diabetes 1996; 45: 1661–9.

    Article  PubMed  CAS  Google Scholar 

  23. Watkins PB, Whitcomb RW. Hepatic dysfunction associated with troglitazone. N Engl J Med 1998; 338: 916–7.

    Article  PubMed  CAS  Google Scholar 

  24. Sidhu JS, Cowan D, Kaski JC. The effects of rosiglitazone, a peroxisome proliferator-activated receptor-gamma agonist, on markers of endothelial cell activation, C-reactive protein, and fibrinogen levels in non-diabetic coronary artery disease patients. J Am Coll Cardiol 2003; 42: 1757–63.

    Article  PubMed  CAS  Google Scholar 

  25. Sidhu JS, Cowan D, Kaski JC. Effects of rosiglitazone on endothelial function in men with coronary artery disease without diabetes mellitus. Am J Cardiol 2004; 94: 151–6.

    Article  PubMed  CAS  Google Scholar 

  26. Sidhu JS, Kaposzta Z, Markus HS, et al. Effect of rosiglitazone on common carotid intima-media thickness progression in coronary artery disease patients without diabetes mellitus. Arterioscler Thromb Vasc Biol 2004; 24: 930–4.

    Article  PubMed  CAS  Google Scholar 

  27. Sidhu JS, Cowan D, Tooze JA, et al. Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone reduces circulating platelet activity in patients without diabetes mellitus who have coronary artery disease. Am Heart J 2004; 147: e25.

    Article  PubMed  CAS  Google Scholar 

  28. Weissberg PL. Atherogenesis: current understanding of the causes of atheroma. Heart 2000; 83: 247–52.

    Article  PubMed  CAS  Google Scholar 

  29. Berliner JA, Navab M, Fogelman AM, et al. Atherosclerosis: basic mechanisms: oxidation, inflammation, and genetics. Circulation 1995; 91: 2488–96.

    Article  PubMed  CAS  Google Scholar 

  30. Rajavashisth TB, Andalibi A, Territo MC, et al. Induction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modified low-density lipoproteins. Nature 1990; 344: 254–7.

    Article  PubMed  CAS  Google Scholar 

  31. Davies MJ. Reactive oxygen species, metalloproteinases, and plaque stability. Circulation 1998; 97: 2382–3.

    Article  PubMed  CAS  Google Scholar 

  32. Fuster V, Badimon L, Badimon JJ, et al. The pathogenesis of coronary artery disease and the acute coronary syndromes (2). N Engl J Med 1992; 326: 310–8.

    Article  PubMed  CAS  Google Scholar 

  33. Barnes PJ, Karin M. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 1997; 336: 1066–71.

    Article  PubMed  CAS  Google Scholar 

  34. Collins AJ, Levey AS, Sarnak MJ. C-reactive protein and albumin as predictors of all-cause and cardiovascular mortality in chronic kidney disease. Kidney Int 2005; 68: 766–72.

    PubMed  Google Scholar 

  35. Folsom AR, Eckfeldt JH, Weitzman S, et al. Relation of carotid artery wall thickness to diabetes mellitus, fasting glucose and insulin, body size, and physical activity. Atherosclerosis Risk in Communities (ARIC) Study Investigators. Stroke 1994; 25: 66–73.

    Article  PubMed  CAS  Google Scholar 

  36. Howard G, O’Leary DH, Zaccaro D, et al. Insulin sensitivity and atherosclerosis. Circulation 1996; 93: 1809–17.

    Article  PubMed  CAS  Google Scholar 

  37. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Circulation 2002; 106: 3143–421.

    Google Scholar 

  38. Stout RW. Insulin and atheroma: 20-yr perspective. Diabetes Care 1990; 13: 631–54.

    Article  PubMed  CAS  Google Scholar 

  39. Rewers M, Zaccaro D, D’Agostino R, et al. Insulin sensitivity, insulinemia, and coronary artery disease: the Insulin Resistance Atherosclerosis Study. Diabetes Care 2004; 27: 781–7.

    Article  PubMed  CAS  Google Scholar 

  40. Grundy SM. Hypertriglyceridemia, insulin resistance, and the metabolic syndrome. Am J Cardiol 1999; 83: 25F–9F.

    Article  PubMed  CAS  Google Scholar 

  41. Montalescot G, Collet JP, Choussat R, et al. Fibrinogen as a risk factor for coronary heart disease. Eur Heart J 1998; 19 Suppl. H: H11–7.

