Skip to main content
Log in

Strategies Toward the Improved Oral Delivery of Insulin Nanoparticles via Gastrointestinal Uptake and Translocation

  • Drug Delivery
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

The design of strategies that improve the absorption of insulin through the gastrointestinal tract is a considerable challenge in the pharmaceutical sciences and would significantly enhance the treatment of diabetes mellitus. Several strategies have been devised to overcome physiologic and morphologic barriers to insulin absorption, including the inhibition of acidic and enzymatic degradation, enhancement of membrane permeability or widening of tight junctions, chemical modification of insulin, and the formulation of carrier systems. In particular, the concept of nanoparticulate carriers for oral insulin delivery has evolved through remarkable advances in nanotechnology. Investigations focused on uptake and translocation via Peyer’s patches have demonstrated high levels of nanoparticle absorption based on significant alterations in the glycemic response to various glucogenic sources. This paper reviews the mechanisms for insulin and particle uptake and translocation through the gastrointestinal tract, and the potential barriers to this, outlines the design of nanoparticulate carriers for the oral delivery of insulin, and presents prospects for its clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Table I
Fig. 2
Fig. 3
Table II

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Frokjaer S, Otzen DD. Protein drag stability: a formulation challenge. Nat Rev Drug Discov 2005; 4: 298–306

    Article  PubMed  CAS  Google Scholar 

  2. Cournarie F, Auchere D, Chevenne D, et al. Absorption and efficiency of insulin after oral administration of insulin-loaded nanocapsules in diabetic rats. Int J Pharm 2002; 242(1–2): 325–8

    Article  PubMed  CAS  Google Scholar 

  3. Damgé C, Maincent P, Ubrich N. Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats. J Control Release 2007; 117(2): 163–70

    Article  PubMed  CAS  Google Scholar 

  4. Still JG. Development of oral insulin: progress and current status. Diabetes Metab Res Rev 2002; 18 Suppl. 1: S29–37

    Article  Google Scholar 

  5. Agarwal V, Khan MA. Current status of the oral delivery of insulin. Pharmaceutical Technology 2001 Oct: 76-90

  6. Crane CW, Path MC, Luntz GRWN. Absorption of insulin from the human small intestine. Diabetes 1968; 17: 625–7

    PubMed  CAS  Google Scholar 

  7. Ghilzai NMK. New developments in insulin delivery. Drag Dev Ind Pharm 2003; 29(3): 253–65

    Article  CAS  Google Scholar 

  8. Hamman JH, Enslin GM, Kotzé AF. Oral delivery of peptide drags: barriers and developments. BioDrugs 2005; 19(3): 165–77

    Article  PubMed  CAS  Google Scholar 

  9. Morishita M, Peppas NA. Is the oral route possible for peptide and protein drag delivery? Drag Discov Today 2006; 11(19/20): 905–10

    Article  CAS  Google Scholar 

  10. Morishita M, Goto T, Peppas NA, et al. Mucosal insulin delivery systems based on complexation polymer hydrogels: effect of particle size on insulin enteral absorption. J Control Release 2004; 97(1): 115–24

    Article  PubMed  CAS  Google Scholar 

  11. Cunha AS, Grossiordo JL, Puisieux F, et al. Insulin in w/o/w multiple emulsion: preparation, characterization and determination of stability towards proteases in vitro. J Microencapsul 1997; 14: 311–9

    Article  PubMed  CAS  Google Scholar 

  12. Matsuzawa A, Morishita M, Takayama K, et al. Absorption of insulin using water-in-oil-in-water emulsion from enteral loop in rats. Biol Pharm Bull 1995; 18: 1718–23

    Article  PubMed  CAS  Google Scholar 

  13. Fukunaga M, Miller MM, Deftos LJ. Liposome-entrapped calcitonin and parathyroid hormone are orally effective in rats. Horm Metab Res 1991; 23: 166–7

    Article  PubMed  CAS  Google Scholar 

  14. Allemann E, Leroux J-C, Gurny R. Polymeric nano- and microparticles for the oral delivery of peptides and peptidomimetics. Adv Drag Deliv Rev 1998; 34(2–3): 171–89

    Article  CAS  Google Scholar 

  15. Couvreur P, Puisieux F. Nano- and microparticles for the delivery of polypeptides and proteins. Adv Drag Deliv Rev 1993; 10: 141–62

