Skip to main content
Log in

Convergence of Nanotechnology and Cardiovascular Medicine

Progress and Emerging Prospects

  • Leading Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Advances in the emergence of biological probes, materials, and analytical tools limited to the nanoscale size range, collectively referred to as ‘nanotechnology’, are increasingly being applied to the understanding and treatment of the major pathophysiological problems in cardiovascular medicine. Analytical techniques based on high-resolution microscopy and molecular-level fluorescence excitation processes capable of detecting nanoscale interactions have been used to elucidate cardiovascular pathology. Nanotechnology has also significantly impacted diagnostic intervention in cardiology, with the use of nanoparticles as contrast agents, for targeted biomedical imaging of vulnerable plaques, for detection of specific pathologic targets signaling the onset of atherosclerosis, and for tracking inflammatory events. Real-time nanoscale biosensors can be used to measure cardiovascular biomarkers, and nanopore sequencing has the potential to speed up the analysis of gene expression in cardiovascular disease. Potential therapeutic applications include the use of nanomaterials in cardiovascular devices, for delivery of drugs and bioactive molecules, or in novel technologies for reducing cholesterol accumulation and for dissolving clots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement

References

  1. Lanza G, Wickline SA. Targeted ultrasonic contrast agents for molecular imaging and therapy. Prog Cardiovasc Dis 2001; 44: 13–31

    Article  PubMed  CAS  Google Scholar 

  2. Finkelstein A, McClean D, Kar S, et al. Local drug delivery via a coronary stent with programmable release pharmacokinetics. Circulation 2003; 107: 777–84

    Article  PubMed  Google Scholar 

  3. Chen CM, Peng EH. Nanopore sequencing of polynucleotides assisted by a rotating electric field. Appl Phys Lett 2003; 82(8): 1308–10

    Article  CAS  Google Scholar 

  4. Han M, Gao X, Su JZ, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 2001; 19: 631–5

    Article  PubMed  CAS  Google Scholar 

  5. Wickline SA, Neubauer AM, Winter P, et al. Applications of nanotechnology to atherosclerosis, thrombosis, and vascular biology. Arterioscler Thromb Vasc Biol 2006; 26: 435–41

    Article  PubMed  CAS  Google Scholar 

  6. Tsien RY. Imagining imaging’s future. Nat Rev Mol Cell Biol 2003 Sep; Suppl.: SS16-21

  7. Gadegaard N. Atomic force microscopy in biology: technology and techniques. Biotech Histochem 2006 Mar–Jun; 81(2–3): 87–97

    Article  PubMed  CAS  Google Scholar 

  8. Blake GJ, Rifai N, Buring JE, et al. Blood pressure, C-reactive protein, and risk of future cardiovascular events. Circulation 2003 Dec 16; 108(24): 2993–9

    Article  PubMed  CAS  Google Scholar 

  9. Volanakis JE. Human C-reactive protein: expression, structure, and function. Mol Immunol 2001 Aug; 38(2–3): 189–97

    Article  PubMed  CAS  Google Scholar 

  10. Lin S, Lee CK, Wang YM, et al. Measurement of dimensions of pentagonal doughnut-shaped C-reactive protein using an atomic force microscope and a dual polarisation interferometric biosensor. Biosens Bioelectron 2006 Aug 15; 22(2): 323–7

    Article  PubMed  Google Scholar 

  11. Flanagan TC, Pandit A. Living artificial heart valve alternatives: a review. Eur Cell Mater 2003 Nov 20; 6: 28–45

    PubMed  CAS  Google Scholar 

  12. Brody S, Anilkumar T, Liliensiek S, et al. Characterizing nanoscale topography of the aortic heart valve basement membrane for tissue engineering heart valve scaffold design. Tissue Eng 2006 Feb; 12(2): 413–21

    Article  PubMed  Google Scholar 

  13. Sun Z, Martinez-Lemus LA, Trache A, et al. Mechanical properties of the interaction between fibronectin and alpha5beta1-integrin on vascular smooth muscle cells studied using atomic force microscopy. Am J Physiol Heart Circ Physiol 2005 Dec; 289(6): H2526–35

    Article  PubMed  CAS  Google Scholar 

  14. Pohl DW, Denk W, Lanz M. Optical stethoscopy: image recording with a resolution of 1/20. Appl Phys Lett 1984; 44: 651–3

    Article  Google Scholar 

  15. Ianoul A, Street M, Grant D, et al. Near-field scanning fluorescence microscopy study of ion channel clusters in cardiac myocyte membranes. Biophys J 2004 Nov; 87(5): 3525–35

    Article  PubMed  CAS  Google Scholar 

  16. Micheletto R, Deyner M, Scholl M, et al. Observation of the dynamics of live cardiomyocytes through a free-running scanning near-field optical microscopy setup. Appl Opt 1999; 38: 6648–52