    PubMed  CAS  Google Scholar 

  42. Bern MM. Platelet functions in diabetes mellitus. Diabetes 1978; 27: 342–50.

    PubMed  CAS  Google Scholar 

  43. Vague P, Juhan-Vague I, Aillaud MF, et al. Correlation between blood fibrinolytic activity, plasminogen activator inhibitor level, plasma insulin level, and relative body weight in normal and obese subjects. Metabolism 1986; 35: 250–3.

    Article  PubMed  CAS  Google Scholar 

  44. Vinik AI, Erbas T, Park TS, et al. Platelet dysfunction in type 2 diabetes. Diabetes Care 2001; 24: 1476–85.

    Article  PubMed  CAS  Google Scholar 

  45. Juhan-Vague I, Thompson SG, Jespersen J. Involvement of the hemostatic system in the insulin resistance syndrome: a study of 1500 patients with angina pectoris. The ECAT Angina Pectoris Study Group. Arterioscler Thromb 1993; 13: 1865–73.

    Article  PubMed  CAS  Google Scholar 

  46. Byberg L, Siegbahn A, Berglund L, et al. Plasminogen activator inhibitor-1 activity is independently related to both insulin sensitivity and serum triglycerides in 70-year-old men. Arterioscler Thromb Vasc Biol 1998; 18: 258–64.

    Article  PubMed  CAS  Google Scholar 

  47. Festa A, D’Agostino R, Mykkanen L, et al. Relative contribution of insulin and its precursors to fibrinogen and PAI-1 in a large population with different states of glucose tolerance: the Insulin Resistance Atherosclerosis Study (IRAS). Arterioscler Thromb Vasc Biol 1999; 19: 562–8.

    Article  PubMed  CAS  Google Scholar 

  48. Suzuki M, Takamisawa I, Suzuki K, et al. Close association of endothelial dysfunction with insulin resistance and carotid wall thickening in hypertension. Am J Hypertens 2004; 17: 228–32.

    Article  PubMed  CAS  Google Scholar 

  49. De Vriese AS, Verbeuren TJ, Van de Voorde J, et al. Endothelial dysfunction in diabetes. Br J Pharmacol 2000; 130: 963–74.

    Article  PubMed  Google Scholar 

  50. Bluher M, Unger R, Rassoul F, et al. Relation between glycaemic control, hyperinsulinaemia and plasma concentrations of soluble adhesion molecules in patients with impaired glucose tolerance or type II diabetes. Diabetologia 2002; 45: 210–6.

    Article  PubMed  CAS  Google Scholar 

  51. Watanabe Y, Sunayama S, Shimada K, et al. Troglitazone improves endothelial dysfunction in patients with insulin resistance. J Atheroscler Thromb 2000; 7: 159–63.

    PubMed  CAS  Google Scholar 

  52. Pradhan AD, Manson JE, Rifai N, et al. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 2001; 286: 327–34.

    Article  PubMed  CAS  Google Scholar 

  53. Moller DE. Potential role of TNF-alpha in the pathogenesis of insulin resistance and type 2 diabetes. Trends Endocrinol Metab 2000; 11: 212–7.

    Article  PubMed  CAS  Google Scholar 

  54. Hotamisligil GS, Murray DL, Choy LN, et al. Tumor necrosis factor alpha inhibits signaling from the insulin receptor. Proc Natl Acad Sci U S A 1994; 91: 4854–8.

    Article  PubMed  CAS  Google Scholar 

  55. Perry C, Sattar N, Petrie J. Adipose tissue: passive sump or active pump? Br J Diabetes Vasc Dis 2001; 1: 110–4.

    Article  CAS  Google Scholar 

  56. Castrillo A, Diaz-Guerra MJ, Hortelano S, et al. Inhibition of IkappaB kinase and IkappaB phosphorylation by 15-deoxy-Delta(12,14)-prostaglandin J(2) in activated murine macrophages. Mol Cell Biol 2000; 20: 1692–8.

    Article  PubMed  CAS  Google Scholar 

  57. Takata Y, Kitami Y, Yang ZH, et al. Vascular inflammation is negatively autoregulated by interaction between CCAAT/enhancer-binding protein-delta and peroxisome proliferator-activated receptor-gamma. Circ Res 2002; 91: 427–33.