    Article  CAS  Google Scholar 

  16. Morishita I, Morishita M, Takayama K, et al. Hypoglycemic effect of novel oral microspheres of insulin with protease inhibitor in normal and diabetic rats. Int J Pharm 1992; 78: 9–16

    Article  CAS  Google Scholar 

  17. Couvreur P, Dubernet C, Puisieux F. Controlled drug delivery with nanoparticles: current possibilities and future trends. Eur J Pharm Biopharm 1995; (41): 2–13

  18. Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 2003; 55(3): 329–47

    Article  PubMed  CAS  Google Scholar 

  19. Yih TC, Al-Fandi M. Engineered nanoparticles as precise drug delivery systems. J Cell Biochem 2006; 97(6): 1184–90

    Article  PubMed  CAS  Google Scholar 

  20. Reis CP, Ribeiro AJ, Houng S, et al. Nanoparticulate delivery system for insulin: design, characterization and in vitro/in vivo bioactivity. Eur J Pharm Sci 2007; 30(5): 392–7

    Article  PubMed  CAS  Google Scholar 

  21. Ziv E, Bendayan M. Intestinal absorption of peptides through the enterocytes. Microsc Res Tech 2000; 49(4): 346–52

    Article  PubMed  CAS  Google Scholar 

  22. Bendayan M, Ziv E, Ben-Sasson R, et al. Morpho-cytochemical and biochemical evidence for insulin absorption by the rat ileal epithelium. Diabetologia 1990; 33(4): 197–204

    Article  PubMed  CAS  Google Scholar 

  23. Florence AT. Issues in oral nanoparticle drug carrier uptake and targeting. J Drug Target 2004; 12(2): 65–70

    Article  PubMed  CAS  Google Scholar 

  24. Shakweh M, Ponchel G, Fattal E. Particle uptake by Peyer’s patches: a pathway for drug and vaccine delivery. Expert Opin Drug Deliv 2004; 1(1): 141–63

    Article  PubMed  CAS  Google Scholar 

  25. Hazzard RA, Hodges GM, Scott JD, et al. Early intestinal microparticle uptake in the rat. J Anat 1996; 189(2): 265–71

    PubMed  Google Scholar 

  26. Jung T, Kamm W, Breitenbach A, et al. Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake? Eur J Pharm Biopharm 2000; 50(1): 147–60

    Article  PubMed  CAS  Google Scholar 

  27. Reis CP, Neufeld RJ, Ribeiro AJ, et al. Nanoencapsulation II. Biomedical applications and current status of peptide and protein nanoparticulate delivery systems. Nanomedicine 2006; 2(2): 53–65

    Article  CAS  Google Scholar 

  28. TenHoor C, Dressman J. Oral absorption of peptides and proteins. S T P Pharma Sci 1992; 2: 301–12

    CAS  Google Scholar 

  29. Langguth P, Bohner V, Heizmann J, et al. The challenge of proteolytic enzymes in intestinal peptide delivery. J Control Release 1997; 46(1–2): 39–57

    Article  CAS  Google Scholar 

  30. Schilling RJ, Mitra AK. Degradation of insulin by trypsin and alpha-chymotrypsin. Pharm Res 1991; 8(6): 721–7

    Article  PubMed  CAS  Google Scholar 

  31. Chang L-L, Stout LE, Wong WD, et al. Immunohistochemical localization of insulin-degrading enzyme along the rat intestine, in the human colon adenocarcinoma cell line (Caco-2), and in human ileum. J Pharm Sci 1997; 86(1): 116–9

    Article  PubMed  CAS  Google Scholar 

  32. Drasar B, Hill M. Bacterial glycosidase. In: Drasar BS, Hill MJ, editors. Human intestinal flora. London: Academic Press, 1974: 54–71

    Google Scholar 

  33. Sinko PJ, Hu M, Amidon GL. Carrier mediated transport of amino acids, small peptides and their analogs. J Control Release 1987; 6: 115–21

    Article  CAS  Google Scholar 

  34. Larhed AW, Artursson P, Grasj J. Diffusion of drugs in native and purified gastrointestinal mucus. J Pharm Sci 1997; 86(6): 660–5

