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Currently, over 40 million HIV-infected individuals are found around theAbstract
globe, with an additional 15 000 daily infections. There is a general consensus that
the most effective way to prevent new infections is to introduce a prophylactic
vaccine. It is also generally agreed that both cytotoxic T lymphocytes (CTLs) and
neutralising antibodies are important to mediate protection. The neutralising
antibodies must be broadly reactive to neutralise multiple primary isolates. There
is also increasing agreement that CTLs and neutralising antibodies should be
present at mucosal sites of HIV entry, the draining lymph nodes and systemically.
The route of immunisation is important when determining the site where protec-
tion is desired, i.e. the female genitourinary tract versus the male or female rectum
versus systemic tissues, as are the type of HIV-related antigens, immunopotentiat-
ing adjuvants and delivery systems. Finally, multiple vaccine delivery systems
may be required to be administered through both mucosal and parenteral routes to
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induce optimal immune responses and protection against HIV infection through
rectal, vaginal or systemic routes of transmission. This review discusses current
efforts on the generation of optimal immune responses against HIV in the
genitourinary and intestinal tracts using mucosal immunisations alone or combi-
nations of mucosal and parenteral immunisations.

1. Introduction dimeric IgA and IgM against the HIV envelope
protein (env).[7]

Currently, over 40 million HIV-infected individ-
By far the majority of current vaccinations are

uals are found around the globe, with an additional
performed through parenteral routes. However, mu-

15 000 daily infections. Presently, there is no effec-
cosal vaccination offers several benefits over paren-

tive vaccine to prevent HIV infection and acquired
teral routes of vaccination, including ease of admin-

immunodeficiency syndrome (AIDS). The goal of
istration, the possibility of self-administration, elim-

vaccination is to generate adaptive immune re-
inating the chance of injection with infected needles,

sponses that lead to immunological memory. How-
and induction of mucosal as well as systemic immu-ever, the mechanisms of generation and mainte-
nity. For instance, the nostrils, as opposed to thenance of innate, adaptive and memory responses in
rectal or vaginal routes, are readily exposed andthe female genital tract and rectum, the most preva-
available for administration of vaccines by healthlent routes of HIV transmission, are not well under-
professionals or even by self-administration. Thus,stood. Although more than 35 HIV vaccine clinical
in terms of ease of administration, the intranasaltrials have been performed using protein- and DNA-
route resembles the oral route. However, althoughbased vaccines, as well as live recombinant vectors,
the oral route has been used for drug delivery forfew, if any, have included a mucosal route of im-
centuries and is much preferred, intranasal im-munisation.[1]

munisation generally requires much lower doses ofBecause HIV/SIV (simian immunodeficiency vi-
antigen, with important implications for many, oftenrus) has been shown to infect cells within mucosal
costly, recombinant antigens. Lower doses are pos-membranes of the vagina and rectum as well as
sible by the intranasal route mainly because in-systemic lymphoid tissues,[2-4] it is expected that
tranasal immunisation, as opposed to oral, does notboth local and generalised systemic immunity
expose antigens to low pH and proteases.would be required to prevent infection and/or dis-

Another important benefit of intranasal im-ease. Local production of IgA could result in trans-
munisation, in addition to induction of systemicport of secretory (S)IgA and protection of the vagi-
immune responses, is the induction of potent re-nal and rectal mucosa. In support of this concept, the
sponses both in the upper and lower respiratorypresence of anti-HIV SIgA has been correlated with
tracts and the genital tract, through, as yet, unde-resistance to HIV infection in partners of HIV-
fined mechanisms.[8] Indeed, it appears that in con-infected individuals.[5] Moreover, in rhesus maca-
trast to local immunisation of the genital tract, in-ques, protection against SIV challenge correlated
tranasal immunisation induces vaginal and systemicwith increased numbers of SIV-specific IgA-secret-
responses that in some cases are more potent thaning cells in iliac lymph nodes.[6] In addition, intra-
those induced by vaginal immunisations.[9-14] Thus,cellular neutralisation of HIV transcytosis across

epithelial cells was demonstrated to be mediated by compared with rectal or vaginal immunisations, the
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intranasal route is more readily accessible, culturally ed by HIV, the importance of the interaction of
more acceptable, and induces better mucosal and mucosal B cells with CD4+ T cells in HIV infection
systemic immune responses. However, this route and immunity will also be considered. As one of the
may not be ideal for induction of rectal immunity. hallmarks of mucosal vaccination is trafficking of

lymphocytes to distant mucosal and systemic lym-There are several important safety and immuno-
phoid tissues, B-cell and T-cell trafficking followinglogical issues that need to be addressed when oral or
HIV or SIV infection or vaccinations will be re-intranasal routes of immunisation are considered.
viewed. The link between innate and adaptive re-There is general concern that intranasal administra-
sponses has been the focus of recent intense researchtion may cross the blood-brain barrier through the
and thus it will be discussed in the context of muco-olfactory bulb and cause serious inflammatory re-
sal HIV vaccines. Finally, current efforts on muco-sponses at this site.[15-17] In addition, immunisations
sal vaccinations alone or in combination with paren-through the intranasal or oral routes with inert prote-
teral immunisation with HIV-related protein-,in antigens in the absence of appropriate immuno-
DNA- and RNA-based vaccines will be reviewed.potentiating adjuvants may cause tolerance, rather

than immunity.[18,19] However, using carefully se-
2. Mucosal Immune Inductivelected adjuvants or delivery systems may alleviate
and Effector Sites Relevantthese concerns.
to HIV Transmission

Mucosal vaccines have to overcome several for-
midable barriers in the form of significant dilution The uptake of a vaccine at the mucosal surface by
and dispersion, competition with a myriad of vari- or through the epithelial layer, followed by uptake
ous live replicating bacteria, viruses, inert food and and presentation by antigen-presenting cells, are the
dust particles, enzymatic degradation and low pH first steps in the initiation of an immune response
before reaching the target immune cells. Therefore, after vaccination or infection (figure 1). The anato-
it has long been established that vaccinations my of the respiratory, gastrointestinal and genito-
through mucosal membranes require potent ad- urinary tracts differ with regard to their epithelial
juvants to enhance immunogenicity, as well as de- cells as well as the composition of the various anti-
livery systems to decrease the rate of dilution and gen-presenting cells and lymphocytes in the various
degradation and to target the vaccine to the site of mucosal tracts.
immune function. The nasal mucosa are drained by lymphoid tissue