    Article  PubMed  CAS  Google Scholar 

  58. Delerive P, Martin-Nizard F, Chinetti G, et al. Peroxisome proliferator-activated receptor activators inhibit thrombin-induced endothelin-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway. Circ Res 1999; 85: 394–402.

    Article  PubMed  CAS  Google Scholar 

  59. Zhou YC, Waxman DJ. Cross-talk between janus kinase-signal transducer and activator of transcription (JAK-STAT) and peroxisome proliferator-activated receptor-alpha (PPARalpha) signaling pathways: growth hormone inhibition of pparalpha transcriptional activity mediated by stat5b. J Biol Chem 1999; 274: 2672–81.

    Article  PubMed  CAS  Google Scholar 

  60. Ricote M, Li AC, Willson TM, et al. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 1998; 391: 79–82.

    Article  PubMed  CAS  Google Scholar 

  61. Calnek DS, Mazzella L, Roser S, et al. Peroxisome proliferator-activated receptor gamma ligands increase release of nitric oxide from endothelial cells. Arterioscler Thromb Vasc Biol 2003; 23: 52–7.

    Article  PubMed  CAS  Google Scholar 

  62. Cho DH, Choi YJ, Jo SA, et al. Nitric oxide production and regulation of endothelial nitric oxide synthase phosphorylation by prolonged treatment with troglitazone. J Biol Chem 2004; 279: 2499–506.

    Article  PubMed  CAS  Google Scholar 

  63. Stuhlinger MC, Abbasi F, Chu JW, et al. Relationship between insulin resistance and an endogenous nitric oxide synthase inhibitor. JAMA 2002; 287: 1420–6.

    Article  PubMed  Google Scholar 

  64. Satoh H, Tsukamoto K, Hashimoto Y, et al. Thiazolidinediones suppress endothelin-1 secretion from bovine vascular endothelial cells: a new possible role of PPARgamma on vascular endothelial function. Biochem Biophys Res Commun 1999; 254: 757–63.

    Article  PubMed  CAS  Google Scholar 

  65. Salomone OA, Elliott PM, Calvino R, et al. Plasma immunoreactive endothelin concentration correlates with severity of coronary artery disease in patients with stable angina pectoris and normal ventricular function. J Am Coll Cardiol 1996; 28: 14–9.

    Article  PubMed  CAS  Google Scholar 

  66. Jiang C, Ting AT, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 1998; 391: 82–6.

    Article  PubMed  CAS  Google Scholar 

  67. Azuma Y, Shinohara M, Wang PL, et al. 15-Deoxy-delta (12,14)-prostaglandin J(2) inhibits IL-10 and IL-12 production by macrophages. Biochem Biophys Res Commun 2001; 283: 344–6.

    Article  PubMed  CAS  Google Scholar 

  68. Murao K, Imachi H, Momoi A, et al. Thiazolidinedione inhibits the production of monocyte chemoattractant protein-1 in cytokine-treated human vascular endothelial cells. FEBS Lett 1999; 454: 27–30.

    Article  PubMed  CAS  Google Scholar 

  69. Ishibashi M, Egashira K, Hiasa K, et al. Antiinflammatory and antiarteriosclerotic effects of pioglitazone. Hypertension 2002; 40: 687–93.

    Article  PubMed  CAS  Google Scholar 

  70. Han KH, Quehenberger O. Ligands for peroxisome proliferator-activated receptor inhibit monocyte CCR2 expression stimulated by plasma lipoproteins. Trends Cardiovasc Med 2000; 10: 209–16.

    Article  PubMed  CAS  Google Scholar 

  71. Pasceri V, Wu HD, Willerson JT, et al. Modulation of vascular inflammation in vitro and in vivo by peroxisome proliferator-activated receptor-gamma activators. Circulation 2000; 101: 235–8.

    Article  PubMed  CAS  Google Scholar 

  72. Chinetti G, Griglio S, Antonucci M, et al. Activation of proliferator-activated receptors alpha and gamma induces apoptosis of human monocyte-derived macrophages. J Biol Chem 1998; 273: 25573–80.

    Article  PubMed  CAS  Google Scholar 

  73. Tontonoz P, Nagy L, Alvarez JG, et al. PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 1998; 93: 241–52.

    Article  PubMed  CAS  Google Scholar 

  74. Nagy L, Tontonoz P, Alvarez JG, et al. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell 1998; 93: 229–40.

    Article  PubMed  CAS  Google Scholar 

  75. Chinetti G, Lestavel S, Bocher V, et al. PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med 2001; 7: 53–8.

    Article  PubMed  CAS  Google Scholar 

  76. Chawla A, Boisvert WA, Lee CH, et al. A PPAR gamma-LXR-ABCAl pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell 2001; 7: 161–71.