    Article  PubMed  CAS  Google Scholar 

  35. Gullberg E. Particle transcytosis across the human intestinal epithelium: model development and target identification for improved drug delivery. Digital comprehensive summaries of Uppsala dissertations from the Faculty of Pharmacy 3. Uppsala: Acta Universitatis Upsaliensis, 2005: 1-62 [online]. Available from URL: http://publications.uu.se/abstract.xsql?dbid=4780 [Accessed 2008 May 27]

  36. Pauletti GM, Gangwar S, Knipp GT, et al. Structural requirements for intestinal absorption of peptide drugs. J Control Release 1996; 41(1–2): 3–17

    Article  CAS  Google Scholar 

  37. Fix JA. Oral controlled release technology for peptides: status and future prospects. Pharm Res 1996; 13: 1760–4

    Article  PubMed  CAS  Google Scholar 

  38. Masaoka Y, Tanaka Y, Kataoka M, et al. Site of drug absorption after oral administration: assessment of membrane permeability and luminal concentration of drugs in each segment of gastrointestinal tract. Eur J Pharm Sci 2006; 29(3–4): 240–50

    Article  PubMed  CAS  Google Scholar 

  39. Zhou XH. Overcoming enzymatic and absorption barriers to nonparenterally administered protein and peptide drugs. J Control Release 1994; 29: 239–52

    Article  CAS  Google Scholar 

  40. Hochman J, Artursson P. Mechanisms of absorption enhancement and tight junction regulation. J Control Release 1994; 29: 253–67

    Article  CAS  Google Scholar 

  41. Kostarelos K. Rational design and engineering of delivery systems for therapeutics: biomedical exercises in colloid and surface science. Adv Colloid Interface Sci 2003; 106(1–3): 147–68

    Article  CAS  Google Scholar 

  42. Liu H, Tang R, Pan WS, et al. Potential utility of various proteases inhibitors for improving the intestinal absorption of insulin in rats. J Pharm Pharmacol 2003; 55: 1523–9

    Article  PubMed  CAS  Google Scholar 

  43. Shao Z, Li Y-P, Chermak T, et al. Cyclodextrins as mucosal absorption promoters of insulin II: effects of beta-cyclodextrins derivatives on alpha-chymotriptic degradation and enteral absorption of insulin in rats. Pharm Res 1994; 11: 1174–9

    Article  PubMed  CAS  Google Scholar 

  44. Mesiha M, Ponnapula S, Plakogiannis F. Oral absorption of insulin encapsulated in artificial chyles of bile salts, palmitic acids and alpha-tocopherol dispersions. Int J Pharm 2002; 249: 1–5

    Article  PubMed  CAS  Google Scholar 

  45. Eaimtrakarn S, Rama Prasad YV, Ohno T, et al. Absorption enhancing effect of labrasol on the intestinal absorption of insulin in rats. J Drug Target 2002; 10: 255–60

    Article  PubMed  CAS  Google Scholar 

  46. Morishita M, Kamei N, Ehara J, et al. A novel approach using functional peptides for efficient intestinal absorption of insulin. J Control Release 2007; 118(2): 177–84

    Article  PubMed  CAS  Google Scholar 

  47. Damgé C, Michel C, Aprahamian M, et al. New approach for oral administration of insulin with polyalkylcyanoacrylate nanocapsules as drug carrier. Diabetes 1988; 37: 246–51

    Article  PubMed  Google Scholar 

  48. Damgé C, Vranckx H, Balschmidt P, et al. Poly(alkylcyanoacrylate) nanospheres for oral administration of insulin. J Pharm Sci 1997; 86(12): 1403–9

    Article  PubMed  Google Scholar 

  49. Radwan MA, Aboul-Enein HY. The effect of oral absorption enhancers on the in vivo performance of insulin-loaded poly(ethylcyanoacrylate) nanospheres in diabetic rats. J Microencapsul 2002; 19(2): 225–35

    Article  CAS  Google Scholar 

  50. Krauland AH, Guggi D, Bernkop-Schnurch A. Oral insulin delivery: the potential of thiolated chitosan-insulin tablets on non-diabetic rats. J Control Release 2004; 95(3): 547–55

    Article  PubMed  CAS  Google Scholar 

  51. Krauland AH, Bernkop-Schnurch A. Thiomers: development and in vitro evaluation of a peroral microparticulate peptide delivery system. Eur J Pharm Biopharm 2004; 57(2): 181–7