In this review, in the first place, mucosal immune in the pharynx, which forms an incomplete circular
inductive and effector sites of the female genital structure called the Waldeyer’s ring. This lymphoid
tract and rectum, as relevant to HIV transmission, tissue is aggregated to form masses of lymph node
will be defined. To understand the mechanism of called tonsils. Unlike peripheral lymph nodes,
penetration of HIV and related viruses through these which are not directly associated with the mucosal
mucosal barriers, the multiple barrier model against lumen, the surface epithelium of the tonsils, similar
HIV penetration and spread will be discussed. The to the mucosal-associated lymphoid tissue (MALT)
roles of IgA versus IgG in mucosal protection of the gastrointestinal tract (e.g. Peyer’s patches), is
against HIV and the importance of mucosal versus in direct contact with the lumen. The palatine tonsils
parenteral routes of immunisation for induction of and adenoids are covered with lymphoepithelium
optimal mucosal immunity will be examined. As consisting of ciliary and non-ciliary epithelial cells,
CD4+ T cells are specifically targeted and eradicat- goblet cells and microfold (M) cells, the latter show-
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from the tip of the tongue drains to the submental
lymph node. Lymph from the sides and the middle
of the tongue drains to the inferior deep cervical
lymph node and to the submandibular lymph node,
respectively.[22]

Similar to the small and large intestines, the
rectal mucosa is covered with a single layer of
epithelial cells. Interspersed within the epithelial
layer are intraepithelial T cells, as well as dendritic
cells or their dendrites reaching through to the lu-
men at the apical side. In the space on the basolateral
side, underneath the epithelia, in lamina propria, are
found B cells, plasma cells, T cells, macrophages
and dendritic cells. This is the immune effector site
of the rectal mucosa. The rectal mucosa of several
mammalian species, including humans, contains
macroscopically invisible solitary lymphoid nodules
that resemble Peyer’s patches of the small intestine
in their cellular structure and phenotype and thus
may serve as the immune inductive sites of rectum.
These structures are overlaid with M cells that are
specialised in antigen uptake.[23] Of note, both the
rectal and vaginal mucosa are drained by the iliac
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systemic lymphoid tissues 
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Fig. 1. General structure and process of mucosal antigen sampling.
Columnar epithelial cells overlying the intestinal Peyer’s patches,
nasal-associated lymphoid tissue (NALT) or bronchus-associated
lymphoid tissue (BALT) are interspersed with microfold (M) cells
that take up particulate antigens and deliver them to the underlying
lymphoid cells. In the case of B cells, this results in the generation
of a germinal centre (GC) reaction and the trafficking of the activat-
ed B cells through local draining lymph nodes, the thoracic duct and
the general circulation to reach various mucosal and systemic lym-
phoid and non-lymphoid tissues, including the lamina propria in the
vicinity of the original antigen-sampling site. LN = lymph node.

lymph nodes, and there is indirect evidence that
SIgA-secreting cells in the vaginal mucosa originate

ing many invaginating lymphoid cells.[20] Dendritic
from the solitary lymphoid nodules of the rec-

cells are numerous within and underneath the epi-
tum.[24-26]

thelial layer of the tonsils and are in close contact
In non-human primates,[27] as well as inwith the neighbouring B and T cells.[21] It is current-

humans,[28] the rectal and small intestinal laminaly not known how activated cells traffic from the
propria contain high numbers of CD69+ macro-upper or lower respiratory tracts to the female geni-
phages that are concentrated under the single layertal tract following intranasal immunisation.
of epithelial cells (enterocytes), whereas cells withIn the oral cavity, the lymphatic vessels of the
dendrites, which are far fewer in number (mostparotid and submandibular glands drain to superfi-
likely dendritic cells), form a reticular frameworkcial and deep cervical lymph nodes.[22] In addition to
throughout the lamina propria. The rectal mucosathe lymphoid aggregates in the epithelium, local
may serve as a vaccine delivery route, and becausedraining lymph nodes also represent important in-
the vaccine does not have to go through the entireductive sites for local and systemic immunity fol-
digestive tract and the intestine, lower amounts oflowing application of antigens to the oral cavity.
antigen are required for intrarectal compared withLymph from the end of the tongue drains to the
oral immunisations. However, it may not be ansuperior deep cervical lymph node, whereas lymph
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attractive route of immunisation for socioethical The vagina is considered to be a component of
the common mucosal immune system, and oral im-reasons (figure 2).
munisation in mice with microparticles has beenThe vaginal mucosa is covered with multilayered
shown to induce a vaginal antibody response.[34] Insquamous epithelia. However, the uterus, cervix and
addition, intranasal immunisation with micropar-fallopian tubes are covered with pseudosquamous
ticles also induced antibodies in the lower genitaland simple columnar epithelia. Underneath the epi-
tract of mice.[35] Although there is no evidence tothelial layers of the vagina, uterus and fallopian
indicate the presence of lymphoid follicles or Mtubes is the lamina propria compartment, i.e. the
cells in the vaginal mucosa,[36] intravaginal im-effector site, comprising a large array of B cells,
munisation in humans induced local antibody re-CD4+ and CD8+ T cells and antigen-presenting
sponses.[12] However, intravaginal immunisationcells (APC).[29] The presence of lymphoid aggre-
protocols in small animal models have not normallygates in the female genital tract has also been report-
met with great success, despite the use of noveled, although whether these aggregates have follicle-
delivery systems and adjuvants,[37-39] although aassociated epithelium, as is the case with nasal-
more recent report showed that vaginal or rectal, butassociated lymphoid tissue (NALT) and Peyer’s
not intranasal or intramuscular, immunisations withpatches, remains to be elucidated.[29,30] Dendritic
alphavirus-based replicon particles encoding HIV-1cells and CD8+ cells with cytotoxic activity are
gag protected against intravaginal challenge withfound interspersed within the squamous epithelium
vaccinia virus encoding HIV-1 gag.[40]

of the vagina.[31-33] Thus, the vaginal mucosa con-
Moreover, the local immune response in the vagi-tains dendritic cells as well as cytotoxic T lympho-

na is subject to significant hormonal regulation, withcytes (CTL) and can mount antiviral cytotoxic T-
major changes in local antibodies at different stagescell responses that can be protective.
of the menstrual cycle.[41] A study in mice showed
that the intranasal route of immunisation was more
effective than the intravaginal route for the induc-
tion of immune responses in the vagina.[13] In female
humans, the intranasal route of immunisation may
be exploited for the induction of genital tract anti-
body response.[14] Thus, although the vaginal muco-
sa contains the necessary immunological machinery
to mount a local immune response, intranasal im-
munisation appears to be a more suitable route.