    Article  PubMed  CAS  Google Scholar 

  17. Clegg R. Fluorescence resonance energy transfer. In: Wang XF, Herman B, editor. Fluorescence imaging spectroscopy and microscopy. New York (NY): John Wiley, 1996: 179–251

    Google Scholar 

  18. Gross GJ, Peart JN. KATP channels and myocardial preconditioning: an update. Am J Physiol Heart Circ Physiol 2003 Sep; 285(3): H921–30

    PubMed  CAS  Google Scholar 

  19. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986 Nov; 74(5): 1124–36

    Article  PubMed  CAS  Google Scholar 

  20. Garg V, Hu K. Protein kinase c isoform-dependent modulation of ATP-sensitive K+ channels in mitochondrial inner membrane. Am J Physiol Heart Circ Physiol 2007; 293: H322–32

    Article  PubMed  CAS  Google Scholar 

  21. Meyer M, Belke DD, Trost SU, et al. A recombinant antibody increases cardiac contractility by mimicking phospholamban phosphorylation. FASEB J 2004 Aug; 18(11): 1312–4

    PubMed  CAS  Google Scholar 

  22. Xu Y, Piston DW, Johnson CH. A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc Natl Acad Sci U S A 1999 Jan 5; 96(1): 151–6

    Article  PubMed  CAS  Google Scholar 

  23. Prinz A, Diskar M, Erlbruch A, et al. Novel, isotype-specific sensors for protein kinase A subunit interaction based on bioluminescence resonance energy transfer (BRET). Cell Signal 2006 Oct; 18(10): 1616–25

    Article  PubMed  CAS  Google Scholar 

  24. Tasken K, Aandahl EM. Localized effects of cAMP mediated by distinct routes of protein kinase A. Physiol Rev 2004 Jan; 84(1): 137–67

    Article  PubMed  CAS  Google Scholar 

  25. Lanza G, Wallace KD, Scott MJ, et al. A novel site-targeted ultrasonic contrast agent with broad biomedical application. Circulation 1996; 95: 3334–40

    Article  Google Scholar 

  26. Moulton K, Heller E, Konerding MA, et al. Angiogenesis inhibitors endostatin or TNP-470 reduce intimai neovascularization and plaque growth in apolipoprotein E-deficient mice. Circulation 1999; 99: 1726–32

    Article  PubMed  CAS  Google Scholar 

  27. Tenaglia A, Peters KG, Sketch Jr MH, et al. Neovascularization in atherectomy specimens from patients with unstable angina: implications for pathogenesis of unstable angina. Am Heart J 1998; 135: 10–4

    Article  PubMed  CAS  Google Scholar 

  28. Winter P, Morawski AM, Caruthers SD, et al. Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta(3)-integrin-targeted nanoparticles. Circulation 2003; 108: 2270–4

    Article  PubMed  CAS  Google Scholar 

  29. Chan WC, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998 Sep 25; 281(5385): 2016–8

    Article  PubMed  CAS  Google Scholar 

  30. Dubertret B, Skourides P, Norris DJ, et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002; 298: 1759–62

    Article  PubMed  CAS  Google Scholar 

  31. Buxton DB, Lee SC, Wickline SA, et al. Recommendations of the National Heart, Lung, and Blood Institute Nanotechnology Working Group. Circulation 2003; 108: 2737–42

    Article  PubMed  Google Scholar 

  32. Lanza G, Yu X, Winter PM, et al. Targeted antiproliferative drug delivery to vascular smooth muscle cells with a magnetic resonance imaging nanoparticle contrast agent: implications for rational therapy of restenosis. Circulation 2002; 106: 2842–7

    Article  PubMed  CAS  Google Scholar 

  33. Zhao M, Beauregard DA, Loizou L, et al. Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nat Med 2001; 7: 1241–4

    Article  PubMed  CAS  Google Scholar 

  34. Walsh K, Smith RC, Kim HS. Vascular cell apoptosis in remodeling, restenosis, and plaque rupture. Circ Res 2000; 87: 184–8

    Article  PubMed  CAS  Google Scholar 

  35. Blankenberg F, Strauss HW. Noninvasive strategies to image cardiovascular apoptosis. Cardiol Clin 2001; 19: 165–72

    Article  PubMed  CAS  Google Scholar 

  36. Nahrendorf MJ, Kelly KA, Sosnovik DE, et al. Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation 2006; 114: 1504–11

    Article  PubMed  CAS  Google Scholar 

  37. Ruehm S, Corot C, Vogt P, et al. Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 2001; 103: 415–22

    Article  PubMed  CAS  Google Scholar 

  38. Cui Y, Wei Q, Park H, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001; 293: 1289–92

    Article  PubMed  CAS  Google Scholar 

  39. Bonnet G, Tyagi S, Libchaber A, et al. Thermodynamic basis of the enhanced specificity of structured DNA probes. Proc Natl Acad Sci U S A 1999 May 25; 96(11): 6171–6

    Article  PubMed  CAS  Google Scholar 

  40. Tyagi S, Bratu DP, Kramer FR. Multicolor molecular beacons for allele discrimination. Nat Biotechnol 1998 Jan; 16(1): 49–53