    Article  PubMed  CAS  Google Scholar 

  52. Fasano A, Uzzau S. Modulation of intestinal tight junctions by Zonula occludens toxin permits enteral administration of insulin and other macromolecules in an animal model. J Clin Invest 1997; 99(6): 1158–64

    Article  PubMed  CAS  Google Scholar 

  53. Behrens I, Pena AIV, Alonso MJ, et al. Comparative uptake studies of bioadhesive and non-bioadhesive nanoparticles in human intestinal cell lines and rats: the effect of mucus on particle adsorption and transport. Pharm Res 2002; 19(8): 1185–93

    Article  PubMed  CAS  Google Scholar 

  54. Morishita M, Aoki Y, Sakagami M, et al. In situ ileal absorption of insulin in rats: effects of hyaluronidase pretreatment diminishing the mucous/glycocalyx layers. Pharm Res 2004; 21(2): 309–16

    Article  PubMed  CAS  Google Scholar 

  55. Sajeesh S, Sharma CP. Cyclodextrin-insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery. Int J Pharm 2006; 325(1–2): 147–54

    Article  PubMed  CAS  Google Scholar 

  56. Carino GP, Mathiowitz E. Oral insulin delivery. Adv Drug Deliv Rev 1999; 35(2–3): 249–57

    Article  PubMed  CAS  Google Scholar 

  57. Cui F, Shi K, Zhang L, et al. Biodegradable nanoparticles loaded with insulin-phospholipid complex for oral delivery: preparation, in vitro characterization and in vivo evaluation. J Control Release 2006; 114(2): 242–50

    Article  PubMed  CAS  Google Scholar 

  58. Alonso MJ. Nanomedicines for overcoming biological barriers. Biomed Pharmacother 2004; 58(3): 168–72

    Article  PubMed  CAS  Google Scholar 

  59. Hans ML, Lowman AM. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater 2002; 6(4): 319–27

    Article  CAS  Google Scholar 

  60. Sakuma S, Hayashi M, Akashi M. Design of nanoparticles composed of graft copolymers for oral peptide delivery. Adv Drug Deliv Rev 2001; 47(1): 21–37

    Article  PubMed  CAS  Google Scholar 

  61. Sarmento B, Ribeiro A, Veiga F, et al. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm Res 2007; 24(12): 2198–206

    Article  PubMed  CAS  Google Scholar 

  62. des Rieux A, Fievez V, Garinot M, et al. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release 2006; 116(1): 1–27

    Article  CAS  Google Scholar 

  63. Mohanraj V, Chen Y. Nanoparticles: a review. Trop J Pharm Res 2006; 5(1): 561–73

    Google Scholar 

  64. Hussain N. Ligand-mediated tissue specific drug delivery. Adv Drug Deliv Rev 2000; 43(2–3): 95–100

    Article  PubMed  CAS  Google Scholar 

  65. Florence AT. Nanoparticle uptake by the oral route: fulfilling its potential? Drug Discov Today 2005; 2(1): 75–81

    Article  CAS  Google Scholar 

  66. Russell-Jones GJ. Use of targeting agents to increase uptake and localization of drugs to the intestinal epithelium. J Drug Target 2004; 12: 113–23

    Article  PubMed  CAS  Google Scholar 

  67. Clark MA, Jepson MA, Hirst BH. Exploiting M cells for drug and vaccine delivery. Adv Drug Deliv Rev 2001; 50(1–2): 81–106

    Article  PubMed  CAS  Google Scholar 

  68. Thomas NW, Jenkins PG, Howard KA, et al. Particle uptake and translocation across epithelial membranes. J Anat 1996; 189: 487–90

    PubMed  Google Scholar 

  69. Florence AT, Hillery AM, Hussain N, et al. Nanoparticles as carriers for oral peptide absorption: studies on particle uptake and fate. J Control Release 1995; 36(1–2): 39–46

    Article  CAS  Google Scholar 

  70. Zhang N, Ping Q, Huang G, et al. Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin. Int J Pharm 2006; 327(1–2): 153–9

    PubMed  CAS  Google Scholar 

  71. Galindo-Rodriguez SA, Allemann E, Fassi H, et al. Polymeric nanoparticles for oral delivery of drugs and vaccines: a critical evaluation of in vivo studies. Crit Rev Ther Drug Carrier Syst 2005; 22: 419–63