    Article  PubMed  CAS  Google Scholar 

  77. Moore KJ, Rosen ED, Fitzgerald M, et al. The role of PPAR-gamma in macrophage differentiation and cholesterol uptake. Nat Med 2001; 7: 41–7.

    Article  PubMed  CAS  Google Scholar 

  78. Lawn RM, Wade DP, Garvin MR, et al. The Tangier disease gene product ABC1 controls the cellular apolipoprotein-mediated lipid removal pathway. J Clin Invest 1999; 104: R25–31.

    Article  PubMed  CAS  Google Scholar 

  79. Gbaguidi FG, Chinetti G, Milosavljevic D, et al. Peroxisome proliferator-activated receptor (PPAR) agonists decrease lipoprotein lipase secretion and glycated LDL uptake by human macrophages. FEBS Lett 2002; 512: 85–90.

    Article  PubMed  CAS  Google Scholar 

  80. Garg R, Kumbkarni Y, Aljada A, et al. Troglitazone reduces reactive oxygen species generation by leukocytes and lipid peroxidation and improves flow-mediated vasodilatation in obese subjects. Hypertension 2000; 36: 430–5.

    Article  PubMed  CAS  Google Scholar 

  81. Tack CJ, Smits P, Demacker PN, et al. Troglitazone decreases the proportion of small, dense LDL and increases the resistance of LDL to oxidation in obese subjects. Diabetes Care 1998; 21: 796–9.

    Article  PubMed  CAS  Google Scholar 

  82. Clark RB, Bishop-Bailey D, Estrada-Hernandez T, et al. The nuclear receptor PPAR gamma and immunoregulation: PPAR gamma mediates inhibition of helper T cell responses. J Immunol 2000; 164: 1364–71.

    PubMed  CAS  Google Scholar 

  83. Law RE, Meehan WP, Xi XP, et al. Troglitazone inhibits vascular smooth muscle cell growth and intimai hyperplasia. J Clin Invest 1996; 98: 1897–905.

    Article  PubMed  CAS  Google Scholar 

  84. Wakino S, Kintscher U, Kim S, et al. Peroxisome proliferator-activated receptor gamma ligands inhibit retinoblastoma phosphorylation and G1-> S transition in vascular smooth muscle cells. J Biol Chem 2000; 275: 22435–41.

    Article  PubMed  CAS  Google Scholar 

  85. Sugawara A, Takeuchi K, Uruno A, et al. Transcriptional suppression of type 1 angiotensin II receptor gene expression by peroxisome proliferator-activated receptor-gamma in vascular smooth muscle cells. Endocrinology 2001; 142: 3125–34.

    Article  PubMed  CAS  Google Scholar 

  86. Takeda K, Ichiki T, Tokunou T, et al. Peroxisome proliferator-activated receptor gamma activators downregulate angiotensin II type 1 receptor in vascular smooth muscle cells. Circulation 2000; 102: 1834–9.

    Article  PubMed  CAS  Google Scholar 

  87. Griendling KK, Ushio-Fukai M, Lassegue B, et al. Angiotensin II signaling in vascular smooth muscle: new concepts. Hypertension 1997; 29: 366–73.

    Article  PubMed  CAS  Google Scholar 

  88. Inoue H, Tanabe T, Umesono K. Feedback control of cyclooxygenase-2 expression through PPARgamma. J Biol Chem 2000; 275: 28028–32.

    PubMed  CAS  Google Scholar 

  89. Baker CS, Hall RJ, Evans TJ, et al. Cyclooxygenase-2 is widely expressed in atherosclerotic lesions affecting native and transplanted human coronary arteries and colocalizes with inducible nitric oxide synthase and nitrotyrosine particularly in macrophages. Arterioscler Thromb Vasc Biol 1999; 19: 646–55.

    Article  PubMed  CAS  Google Scholar 

  90. Burleigh ME, Babaev VR, Oates JA, et al. Cyclooxygenase-2 promotes early atherosclerotic lesion formation in LDL receptor-deficient mice. Circulation 2002; 105: 1816–23.