3. The Multiple Barrier Model against
HIV Penetration and Spread

Based on the current body of knowledge regard-
ing the primary infection with HIV or SIV, it is
thought that immunological responses may be re-
quired at multiple barriers. SIgA will be required to
neutralise HIV in the rectal and genital lumen or
block adherence to the epithelial layers. If the HIV

Rectal
immunisation

Rectal
LN

Strong rectal responses
Moderate intestinal responses
Moderate vaginal responses
Moderate systemic responses
Weak respiratory responses

Oral
immunisation

Peyer’s
patches

Strong intestinal responses
Weak vaginal responses
Moderate respiratory responses
Moderate systemic responses

Nasal
immunisation

NALT,
BALT

Strong vaginal responses
Strong respiratory responses
Strong systemic responses
Weak intestinal responses

Vaginal
immunisation

Rectal
LN?

Strong vaginal responses
Weak systemic responses
Weak respiratory responses
Weak intestinal responses

Fig. 2. Various routes of immunisation have specific inductive sites
and generate differential local or distant mucosal and systemic
immune responses. BALT = bronchus-associated lymphoid tissue;
LN = lymph node; NALT = nasal-associated lymphoid tissue. 
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virions cross the epithelial barrier, B and cytotoxic T HIV-specific IgA in protection against HIV infec-
cells are required in the lamina propria effector site tion in Kenyan sex workers has been suggested.[42]

to combat the infection. If the HIV virions are not It is important to note that cross-clade HIV-specific
eradicated at these sites, they spread to local drain- neutralising IgA has been detected in mucosal and
ing lymph nodes and from there spread systemical- systemic compartments of HIV-exposed, persistent-
ly. Thus, effector B and T cells are required at the ly seronegative subjects.[43] Once maturation and
inductive sites and systemic compartments as well. differentiation of antigen-specific B cells occur in

To neutralise or eradicate HIV, B cells must the inductive sites, these cells should migrate to the
produce mucosal IgA and IgG as well as systemic mucosal effector sites to exert their effector func-
IgG antibodies to prevent HIV adherence to target tion. This migration occurs through the expression
cells. However, CTL will be mostly required for the homing and chemokine receptors on B cells leading
eradication of virus-infected cells once the target them to the effector sites.
cells (i.e. CD4+CCR5+ or CD4+CXCR4+ cells) are

The requirement for isotype-switched B cells atinfected in either mucosal effector sites, the draining
rectal or vaginal mucosa may be difficult to meet,lymph nodes or the systemic compartment. Thus, to
however, given the following findings. Decreasedinduce optimal protection against HIV infection, an
numbers of IgA+ cells or IgA-secreting cells haveeffective vaccination strategy should generate both
been observed in the rectal or intestinal mucosa ofeffector B cells and CTL at mucosal sites of HIV
SIV-infected macaques. This decrease in the num-entry, the draining lymph nodes and the systemic
ber of IgA+ cells is associated with an increase incompartments. As discussed below, a combination
the number of IgM+ cells.[44] A similar characterisa-of mucosal and parenteral immunisation may be
tion of the B cells in the vaginal/uterine mucosa inrequired to induce such responses.
HIV or SIV infection has not been reported. More-
over, the process of isotype switch from IgM to IgG

4. The Role of IgA versus IgG in Mucosal
or IgA in the female genital tract is unknown. How-

Protection against HIV
ever, because of a significant decrease of CD4+ T
cells also in the female genital tract following infec-

It is well established that IgA is the predominant tion with SIV, it is likely that, similar to the intesti-
immunoglobulin isotype in the gastrointestinal tract. nal mucosa, the process of isotype switching is also
However, the effector arms of the humoral immune impaired at this site.
response in the female genital tract are believed to

Although not demonstrated with antibodies ininclude both IgA and IgG, which may result in either
mucosal secretions, both IgG and IgA antibodiesdirect virus neutralisation or virus elimination
can exert cytotoxic effector functions through thethrough antibody-dependent cellular cytotoxicity
ADCC mechanism. FcR-bearing cells armed with(ADCC). Although rapid local effector B-cell re-
antibodies can kill virus-infected cells by ADCC, ansponses are required for protection, it is not clear
immune mechanism known to occur in vitro and inwhether vaginal IgG or IgA responses detected in
vivo.[45-51] Overall, these findings show that IgA andmost vaccination studies are induced locally or sys-
IgG antibodies directed against HIV surface envel-temically. Also the germinal centre requirement as
ope glycoproteins are required to neutralise HIVwell as the inductive sites where female genital
virions directly or lyse HIV-infected cells throughtract-targeted isotype switch from IgM to IgA or
ADCC.IgG occurs, is unknown. In this regard, a role of
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5. Mucosal versus Parenteral Routes of potentiating the responses after parenteral im-
Immunisation for Induction of Optimal munisations. In support of this hypothesis, induction
Mucosal Immunity against HIV of mucosal immunity by inactivated poliovirus vac-

cine through parenteral immunisation is dependent
Several lines of evidence argue for the mucosal on previous mucosal contact with live virus.[68]