    Article  PubMed  CAS  Google Scholar 

  72. Pinto-Alphandary H, Aboubakar M, Jaillard D, et al. Visualization of insulin-loaded nanocapsules: in vitro and in vivo studies after oral administration to rats. Pharm Res 2003; 20(7): 1071–84

    Article  PubMed  CAS  Google Scholar 

  73. Pan Y, Li Y-J, Zhao H Y, et al. Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int J Pharm 2002; 249(1–2): 139–47

    Article  PubMed  CAS  Google Scholar 

  74. Sarmento B, Martins S, Ribeiro A, et al. Development and comparison of different nanoparticulate polyelectrolyte complexes as insulin carriers. Int J Pept Res Ther 2006; 12(2): 131–8

    Article  CAS  Google Scholar 

  75. Prego C, Garcia M, Torres D, et al. Transmucosal macromolecular drug delivery. J Control Release 2005; 101(1–3): 151–62

    Article  PubMed  CAS  Google Scholar 

  76. Vila A, Sanchez A, Tobio M, et al. Design of biodegradable particles for protein delivery. J Control Release 2002; 78(1–3): 15–24

    Article  PubMed  CAS  Google Scholar 

  77. Dodane V, Amin Khan M, Merwin JR. Effect of chitosan on epithelial permeability and structure. Int J Pharm 1999; 182(1): 21–32

    Article  PubMed  CAS  Google Scholar 

  78. Chen H, Langer R. Oral particulate delivery: status and future trends. Adv Drug Deliv Rev 1998; 34(2–3): 339–50

    Article  PubMed  CAS  Google Scholar 

  79. Foss AC, Peppas NA. Investigation of the cytotoxicity and insulin transport of acrylic-based copolymer protein delivery systems in contact with caco-2 cultures. Eur J Pharm Biopharm 2004; 57(3): 447–55

    Article  PubMed  CAS  Google Scholar 

  80. Gowthamarajan K, Kulkarni GT. Oral insulin: fact or fiction? Possibilities of achieving oral delivery for insulin. Resonance 2003; 8(5): 38–46

    Article  CAS  Google Scholar 

  81. Reis CP, Veiga F, Nunes P, et al. Toxicological in vivo studies of an oral insulin nanosystem [letter]. Toxicol Lett 2007; 172Suppl. 1: S90

    Article  Google Scholar 

  82. Moghimi SM, Hedeman H, Muir LS, et al. An investigation of the filtration capacity and the fate of large filtered sterically-stabilized microspheres in rat spleen. Biochin Biophys Acta 1993; 1157: 233–40

    Article  CAS  Google Scholar 

  83. Owens III DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 2006; 307(1): 93–102

    Article  PubMed  CAS  Google Scholar 

  84. Binder C, Lauritzen T, Faber O, et al. Insulin pharmacokinetics. Diabetes Care 1984; 7: 188–99

    Article  PubMed  Google Scholar 

  85. Daugherty AL, Mrsny RJ. Transcellular uptake mechanisms of intestinal epithelial barrier: part I. Pharm Sci Technol Today 1999; 4: 144–51

    Article  PubMed  Google Scholar 

  86. Kraehenbuhl JP, Neutra MR. Epithelial M cells: differentiation and function. Annu Rev Cell Dev Biol 2000; 16: 301–32

    Article  PubMed  CAS  Google Scholar 

  87. Beier R, Gebert A. Kinetics of particle uptake in the domes of Peyer’s patches. Am J Physiol Gastrointest Liver Physiol 1998 July 1; 275(1): G130–7

    CAS  Google Scholar 

  88. Ermak TH, Giannasca PJ. Microparticle targeting to M cells. Adv Drug Deliv Rev 1998; 34(2–3): 261–83

    Article  PubMed  CAS  Google Scholar 

  89. Norris DA, Puri N, Sinko PJ. The effect of physical barriers and properties on the oral absorption of particulates. Adv Drug Deliv Rev 1998; 34(2–3): 135–54

    Article  PubMed  CAS  Google Scholar 

  90. Hussain N, Jaitley V, Florence AT. Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Adv Drug Deliv Rev 2001; 50(1–2): 107–42