    Article  PubMed  CAS  Google Scholar 

  91. Ikeda Y, Sugawara A, Taniyama Y, et al. Suppression of rat thromboxane synthase gene transcription by peroxisome proliferator-activated receptor gamma in macrophages via an interaction with NRF2. J Biol Chem 2000; 275: 33142–50.

    Article  PubMed  CAS  Google Scholar 

  92. Hamberg M, Svensson J, Samuelsson B. Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proc Natl Acad Sci U S A 1975; 72: 2994–8.

    Article  PubMed  CAS  Google Scholar 

  93. Sugawara A, Takeuchi K, Uruno A, et al. Differential effects among thiazolidinediones on the transcription of thromboxane receptor and angiotensin II type 1 receptor genes. Hypertens Res 2001; 24: 229–33.

    Article  PubMed  CAS  Google Scholar 

  94. Kato K, Satoh H, Endo Y, et al. Thiazolidinediones down-regulate plasminogen activator inhibitor type 1 expression in human vascular endothelial cells: a possible role for PPARgamma in endothelial function. Biochem Biophys Res Commun 1999; 258: 431–5.

    Article  PubMed  CAS  Google Scholar 

  95. Zirlik A, Leugers A, Lohrmann J, et al. Direct attenuation of plasminogen activator inhibitor type-1 expression in human adipose tissue by thiazolidinediones. Thromb Haemost 2004; 91: 674–82.

    PubMed  CAS  Google Scholar 

  96. He G, Pedersen SB, Bruun JM, et al. Differences in plasminogen activator inhibitor 1 in subcutaneous versus omental adipose tissue in non-obese and obese subjects. Horm Metab Res 2003; 35: 178–82.

    Article  PubMed  CAS  Google Scholar 

  97. Pfützner A, Marx N, Lübben G, et al. Improvement of cardiovascular risk markers by pioglitazone is independent from glycemic control results from the pioneer study. J Am Coll Cardiol 2005; 45: 1925–31.

    Article  PubMed  CAS  Google Scholar 

  98. Osman A, Otero J, Brizolara A, et al. Effect of rosiglitazone on restenosis after coronary stenting in patients with type 2 diabetes. Am Heart J 2004; 147: e23.

    Article  PubMed  CAS  Google Scholar 

  99. Stoneman VE, Bennett MR. Role of apoptosis in atherosclerosis and its therapeutic implications. Clin Sci (Lond) 2004; 107: 343–54.

    Article  CAS  Google Scholar 

  100. Laster SM, Wood JG, Gooding LR. Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis. J Immunol 1988; 141: 2629–34.

    PubMed  CAS  Google Scholar 

  101. Chen K, Vita JA, Berk BC, et al. c-Jun N-terminal kinase activation by hydrogen peroxide in endothelial cells involves SRC-dependent epidermal growth factor receptor transactivation. J Biol Chem 2001; 276: 16045–50.

    Article  PubMed  CAS  Google Scholar 

  102. Avena R, Mitchell ME, Nylen ES, et al. Insulin action enhancement normalizes brachial artery vasoactivity in patients with peripheral vascular disease and occult diabetes. J Vasc Surg 1998; 28: 1024–31.

    Article  PubMed  CAS  Google Scholar 

  103. Martens FM, Visseren FL, de Koning EJ, et al. Short-term pioglitazone treatment improves vascular function irrespective of metabolic changes in patients with type 2 diabetes. J Cardiovasc Pharmacol 2005; 46: 773–8.

    Article  PubMed  CAS  Google Scholar 

  104. Caballero AE, Saouaf R, Lim SC, et al. The effects of troglitazone, an insulin-sensitizing agent, on the endothelial function in early and late type 2 diabetes: a placebo-controlled randomized clinical trial. Metabolism 2003 Feb; 52(2): 173–80.

    Article  PubMed  CAS  Google Scholar 

  105. Minamikawa J, Tanaka S, Yamauchi M, et al. Potent inhibitory effect of troglitazone on carotid arterial wall thickness in type 2 diabetes. J Clin Endocrinol Metab 1998; 83: 1818–20.

    Article  PubMed  CAS  Google Scholar 

  106. Koshiyama H, Shimono D, Kuwamura N, et al. Rapid communication: inhibitory effect of pioglitazone on carotid arterial wall thickness in type 2 diabetes. J Clin Endocrinol Metab 2001; 86: 3452–6.