routes of vaccination being superior to parenteral
routes of vaccination for the generation of mucosal- 6. Trafficking of B and T Cells Relevant to
ly produced antibodies. It has been shown that local HIV Infection and Immunity
administration of vaccines to mucosal tissues may
induce the strongest local immunity at the site of Both B and T cells express homing and
immunisation.[52-54] Intravaginal immunisation in chemokine receptors that direct their trafficking to
humans can induce local antibody responses.[12] specific mucosal and/or systemic compartments.
Based on the concept of a common mucosal immune The role of expression of homing receptors, such as
system,[55] intranasal immunisation can be a poten- α4β7 on B cells, on the induction of B-cell immuni-
tial route since it induces local immunity not only in ty at the appropriate sites for exerting B-cell effector
the nasal-associated lymphoid tissue and the lung, functions is well established.[69,70] However, how B-
but also in the female genital tract in rodents,[35,55-58] cell trafficking and homing plays a role in memory
non-human primates[59] and humans.[14,60] In addi- B-cell responses in the genital tract inductive and
tion, the intranasal route of immunisation may be effector sites or rectum is not well established. Few
more effective than the intravaginal route for the IgA+ or IgG+ cells expressed CCR2, CCR3 or
induction of immune responses in the vagina.[13] CCR9, although CCR4, CCR5 and CXCR3 were
Importantly, intranasal immunisations have shown more significantly expressed on IgG+CD19+ B cells
protection against SIV in non-human primates.[61] than IgA+CD19+ cells.[71] CCR10 has also been

implicated in directing IgA-secreting plasma cells toIt has been suggested that systemic priming fol-
mucosal sites.[72] The above evidence demonstrateslowed by mucosal boosting significantly enhances
that activated effector B cells express both homingmucosal as well as systemic responses induced by
and chemokine receptors that play an important roleeither mode of immunisation alone.[62] However, it
to direct them to effector sites.has also been shown that parenteral immunisation

causes antigen-specific cell-mediated suppression of T cells are also known to express homing and
an intestinal IgA response.[63] Nonetheless, it has chemokine receptors. Vaginal herpes simplex type 2
been shown that mucosal priming followed by sys- infection of mice induced migration of both B cells
temic boosting can enhance mucosal and systemic and memory type CD4+CD44+ T cells to the genital
responses induced by either routes alone, or by tract.[73] The chemokine receptor CCR4 was shown
systemic priming followed by mucosal boost- to be important for trafficking of systemic, but not
ing.[64,65] Mucosal followed by systemic immunisa- mucosal, memory CD4+ T cells.[74] Expression of
tions significantly enhanced mucosal and systemic the mucosal homing receptor α4β7 by murine CD4+
immune responses in a rhesus macaque[66] and in a T cells has been shown to delineate a memory
murine model.[67] How this enhancement is achieved phenotype,[75] and α4β7+CD45RA-CD45RO+C-
is currently unknown. It may be hypothesised that CR7-CD27+ memory T helper-1 (Th1) cell re-
the reason why parenteral immunisations are effec- sponses were correlated with better antibody re-
tive for protection against mucosal pathogens is due sponses after parenteral immunisation with inacti-
to prior mucosal exposure to the mucosal pathogen, vated poliovirus in subjects orally pre-immunised
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with live poliovirus.[76] Overall, these data suggest Mutants of Escherichia coli-derived heat labile
that distinct expression of homing and chemokine enterotoxin (LT) have been shown to be potent
receptors directs B and T cells to mucosal effector adjuvants for inducing mucosal and systemic im-
sites. mune responses. In order to retain the adjuvanticity

of these molecules but reduce their toxicity, several
mutants have been generated by site-directed7. Mucosal Protein-Based Vaccines
mutagenesis. LTK63 is the result of a substitution ofagainst HIV
serine 63 with a lysine in the A subunit, which
renders it enzymatically inactive and non-toxic.[81-85]

In this review a distinction is made between LTR72 is derived from a substitution of alanine 72
immunopotentiating adjuvants and delivery sys- with an arginine in the A subunit and contains about
tems. Immunopotentiating adjuvants include mutant 0.6% of the enzymatic activity of wild-type LT.
toxins, CpG (C poly G) nucleotide motifs, small LTR72 is shown to be 100 000-fold less toxic than
chemical molecules and various saponins. Delivery wild-type LT in Y1 cells in vitro and 25–100 times
systems include polylactide co-glycolide (PLG) less toxic than wild-type LT in the rabbit ileal loop
microparticles, oil in water emulsions, immuno- assay.[55] The ability of LT mutants to induce CTL
stimulatory complexes (ISCOMS) and proteosomes. responses against HIV-1 gag (p55), following in-
A number of immunopotentiating adjuvants have tranasal, oral or intramuscular immunisations has
been used to enhance the immunogenicity of prote- been reported.[86]

in-based vaccines against HIV. These include, but
Interestingly, LTK63 and LTR72 had diverseare not limited to, mutants of enteric bacterial-de-

effects when used as mucosal adjuvants for oralrived enterotoxins, CpG, plant lectins and QS21.
versus intranasal immunisations; LTK63 inducedWhile conventional approaches to vaccine devel-
stronger CTL responses following intranasal im-opment have been based on biochemical, immuno-
munisation with p55 compared with LTR72. Con-logical and microbiological methods, they have
versely, LTR72 induced stronger CTL responsesproven laborious and time-consuming, and allow
against p55 when given orally, and it also inducedonly for the identification of few abundant antigens.
local CTL responses. Thus, it appears that someRecent progress in DNA sequencing and subse-
ADP-ribosyl-transferase activity of the LT mutantquently in bioinformatics have resulted in advances
may be required for oral, but not for intranasal,in vaccine development. The availability of the
immunisations if induction of CTL responses is thewhole sequence of a bacterial genome led to using
objective. These studies showed that intranasal im-the genomic information to discover novel antigens
munisation with protein vaccines and LT mutantthat had been missed by conventional methods of
adjuvants can be an effective means for the induc-vaccine development. This novel approach, now
tion of cell-mediated immunity against HIV.termed reverse vaccinology, is involved the in silico

analysis of the microbial genome sequence.[77-79] It was also shown that LTK63 used as a mucosal
This approach has already resulted in the identifica- adjuvant for intranasal immunisations with HIV en-
tion of immunogenic antigens as potential candi- velope glycoprotein gp140 induced significant B-
dates for a vaccine against Neisseria meningi- and T-cell responses.[66] In another study, pre-ex-
tidis.[80] Thus, this approach holds great promise for isting immunity to LTK63 did not affect its potency
future vaccine development in general, including as an adjuvant, when used for intranasal immunisa-
HIV vaccine development. tion with a second vaccine, soon after.[87] Staats et
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al.[10,88] demonstrated that intranasal administration protein gp120, either in combination or as a conju-
of an HIV-1 peptide vaccine (T1Sp10 MN) with gate, induced serum antibody responses and SIgA
cholera toxin in mice induced significant levels of responses in the vaginal and faecal samples.[98]

antipeptide serum IgG titres and HIV-1MN neutral- These data suggest that CpG used as an adjuvant
ising responses. Vaginal antipeptide IgG and SIgA may be used alone or in conjunction with other
titres were also induced. In another study, the in- immunopotentiating adjuvants or delivery systems
tranasal route was superior to the vaginal, gastric or in an HIV vaccine in future human clinical trials.
rectal route of immunisation for induction of sys-