    Article  PubMed  CAS  Google Scholar 

  91. Damge C, Michel C, Aprahamian M, et al. Nanocapsules as carriers for oral peptide delivery. J Control Release 1990; 13: 233–9

    Article  CAS  Google Scholar 

  92. Florence AT. The oral absorption of micro- and nanoparticulates: neither exceptional nor unusual. Pharm Res 1997; 14(3): 259–66

    Article  PubMed  CAS  Google Scholar 

  93. Sakuma S, Sudo R, Suzuki N, et al. Behavior of mucoadhesive nanoparticles having hydrophilic polymeric chains in the intestine. J Control Release 2002; 81(3): 281–90

    Article  PubMed  CAS  Google Scholar 

  94. Aprahamian M, Michel C, Humbert W, et al. Transmucosal passage of polyalkylcyanoacrylate nanocapsules as new drug carrier in the small intestine. Biol Cell 1987; 61: 69–76

    Article  PubMed  CAS  Google Scholar 

  95. Eldridge JH, Hammond CJ, Meulbroek JA, et al. Controlled vaccine release in the gut-associated lymphoid tissues: I. Orally administered biodegradable microspheres target the Peyer’s patches. J Control Release 1990; 11(1–3): 205–14

    Article  CAS  Google Scholar 

  96. Michel C, Aprahamian M, Defontaine L, et al. The effect of site of absorption in the gastrointestinal tract on the absorption of insulin from nanocapsules in diabetic rats. J Pharm Pharmacol 1991; 43: 1–5

    Article  PubMed  CAS  Google Scholar 

  97. Tirosh B, Rubinstein A. Migration of adhesive and nanoadhesive particles in the rat intestine under altered mucus secretion conditions. J Pharm Sci 1998; 87: 453–6

    Article  PubMed  CAS  Google Scholar 

  98. Kamba M, Seta Y, Kusai A, et al. A unique dosage form to evaluate the mechanical destructive force in the gastrointestinal tract. Int J Pharm 2000; 208: 61–70

    Article  PubMed  CAS  Google Scholar 

  99. Florence AT, Hussain N. Transcytosis of nanoparticle and dendrimer delivery systems: evolving vistas. Adv Drug Deliv Rev 2001; 50Suppl. 1: S69–89

    Article  PubMed  CAS  Google Scholar 

  100. Doyle-McCullough M, Smyth SH, Moyes SM, et al. Factors influencing intestinal microparticle uptake in vivo. Int J Pharm 2007; 335(1–2): 79–89

    Article  PubMed  CAS  Google Scholar 

  101. Dawson GF, Halbert GW. The in vitro cell association of invasin coated polylactide-co-glycolide nanoparticles. Pharm Res 2000; 17: 1420–5

    Article  PubMed  CAS  Google Scholar 

  102. Shirui M, Oliver G, Dagmar F, et al. Uptake and transport of PEG-graft-trimethylchitosan copolymer-insulin nanocomplexes by epithelial cells. Pharm Res 2005; 22(12): 2058–68

    Article  CAS  Google Scholar 

  103. Eldridge JH, Hammond CJ, Meulbroek JA, et al. Biodegradable microspheres: vaccine delivery system for oral immunization. Curr Top Microbiol Immunol 1989; 146: 59–66

    Article  PubMed  CAS  Google Scholar 

  104. Jani PU, Halbert GW, Langridge J, et al. The uptake and translocation of latex nanospheres and microspheres after oral administration to rats. J Pharm Pharmacol 1989; 41: 809–12

    Article  PubMed  CAS  Google Scholar 

  105. Jani PU, Halbert GW, Langridge J, et al. Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J Pharm Pharmacol 1990; 42: 821–6

    Article  PubMed  CAS  Google Scholar 

  106. Ebel JP. A method for quantifying particle absorption from the small intestine of the mouse. Pharm Res 1990; 7: 848–51

    Article  PubMed  CAS  Google Scholar 

  107. Damgé C, Aprahamian M, Marchais H, et al. Intestinal absorption of PLGA microspheres in the rat. J Anat 1996; 189: 491–501

    PubMed  Google Scholar 

  108. Torché AM, Jouan H, Le Corre P, et al. Ex vivo and in situ PLGA microspheres uptake by pig ileal Peyer’s patch segment. Int J Pharm 2000; 201: 15–27