    Article  PubMed  CAS  Google Scholar 

  107. Mizushige K, Noma T, Yao L, et al. Effects of troglitazone on collagen accumulation and distensibility of aortic wall in prestage of non-insulin-dependent diabetes mellitus of Otsuka Long-Evans Tokushima Fatty rats. J Cardiovasc Pharmacol 2000; 35: 150–5.

    Article  PubMed  CAS  Google Scholar 

  108. Takagi T, Akasaka T, Yamamuro A, et al. Troglitazone reduces neointimal tissue proliferation after coronary stent implantation in patients with non-insulin dependent diabetes mellitus. J Am Coll Cardiol 2000; 36: 1529–35.

    Article  PubMed  CAS  Google Scholar 

  109. Takagi T, Yamamuro A, Tamita K, et al. Pioglitazone reduces neointimal tissue proliferation after coronary stent implantation in patients with type 2 diabetes mellitus: an intravascular ultrasound scanning study. Am Heart J 2003; 146: E5.

    Article  PubMed  CAS  Google Scholar 

  110. Choi D, Kim SK, Choi SH, et al. Preventative effects of rosiglitazone on restenosis after coronary stent implantation in patients with type 2 diabetes. Diabetes Care 2004; 27: 2654–60.

    Article  PubMed  CAS  Google Scholar 

  111. Aljada A, Garg R, Ghanim H, et al. Nuclear factor-kappa B suppressive and inhibitor-kappa B stimulatory effects of troglitazone in obese patients with type 2 diabetes: evidence of an anti-inflammatory action? J Clin Endocrinol Metab 2001; 86: 3250–6.

    Article  PubMed  CAS  Google Scholar 

  112. Cominacini L, Garbin U, Fratta Pasini A, et al. Troglitazone reduces LDL oxidation and lowers plasma E-selectin concentration in NIDDM patients. Diabetes 1998; 47: 130–3.

    Article  PubMed  CAS  Google Scholar 

  113. Haffner SM, Greenberg AS, Weston WM, et al. Effect of rosiglitazone treatment on nontraditional markers of cardiovascular disease in patients with type 2 diabetes mellitus. Circulation 2002; 106: 679–84.

    Article  PubMed  CAS  Google Scholar 

  114. Mohanty P, Aljada A, Ghanim H, et al. Evidence for a potent antiinflammatory effect of rosiglitazone. J Clin Endocrinol Metab 2004; 89: 2728–35.

    Article  PubMed  CAS  Google Scholar 

  115. Osende JI, Badimon JJ, Fuster V, et al. Blood thrombogenicity in type 2 diabetes mellitus patients is associated with glycemic control. J Am Coll Cardiol 2001; 38: 1307–12.

    Article  PubMed  CAS  Google Scholar 

  116. Lawrence JM, Reid J, Taylor GJ, et al. Favorable effects of pioglitazone and metformin compared with gliclazide on lipoprotein subfractions in overweight patients with early type 2 diabetes. Diabetes Care 2004; 27: 41–6.

    Article  PubMed  CAS  Google Scholar 

  117. Hirano T, Yoshino G, Kazumi T. Troglitazone and small low-density lipoprotein in type 2 diabetes. Ann Intern Med 1998; 129: 162–3.

    PubMed  CAS  Google Scholar 

  118. Florkowski CM. Management of co-existing diabetes mellitus and dyslipidemia: defining the role of thiazolidinediones. Am J Cardiovasc Drugs 2002; 2: 15–21.

    Article  PubMed  CAS  Google Scholar 

  119. Rosenblatt S, Miskin B, Glazer NB, et al. The impact of pioglitazone on glycemie control and atherogenic dyslipidemia in patients with type 2 diabetes mellitus. Pioglitazone 026 Study Group. Coron Artery Dis 2001; 12: 413–23.

    Article  PubMed  CAS  Google Scholar 

  120. Ogihara T, Rakugi H, Ikegami H, et al. Enhancement of insulin sensitivity by troglitazone lowers blood pressure in diabetic hypertensives. Am J Hypertens 1995; 8: 316–20.

    Article  PubMed  CAS  Google Scholar 

  121. Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 2005; 366: 1279–89.

    Google Scholar 

  122. Ghanim H, Garg R, Aljada A, et al. Suppression of nuclear factor-kappaB and stimulation of inhibitor kappaB by troglitazone: evidence for an anti-inflammatory effect and a potential antiatherosclerotic effect in the obese. J Clin Endocrinol Metab 2001; 86: 1306–12.