Plant lectins have been considered as both
temic and mucosal anti-HIV-1 peptide responses.[89]

targeted delivery systems and immunopotentiating
Thus mutants of enterotoxins hold promise as muco-

adjuvants in HIV vaccine research. The plant lectin,
sal adjuvants in vaccine development against HIV

Ulex europaeus 1 (UEA1) with specificity for the α-infection.
L-fucose sugars, acts as an adhesin and selectively

Unmethylated CpG in the context of selective binds to intestinal M cells, which have the specific
flanking sequences are thought to be recognised by capacity to take up particulate antigens from the
cells of the innate immune system to allow discrimi- intestinal lumen and overlie the Peyer’s patches.[99]

nation of pathogen-derived DNA from self DNA.[90]
Enhanced mucosal and systemic B- and T-cell re-

It has been shown that cellular responses to CpG sponses were observed following intranasal im-
DNA are dependent on the presence of toll-like

munisation of mice with HIV peptides together with
receptor (TLR)9.[91] The Th1 cell adjuvant effect of

UEA1 entrapped in polylactide co-glycolide (PLG)
CpG appears to be maximised by conjugation to

microparticles.[100] Moreover, concanavalin A-im-
protein antigens.[92] Importantly, CpG also appears

mobilised nanospheres were also shown to enhance
to have potential for the modulation of pre-existing

responses against co-captured HIV antigens follow-
immune responses, which may be useful in various

ing immunisations of mice or rhesus macaques.[101]
clinical settings, including allergies.[93] A recent re-

Thus, the use of plant lectins in primate models hasview discusses in detail the interaction of CpG with
been limited, and whether it can be safely used in anTLR9 on dendritic cells.[94]

HIV vaccine remains to be investigated.
CD8+ T-cell-mediated cross-clade protection

The biodegradable and biocompatible polyesters,was observed following intranasal immunisations
the PLGs, may be prime candidates for the develop-with HIV env antigen plus CpG and intravaginal
ment of microparticles as delivery systems, sincechallenge with Vaccinia virus expressing HIV
they have been used in humans for many years asenv.[95] Moreover, intranasal immunisations with
resorbable suture material and as controlled-releaseCpG plus HIV antigen protected against in-
drug delivery systems.[102-107] In contrast to alum,travaginal challenge with VV-gag.[96] Interestingly,
PLG microparticles were effective for the inductioninactivated influenza virus was as effective as CpG
of CTL responses in rodents.[108-110] It has also beenfor enhancing anti-HIV B- and T-cell responses
reported that macrophages that carry microparticlesfollowing co-administration with simian/human im-
to lymph nodes can mature into dendritic cells.[111]munodeficiency virus (SHIV)-like particles in-
In addition, uptake of PLG microparticles into den-tranasally.[97] The CD4+ and CD8+ T-cell responses
dritic cells in vitro[112] and in vivo has been demon-following immunisation with the adjuvant CpG
strated.[113] It is assumed that the uptake ofclearly indicate a Th1 cell response.[96-98] CpG used
microparticles into APCs underpins the ability of thefor intranasal immunisation with envelope glyco-
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particles to perform as vaccine delivery systems/ antigens into the adjuvant is often difficult and may
require extensive antigen modification.[123]adjuvants.

The use of cytokines as adjuvants for experimen-This approach allowed the induction of signifi-
tal HIV vaccines has also been investigated, wherecantly enhanced antibody titres in mice with ad-
various cytokines, e.g. interleukin (IL)-1, IL-12,sorbed p55 gag from HIV-1.[114] Whether this ap-
granulocyte-macrophage colony-stimulating factorproach is effective in humans is currently not
(GM-CSF) and tumour necrosis factor, used togeth-known.
er with HIV-1 antigens, were shown to be effective

Liposomes are phospholipid vesicles that have adjuvants.[124-126]

been evaluated both as adjuvants and as delivery
Inactivated HIV- or SHIV-capturing nanopar-

systems for antigens and adjuvants.[115,116] Lipo-
ticles have been produced and used to induce vagi-

somes have been commonly used in complex formu-
nal antibody responses in mice and rhesus macaques

lations, often including monophosphoryl lipid A
following intranasal immunisations.[101,127] More-

(MPL), which makes it difficult to determine the
over, inactivated HIV-1 plus CpG adjuvant induced

contribution of the liposome to the overall adjuvant
genital CTL and antibody responses in mice that

effect in inducing anti-HIV responses following in-
were subsequently protected against vaginal chal-

tranasal immunisations.[117] Intranasal immunisa- lenge with recombinant vaccinia virus.[95,96] There
tions with HIV envelope glycoprotein gp160 formu- have also been examples of intranasal immunisa-
lated in proteosomes and/or emulsomes containing tions with recombinant BCG bacteria encoding an
MPL induced IgG and IgA antibodies in serum, HIV-1 antigen[128] or heat-inactivated bacteria con-
vaginal, lung and intestinal washes and faecal pel- jugated to HIV env.[129] Reports on these approaches
lets.[117] Nevertheless, several liposomal vaccines in non-human primates are scarce and thus their
based on viral membrane proteins (virosomes) with- viability as an effective anti HIV-1 vaccine for
out additional immunostimulators have been exten- human use remains to be explored. As stated above,
sively evaluated in the clinic and are approved as live attenuated or inactivated HIV-1 viruses will
products in Europe for hepatitis A and influenza.[118] most likely not serve as a vaccine candidate for
Intranasal immunisations with gp160-encapsulated human use because of serious safety concerns.
liposomes induced mucosal and systemic B- and T- Virus-like particles are another candidate for an
cell responses in a murine model.[119] Intranasal anti-HIV vaccine. Virus-like particles are produced
immunisation of mice with HIV env formulated in by transfecting eukaryotic cells, yeast, insect or
cholera toxin B subunit (CTB)-associated GM1 lip- mammalian cells with DNA encoding a gene of
id vesicles enhanced mucosal IgA responses in nasal interest, usually delivered by baculovirus or vaccin-
and intestinal tissues.[120] The ISCOMs are derived ia virus. The virus-like particles are then formed,
from Quillaja saponaria (Quil A) and have been without a genome, in the cell and are either secreted
shown to induce anti HIV env IgA responses in the or remain in the cell to be purified. Virus-like parti-
genital tract of mice following intranasal immunisa- cles made of HIV gag alone or with HIV env ex-
tions.[121,122] A liposomal formulation with encapsu- pressed on the surface of gag-virus-like particles
lated gp160 in haemagglutination virus induced have been developed and used for intranasal im-
CTL and neutralising antibody responses following munisations in animal models.[130,131] As a different
intranasal immunisation of mice.[119] However, a approach, intranasal immunisations of mice with
potential problem with ISCOMs is that inclusion of chimeric influenza haemagglutinin (HA)/SHIV vi-
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rus-like particles induced mucosal and systemic hu- duced significant immune responses in vivo in non-
moral and cellular responses.[132] An inherent prob- human primates.[139]