    Article  PubMed  Google Scholar 

  109. Blanchette J, Kavimandan N, Peppas NA. Principles of transmucosal delivery of therapeutic agents. Biomed Pharmacother 2004; 58(3): 142–51

    Article  PubMed  CAS  Google Scholar 

  110. Salama NN, Eddington ND, Fasano A. Tight junction modulation and its relationship to drug delivery. Adv Drug Deliv Rev 2006; 58(1): 15–28

    Article  PubMed  CAS  Google Scholar 

  111. Qian F, Cui F, Ding J, et al. Chitosan graft copolymer nanoparticles for oral protein drug delivery: preparation and characterization. Biomacromolecules 2006; 7(10): 2722–7

    Article  PubMed  CAS  Google Scholar 

  112. Smith JM, Dornish M, Wood EJ. Involvement of protein kinase C in chitosan glutamate-mediated tight junction disruption. Biomaterials 2005; 26: 3269–76

    Article  PubMed  CAS  Google Scholar 

  113. Fasano A, Fiorentini C, Donelli G, et al. Zonula occludens toxin modulates tight junctions trough protein kinase C-dependent actin reorganization, in vitro. J Clin Invest 1995; 96: 710–20

    Article  PubMed  CAS  Google Scholar 

  114. Smith JM, Wood EJ, Dornish M. Effect of chitosan on epithelial cell tight junctions. Pharm Res 2004; 21: 43–39

    Article  PubMed  CAS  Google Scholar 

  115. Schipper NGM, Varum KM, Artursson P. Chitosan as absorption enhancers for poorly absorbable drugs I: influence of molecular weight and degree of acetylation on drug transport across human intestinal epithelial (Caco-2) cells. Pharm Res 1996; 13: 1686–92

    Article  PubMed  CAS  Google Scholar 

  116. Prego C, Torres D, Alonso MJ. The potential of chitosan for the oral administration of peptides. Exp Opi Drug Deliv 2005; 2: 843–54

    Article  CAS  Google Scholar 

  117. Camenisch G, Alsenz J, van de Waterbeemd H, et al. Estimation of permeability by passive diffusion through Caco-2 cell monolayers using the drugs’ lipophilicity and molecular weight. Eur J Pharm Sci 1998; 6(4): 313–9

    Article  CAS  Google Scholar 

  118. Fasano A. Innovative strategies for the oral delivery of drugs and peptides. Trend Biotechnol 1998; 16(4): 152–7

    Article  CAS  Google Scholar 

  119. Swaan PW. Recent advances in intestinal macromolecular drug delivery via receptor-mediated transport pathways. Pharm Res 1988; 15: 826–34

    Article  Google Scholar 

  120. Neutra MR, Phillips TL, Mayer EL, et al. Transport of membrane-bound macro-molecule by M cells in follicule associated epithelium of rabbit Peyer’s patch. Cell Tissue Res 1987; 247: 537–46

    Article  PubMed  CAS  Google Scholar 

  121. Frey A, Giannasca KT, Weltzin R, et al. Role of the glycocalyx in regulating access of microparticles to apical plasma membranes of intestinal epithelial cells: implications for microbial attachment and oral vaccine targeting. J Exp Med 1996; 184: 1045–59

    Article  PubMed  CAS  Google Scholar 

  122. Owen RL. Sequential uptake of horseradish peroxidase by lymphoid follicule epithelium of Peyer’s patches in the normal unobstructed mouse intestine: an ultrastructural study. Gastroenterology 1977; 72: 440–51

    PubMed  CAS  Google Scholar 

  123. Jepson MA, Simmons NL, Savidge TC, et al. Selective binding and transcytosis of latex microspheres by rabbit intestinal M cells. Cell Tissue Res 1993; 271: 399–405

    Article  PubMed  CAS  Google Scholar 

  124. Ragnarsson E. Effects of microparticle drug delivery systems: tissue responses and transcellular transport. Digital comprehensive summaries of Uppsala dissertations from the Faculty of Pharmacy 25. Uppsala: Acta Universitatis Upsaliensis, 2005: 1-59 [online]. Available from URL: http://publications.uu.se/abstract.xsql?dbid=6260 [Accessed 2008 May 27]

  125. Desai MP, Labhasetwar V, Walter E, et al. Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res 1996; 13(12): 1838–45