    Article  PubMed  CAS  Google Scholar 

  123. Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28: 412–9.

    Article  PubMed  CAS  Google Scholar 

  124. Hetzel J, Balletshofer B, Rittig K, et al. Rapid effects of rosiglitazone treatment on endothelial function and inflammatory biomarkers. Arterioscler Thromb Vasc Biol 2005; 9: 1804–9.

    Article  CAS  Google Scholar 

  125. Ishiwata S, Tukada T, Nakanishi S, et al. Postangioplasty restenosis: platelet activation and the coagulation-fibrinolysis system as possible factors in the pathogenesis of restenosis. Am Heart J 1997; 133: 387–92.

    Article  PubMed  CAS  Google Scholar 

  126. Akbiyik F, Ray DM, Gettings KF, et al. Human bone marrow megakaryocytes and platelets express PPARγ, and PPARγ agonists blunt platelet release of CD40 ligand and thromboxanes. Blood 2004; 104: 1361–8.

    Article  PubMed  CAS  Google Scholar 

  127. Ishizuka T, Itaya S, Wada H, et al. Differential effect of the antidiabetic thiazolidinediones troglitazone and pioglitazone on human platelet aggregation mechanism. Diabetes 1998; 47: 1494–500.

    Article  PubMed  CAS  Google Scholar 

  128. Li D, Chen K, Sinha N, et al. The effects of PPAR-gamma ligand pioglitazone on platelet aggregation and arterial thrombus formation. Cardiovasc Res 2005; 65: 907–12.

    Article  PubMed  CAS  Google Scholar 

  129. Michelson AD, Furman MI. Laboratory markers of platelet activation and their clinical significance. Curr Opin Hematol 1999; 6: 342–8.

    Article  PubMed  CAS  Google Scholar 

  130. Baldassarre D, Veglia F, Gobbi C, et al. Intima-media thickness after pravastatin stabilizes also in patients with moderate to no reduction in LDL-cholesterol levels: the carotid atherosclerosis Italian ultrasound study. Atherosclerosis 2000; 151: 575–83.

    Article  PubMed  CAS  Google Scholar 

  131. Wiklund O, Hulthe J, Wikstrand J, et al. Effect of controlled release/extended release metoprolol on carotid intima-media thickness in patients with hypercholesterolemia: a 3-year randomized study. Stroke 2002; 33: 572–7.

    Article  PubMed  CAS  Google Scholar 

  132. Lebovitz HE, Kreider M, Freed MI. Evaluation of liver function in type 2 diabetic patients during clinical trials: evidence that rosiglitazone does not cause hepatic dysfunction. Diabetes Care 2002; 25: 815–21.

    Article  PubMed  CAS  Google Scholar 

  133. Gillies PS, Dunn CJ. Pioglitazone. Drugs 2000; 60: 333–43.

    Article  PubMed  CAS  Google Scholar 

  134. Nesto RW, Bell D, Bonow RO, et al. Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. Circulation 2003; 108: 2941–8.

    Article  PubMed  Google Scholar 

  135. Niemeyer NV, Janney LM. Thiazolidinedione-induced edema. Pharmacotherapy 2002; 22: 924–9.

    Article  PubMed  Google Scholar 

  136. St John Sutton M, Rendell M, Dandona P, et al. A comparison of the effects of rosiglitazone and glyburide on cardiovascular function and glycemic control in patients with type 2 diabetes. Diabetes Care 2002; 25: 2058–64.

    Article  Google Scholar 

Download references

Acknowledgments

No sources of funding were used to assist in the preparation of this review. Dr Ríos-Vázquez and Dr Marzoa-Rivas are recipients of research scholarships from the Spanish Society of Cardiology. Dr Gil-Ortega is the recipient of a research scholarship from the Spanish Society of Cardiology and a grant from Medtronic Iberica S.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Kaski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ríos-Vázquez, R., Marzoa-Rivas, R., Gil-Ortega, I. et al. Peroxisome Proliferator-Activated Receptor-γ Agonists for Management and Prevention of Vascular Disease in Patients with and without Diabetes Mellitus. Am J Cardiovasc Drugs 6, 231–242 (2006). https://doi.org/10.2165/00129784-200606040-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129784-200606040-00003

Keywords

Navigation