lem with most studies using baculovirus-based vi- To enhance the immunogenicity of DNA-based
rus-like particles is that no or insufficient efforts vaccines, adjuvants and delivery systems can also be
were made to purify virus-like particles in the ab- used. These can include various proteins including
sence of baculovirus. Baculoviruses induce innate cytokines, small molecule compounds, lectins or
antiviral effects and can clearly enter mammalian DNA plasmids encoding immunologically active
cells, and although they do not replicate, the DNA proteins such as cytokines, chemokines, costimu-
enters the nucleus, thus raising concerns about host latory molecules and PLG microparticles.[142] Vacci-
cell chromosomal integration.[133]

nation with DNA encoding HIV env complexed
with UEA 1-poly lysine induced B- and T-cell re-

8. Mucosal DNA-Based Vaccines sponses following intranasal immunisations.[143] In-
against HIV tranasal immunisation with DNA plasmid encoding

gp160 together with IL-12 and GM-CSF induced
Immunisation with DNA has several advantages

IgA responses in faecal and vaginal washes and aover immunisation with proteins, including the in-
Th2 cell type response.[144] Moreover, oral primingduction of potent CTL responses in small animal
immunisation with DNA followed by boosting withmodels.[134,135] DNA offers the potential for im-
recombinant vaccinia virus (rVV) induced mucosalproved vaccine stability and reduced costs for vac-
and systemic antibody responses.[145] Plasmid DNAcine production. Moreover, compared with attenuat-
encoding macrophage inflammatory protein-1α giv-ed viruses as delivery vehicles for HIV genes, plas-
en intranasally together with plasmids encodingmid DNA offers a safe alternative. Clinical trials
HIV antigens enhanced SIgA responses.[146] Plasmidinvolving intramuscular immunisation with DNA
DNA encoding HIV-1 envelope antigen formulatedvaccines have already been performed in humans
with Pol-L-Lysine given three times intranasallyand these appear to be safe and well tolerated at the
was more effective than soluble DNA in inducingdoses tested.[136,137] However, although DNA vac-
env-specific CTL responses in lungs, lower respira-cines have proven potent in small animal models,
tory lymph nodes, cervical lymph nodes, submaxil-the potency in larger primates, including humans,
lary gland lymph nodes and spleens.[147] The use ofhas been relatively ineffective.
chitin microparticles along with HIV DNA givenThere are several approaches to increase the po-
intranasally has also been reported.[148]

tency of DNA vaccines. Modification of the plasmid
Local (cervical lymph nodes) and systemicDNA vector to increase expression levels has result-

(spleen) B- and T-cell responses were observeded in increased immunogenicity in vivo. Changing
when plasmid DNA encoding HIV-1 gag adsorbedthe nucleotide sequence of certain genes to better
to PLG microparticles was administered intranasal-reflect preferential codon usage in mammalian cells
ly.[149] To investigate a possible mechanism for thecan result in markedly higher levels of expression in
enhanced immune responses induced following in-eukaryotic cells in vitro[138] and, when incorporated
tranasal immunisations with PLG DNA, the cellsinto a DNA vaccine vector, can increase immuno-
that expressed gag protein in local and systemicgenicity substantially.[139-141] Modification of the
lymphoid tissues were phenotypically identifiedHIV gag gene produced a potent DNA vaccine that
(our unpublished observation). In the immunostain-expressed 100- to 1000-fold higher levels of protein

compared with the wild-type gene in vitro and in- ing studies of cervical lymph nodes and spleen, the

© 2006 Adis Data Information BV. All rights reserved. Drugs R D 2006; 7 (5)



278 Vajdy

majority of gag-expressing cells were CD11b+, sug- over the more popular plasmid DNA immunisation,
gesting that this population is responsible for uptake as RNA, unlike DNA, does not require access to the
and expression of DNA following intranasal im- nucleus and thus minimises the possibility of chro-
munisation with PLG-DNA. Although CD11b is mosomal integration.[158] A number of RNA deliv-
expressed by many cell populations, it is primarily ery systems as potential vaccine candidates have
considered a marker for tissue macrophages and been described, including purified complementary
dendritic cells, which are both professional antigen- DNA-transcribed RNA, neuraminidase-deficient in-
presenting cells.[109,150,151] However, compared with fluenza A virus, tick-borne encephalitis virus, Lis-
macrophages, dendritic cells are more potent anti- teria monocytogenes, non-transmissible Sendai vi-
gen-presenting cells.[152,153] rus, liposome-entrapped messenger RNA, and al-