    Article  PubMed  CAS  Google Scholar 

  126. Carino GP, Jacob JS, Mathiowitz E. Nanosphere based oral insulin delivery. J Control Release 2000; 65(1–2): 261–9

    Article  PubMed  CAS  Google Scholar 

  127. McClean S, Prosser E, Meehan E, et al. Binding and uptake of biodegradable polyd,l-lactide micro and nanoparticles in intestinal epithelia. Eur J Pharm Sci 1998; 6(2): 153–63

    Article  PubMed  CAS  Google Scholar 

  128. Desai MP, Labhasetwar V, Amidon GL, et al. The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res 1997; 14(11): 1568–73

    Article  PubMed  CAS  Google Scholar 

  129. Norris DA, Sinko PJ. Effect of size, surface charge, and hydrophobicity on the translocation of polystyrene microspheres through gastrointestinal mucin. J Appl Polym Sci 1997; 63(11): 1481–92

    Article  CAS  Google Scholar 

  130. Andrianov AK, Payne LG. Polymeric carriers for oral uptake of microparticulates. Adv Drug Deliv Rev 1998; 34(2–3): 155–70

    Article  PubMed  CAS  Google Scholar 

  131. Couvreur P, Barratt G, Fattal E, et al. Nanocapsule technology: a review. Crit Rev Ther Drug Carrier Syst 2002; 19: 99–134

    Article  CAS  Google Scholar 

  132. Mathiowitz E, Jacob JS, Jong Eun O, et al. Biologically erodable microspheres as potential oral drug delivery systems. Nature 1997; 386: 410–4

    Article  PubMed  CAS  Google Scholar 

  133. Delie F. Evaluation of nano- and microparticle uptake by the gastrointestinal tract. Adv Drug Deliv Rev 1998; 34(2–3): 221–33

    Article  PubMed  CAS  Google Scholar 

  134. Landau BR, Wahren J, Chandramouli V, et al. Contributions of gluconeogenesis to glucose production in the fasted state. J Clin Invest 1996; 98(2): 378–85

    Article  PubMed  CAS  Google Scholar 

  135. Calvo P, Remuñán-Lópes C, Vila-Jato JL, et al. Novel hydrophilic chitosanpolyethylene oxide nanoparticles as protein carriers. J Appl Polymer Sci 1997; 63(1): 125–32

    Article  CAS  Google Scholar 

  136. Perdigoto R, Furtado AL, Porto A, et al. Sources of glucose production in cirrhosis by 2H2O ingestion and 2H NMR analysis of plasma glucose. Biochim Biophys Acta 2003; 1637(2): 156–63

    Article  PubMed  CAS  Google Scholar 

  137. Jin ES, Jones JG, Merritt M, et al. Glucose production, gluconeogenesis, and hepatic tricarboxylic acid cycle fluxes measured by nuclear magnetic resonance analysis of a single glucose derivative. Ann Biochem 2004; 327(2): 149–55

    Article  CAS  Google Scholar 

  138. Jones JG, Carvalho RA, Franco B, et al. Measurement of hepatic glucose output, Krebs cycle, and gluconeogenic fluxes by NMR analysis of a single plasma glucose sample. Ann Biochem 1998; 263(1): 39–45

    Article  CAS  Google Scholar 

  139. Carvalho RA, Jones JG, McGuirk C, et al. Hepatic gluconeogenesis and Krebs cycle fluxes in a CC14 model of acute liver failure. NMR Biomed 2002; 15(1): 45–51

    Article  PubMed  CAS  Google Scholar 

  140. Hazey JW, Yang D, Powers L, et al. tracing gluconeogenesis with deuterated water: measurement of low deuterium enrichments on carbons 6 and 2 of glucose. Ann Biochem 1997; 248(1): 158–67

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Fundaçao para a Ciência e Tecnologia (FCT) of Portugal (SFRH/BD/30644/2006) and the Natural Sciences and Engineering Research Council of Canada for their financial support of this work.

The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camile B. Woitiski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woitiski, C.B., Carvalho, R.A., Ribeiro, A.J. et al. Strategies Toward the Improved Oral Delivery of Insulin Nanoparticles via Gastrointestinal Uptake and Translocation. BioDrugs 22, 223–237 (2008). https://doi.org/10.2165/00063030-200822040-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-200822040-00002

Keywords

Navigation