These data suggest that following intranasal im- phaviruses.[158-166] Of these, the most popular RNA
munisation with DNA adsorbed onto PLG delivery systems for an anti-HIV vaccine have been
microparticles, monocyte lineage cells, macro- alphaviruses, either as replicating or non-replicating
phages and/or dendritic cells, are involved in the replicon particles.
uptake and expression of gag DNA, since we de- Alphaviruses, including Sindbis virus (Sin),
tected both CD11b+ and CD11c+ gag-expressing Semliki Forest virus (SFV), and Venezuelan equine
cells. Whether these cells also actively present gag encephalitis virus (VEE), are enveloped RNA vi-
peptides to neighbouring naive T cells in vivo is an ruses that have been developed into replication-
important question that needs further investigation. defective ‘suicide’ vectors.[167,168] Alphavirus
Our previous in vitro data showed that bone mar- replicon RNA vectors maintain the nonstructural
row-derived dendritic cells can take up PLG DNA protein gene and cis replication sequences required
encoding HIV-1 gag and present it to a gag-specific to drive abundant expression of heterologous anti-
T-cell hybridoma.[154] The prolonged expression of gens from the viral subgenomic 26S promoter but
DNA following intranasal immunisations with PLG are devoid of any alphaviral structural protein genes
DNA may be in part due to protection of DNA from required for propagation and spread. These vectors
damage by tissue DNAse, previously reported in also offer the prospect of natural adjuvanticity and
vitro.[155] Interestingly, comparison of intranasal and stimulation of the innate immune response, in addi-
intramuscular immunisations with DNA encoding

tion to the antigen-specific adaptive response arising
HIV antigens together with MPL revealed that while

from the cytoplasmic amplification of these vectors
both routes of immunisation induce similar levels of

through double-stranded RNA intermediates.[169]

T-cell response, only intranasal immunisation in-
Replicon vectors have been widely evaluated as

duced intestinal SIgA antibody responses.[156] PLG
vaccine immunogens, both as plasmid DNA

microparticles have also been used for delivery of
replicon vaccines and as virus-like replicon parti-

QS21 adjuvant in combination with gp120.[157]

cles.[170]

Replicating VEE expressing HIV-1 matrix/cap-9. Mucosal RNA-Based Vaccines
sid were used to inject mice subcutaneously, whichagainst HIV
induced IgA as well as CTL responses.[171] Cyno-
molgus macaques immunised parenterally with SFVSeveral RNA-based delivery systems have been
RNA vectors expressing HIV-IIIB gp160 and chal-invented that result in the infection of target cells
lenged parenterally with SHIV-4 were not protectedand delivery of RNA encoding the gene of interest.

In general, such an approach has a clear advantage against high viral loads,[172] even though a mouse
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study suggested that compared with a plasmid DNA priming or boosting immunisations. A popular ap-
encoding HIV envelope, SFV expressing HIV env proach has been DNA priming followed by vaccinia
induced the highest serum anti-env antibodies.[173] boosting, in effect avoiding strong anti-vaccinia im-
The level of biosafety manufacturing may play an mune responses. A DNA prime/vaccinia boost im-
important role in selecting the type of alphavirus- munisation containing multiple HIV genes con-
based replicon particles for an HIV vaccine. The trolled viral loads following intrarectal chal-
VEE-based replicon particles will require biosafety lenge.[182] Intranasal priming with HIV env-
level (BSL)-3 manufacturing facilities and may not expressing influenza virus and intranasal boosting
be as attractive as for example Sindbis virus-based with HIV env-expressing vaccinia virus in mice
replicon particles that require BSL-2 Good Manu- induced systemic cellular responses in the spleen
facturing Practice production facilities.[174] and local responses in the genitorectal draining

lymph nodes.[183] Intranasal priming with DNA and
10. Mucosal Live Attenuated intranasal boosting with vaccinia virus expressing
Virus-Based Vaccines against HIV HIV env induced mucosal and systemic humoral

and cellular responses.[184]

In general, live attenuated viruses as antigen de-
In a non-human primate model, intranasal, intra-livery systems offer relatively high potency. It is

muscular and intrarectal immunisations with a liveimportant to note that parenteral immunisations with
attenuated pox virus (NYVAC) expressing an im-live attenuated-based vaccines can often result in
munodominant CD8+ CTL gag-epitope inducedmucosal responses as a result of the traversing of the
CTL responses in the small intestine.[185] Anreplicating vaccines to both mucosal and systemic
IL-2-augmented DNA intranasal prime/vaccinia vi-compartments. However, most have the problem of
rus intranasal boost induced mucosal and systemicinducing high antivirus vector immunity, thus mak-
humoral and cellular responses and protected froming their multiple or even subsequent use obsolete.
disease, i.e. all animals became infected but main-In this regard, a report using a mouse model indicat-
tained CD4 cell counts and did not developed that mucosal vaccination (which in this case was
AIDS.[186] Other studies in the rhesus macaqueintrarectal) overcomes the barrier (i.e. immunity
model have also demonstrated the immunogenicityagainst the vaccinia vector) to recombinant vaccinia
and partial protective efficacy of the combination ofvirus immunisation caused by pre-existing poxvirus
parenteral and mucosal immunisations with a com-immunity.[175] There have been clear examples of
bination of DNA prime and vaccinia virusreverting to the wild type phenotype/genotype and
boosts.[187-189]

causing severe disease if the live attenuated virus is
Recently, the safety and immunogenicity of anthe infectious virus with attenuations to eliminate or

HIV recombinant canarypox vaccine (ALVAC), ex-reduce disease.[176-179] The level of attenuation ap-
pressing HIV gag and env proteins, was tested inpears to inversely correlate with potency since the
infants of HIV-infected women. The vaccine wasmore attenuated strains are less immunogen-

ic.[180,181] This section provides some examples of administered three times parenterally. While the
live attenuated viruses given intranasally or by other vaccine appeared safe in the short term, as expected,
routes to induce anti-HIV immune responses. it did not successfully induce mucosal IgA re-

sponses.[190] However, in another study, it was foundVaccinia virus-based live attentuated vaccines
that a canarypox virus-based vaccine expressinghave been extensively used to induce anti-HIV re-

sponses as intranasal immunisations alone or as both HIV gag and env proteins did not induce any
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immune responses when given mucosally, i.e. cines for over a decade.[198-202] In early reports,
adenoviruses expressing HIV env induced serumthrough the nose, vagina, rectum or orally.[191] In yet
HIV-neutralising antibodies following intratrachealanother contradicting study, intramuscular im-
immunisations of dogs.[198] This study was soonmunisations with a canarypox-based vaccine in-
followed by two chimpanzee studies using intra-duced rectal and systemic CTL responses.[192] These
nasal immunisations as stand-alone or as boostingdata indicate that vaccinia virus-based mucosal vac-
modality, with adenoviruses expressing HIV gagcines as a boosting regimen can induce significant
and env inducing variable mucosal and systemiclocal and systemic CTL responses. However, over-
humoral responses.[199,200] To avoid pre-existing im-all, because of serious issues with induction of vac-
munity, it has been suggested that DNA primingcinia virus-specific immunity and the safety issues,
followed by adenovirus boosting would enhance thethe widespread use of vaccinia virus-based vectors
responses.[203,204] Also, priming with adenovirusesin HIV vaccine development seems limited.
and boosting with HIV env have been reported toLive attenuated vesicular stomatitis virus (rVSV)
reduce acute viraemia following challenge.[205,206]

was shown to prevent AIDS in rhesus macaques.[193]

Several reports have also demonstrated immu-A comparison of intranasal and intramuscular routes
nogenicity of replication-incompetent adenovirusesof immunisation with rVSV in rhesus macaques
vectors as anti-HIV vaccine vectors.[202,206,207] Thus,demonstrated that the intranasal route induced
in general, although replication-competent ade-higher cellular as well as nasal and saliva responses,
novirus vectors pose some safety concerns, they canbut both routes of immunisation conferred protec-
induce mucosal and systemic humoral responsestion against vaginal SHIV challenge.[194] The cellu-
following intranasal immunisations as a stand-alonelar responses were not measured in the vaginal mu-
modality and they can induce strong CTL responsescosa and the humoral responses at this site were low
following parenteral immunisations as a stand-alone

after intranasal immunisations, making deciphering
or as a boosting modality. The use of replication-

the correlates of protection unallowable. However,
incompetent adenovirus vectors might circumvent

intranasal immunisation was as good as or perhaps
the safety issues, but may result in significantly

better than intramuscular immunisations for protec-
reduced immune responses that may, nonetheless,

tion against AIDS. However, in another study, in-
be sufficient to reduce viraemia.

traperitoneal (another systemic route of immunisa-
tion) versus intranasal immunisations with rVSV

11. Mucosal Live Attenuated
expressing HIV gag and env polyproteins induced

Bacteria-Based Vaccines against HIV
far higher CD8+ CTL responses in spleens.[195] Al-
though these studies indicate that rVSV may serve Immunisation with invasive bacterial systems
as a vaccine delivery system for a potential anti-HIV has been explored. Examples include the use of live
vaccine, serious potential hazards exist with regard attenuated bacterial gene delivery systems using
to this virus. rVSV belongs to the family of Shigella, Salmonella and Listeria as vector systems,
Rhabdoviridae and as an important zoonotic patho- generating strong responses to HIV antigens after
gen can cause disease in humans.[196,197] Therefore, intranasal immunisations. A single intranasal dose
the use of this vector as an ultimate human vaccine of Shigella/HIV-1 gp120 vaccine vector in mice
delivery system against HIV seems unlikely. induced a strong CD8+ T-cell response comparable

Adenovirus-based vaccines have been consid- to systemic immunisation with a vaccinia-env vec-
ered as a vaccine delivery system for anti-HIV vac- tor.[208] In addition to this, single immunisation was
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may achieve this goal. For mucosal priming or
boosting immunisations, various protein-, DNA-
and RNA-based experimental vaccines have been
tested. Moreover, attenuated viral or bacterial vec-
tors have also been investigated. These widely dif-
ferent approaches have taught us that it is unlikely
that a single vaccine modality will be effective
against HIV infection and that there is a fine balance
between achieving immunity and being safe on the

Protein-based
vaccines

Inactivated virus, VLP, peptides,
recombinant proteins, all with or without
adjuvants and/or delivery systems

DNA-based
vaccines

Plasmid DNA with or without
delivery systems; live attenuated
DNA viral or bacterial vectors

RNA-based
vaccines

Alphavirus-based replicon particles,
live attenuated RNA viruses

Fig. 3. General experimental HIV vaccine approaches in small ani-
mals, non-human primates and humans. VLP = virus-like particles.

one hand and inducing B versus CTL responses on
the other. Moreover, while intranasal immunisationalso effective in affording protection against a vac-
may prove effective at induction of vaginal re-cinia-env challenge and this vector was also effec-
sponses, it may not readily induce immunity in thetive given orally in mice.[209] Shigella and Salmonel-
intestine, a major site of rapid HIV replication andla delivering HIV-1 gp120 were administered in-
CD4+ T-cell depletion. However, rectal immunisa-tranasally to mice,[210] showing that Shigella was
tion may induce immunity, not only in the rectum,more efficient than Salmonella in generating CD8+
but also in the vaginal mucosa, which may alleviateT-cell responses. Furthermore, the intranasal route
some safety concerns regarding the intranasal routewas more effective than the intramuscular route for
of immunisation. Whether the rectal route will resultgenerating IgA responses in vaginal washes. Anoth-
in immunity in the small intestine is not well estab-er study reported that a single intranasal dose of
lished, although it is assumed that this is likely to beShigella fleneri 2a mutant encoding for HIV-1 SF2
the case.gag was effective in inducing gag-specific T-cell

Figure 3 lists the experimental approaches de-responses both in the spleen and the lung.[211] The
scribed in this review. The International AIDS Vac-live bacterial delivery as an approach is currently
cine Initiative lists those approaches that havebeing explored more through the oral route than the
reached clinical trials, including recombinant pro-intranasal route for ease of administration and safety
teins, and live attenuated viruses.[212]reasons.

13. Conclusion12. Discussion

There is general agreement that mucosal vaccina- The literature reviewed in this paper suggest that
tion best affords immunity at mucosal surfaces. future vaccinations against HIV may include combi-
Most HIV transmissions occur through the female nations of mucosal and systemic routes to induce
genital tract and rectum and then spread systemical- both B- and T-cell responses, using optimal ad-
ly, targeting CD4+ T cells at all mucosal effector juvants and delivery systems. This may be necessary
sites, including the intestine and the lungs, regard- if mucosal sites of HIV entry as well as systemic
less of the route of transmission. Thus, immunity tissues, including the brain, should be protected
induced by B cells and CTL against HIV will be from HIV pathogenesis. Thus far, published data on
required at the site of virus entry, draining lymph the combinations of mucosal and systemic im-
nodes, distant mucosal tissues and systemically. The munisations show promise, although significantly
combination of mucosal and parenteral vaccinations more experiments are yet to be performed.
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