    Article  PubMed  CAS  Google Scholar 

  41. Tyagi S, Kramer FR. Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 1996 Mar; 14(3): 303–8

    Article  PubMed  CAS  Google Scholar 

  42. Giesendorf BA, Vet JA, Tyagi S, et al. Molecular beacons: a new approach for semiautomated mutation analysis. Clin Chem 1998 Mar; 44(3): 482–6

    PubMed  CAS  Google Scholar 

  43. Masson JF, Battaglia TM, Khairallah P, et al. Quantitative measurement of cardiac markers in undiluted serum. Anal Chem 2007 Jan 15; 79(2): 612–9

    Article  PubMed  CAS  Google Scholar 

  44. Jia SZ, Sun HY, Wang QL. Nanopore technology and its applications. Prog Biochem Biophys 2002; 29: 202–5

    CAS  Google Scholar 

  45. Carella M, Volinia S, Gasparini P. Nanotechnologies and microchips in genetic diseases. J Nephrol 2003; 16: 597–602

    PubMed  CAS  Google Scholar 

  46. Flint J, Mott R. Finding the molecular basis of quantitative traits: successes and pitfalls. Nat Rev Genet 2001; 2: 437–45

    Article  PubMed  CAS  Google Scholar 

  47. Barrans J, Stamatiou D, Liew C. Construction of a human cardiovascular cDNA microarray: portrait of the failing heart. Biochem Biophys Res Commun 2001; 280: 964–9

    Article  PubMed  CAS  Google Scholar 

  48. Smith L, Sanders JZ, Kaiser RJ, et al. Fluorescence detection in automated DNA sequence analysis. Nature (London) 1986; 321: 674–9

    Article  CAS  Google Scholar 

  49. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977; 74: 5463–7

    Article  PubMed  CAS  Google Scholar 

  50. Marziali A, Akeson M. New DNA sequencing methods. Annu Rev Biomed Eng 2001; 3: 195–223

    Article  PubMed  CAS  Google Scholar 

  51. Lam C, James JT, McCluskey R, et al. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol 2006; 36: 189–217

    Article  PubMed  CAS  Google Scholar 

  52. Meng J, Kong H, Xu HY, et al. Improving the blood compatibility of polyurethane using carbon nanotubes as fillers and its implications to cardiovascular surgery. J Biomed Mater Res 2005; 74A: 208–14

    Article  CAS  Google Scholar 

  53. Yang P, Huang N, Leng YX, et al. Activation of platelets adhered on amorphous hydrogenated carbon (a-C:H) films synthesized by plasma immersion ion implantation-deposition(PIII-D). Biomaterials 2003; 24: 2821–9

    Article  PubMed  CAS  Google Scholar 

  54. Smalley RE. Nanotechnology: prepared written statement and supplemental material of RE Smalley, Rice University, June 22, 1999. Washington, DC: US House of Representatives Committee on Science, Basic Research Subcommittee Hearings, US Government, 1999

    Google Scholar 

  55. Sotiropoulou S, Chaniotakis NA. Carbon nanotube array-based biosensor. Anal Bioanal Chem 2003; 375: 103–5

    PubMed  CAS  Google Scholar 

  56. Star A, Tu E, Niemann J, et al. Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. PNAS 2006; 103(4): 921–6

    Article  PubMed  CAS  Google Scholar 

  57. Li X, Peng Y, Qu X. Carbon nanotubes selective destabilization of duplex and triplex DNA and inducing B-A transition in solution. Nucleic Acids Res 2006; 34(13): 3670–6

    Article  PubMed  CAS  Google Scholar 

  58. Li Z, Salmen R, Huldermen T, et al. Pulmonary exposure to carbon nanotubes induces vascular toxicity [abstract]. Toxicologist 2005; 84Suppl. 1: 213

    Google Scholar 

  59. Li ZJ, Chapman R, Hulderman T, et al. Relationship between pulmonary exposure to multiple doses of single wall carbon nanotubes and atherosclerosis in ApoE-/ — mouse model [abstract]. Toxicologist 2006; 90(1): 318

    Google Scholar 

  60. Bittl J. Medical progress: advances in coronary angioplasty. N Engl J Med 1996; 335: 1290–302

    Article  PubMed  CAS  Google Scholar 

  61. Serruys P, Unger F, Sousa JE, et al. Comparison of coronary-artery bypass surgery and stenting for the treatment of multivessel disease. N Engl J Med 2001; 344: 1117–24

    Article  PubMed  CAS  Google Scholar 

  62. Fischman D, Leon MD, Baim DS, et al., for the Stent Restenosis Study Investigators. A randomized comparison of coronary-stent placement and balloon angioplasty in treatment of coronary artery disease. N Engl J Med 1994; 331: 496–501

    Article  PubMed  CAS  Google Scholar 

  63. Till F, Aliabadi D, Kinn JW, et al. Real life stenting: a comparison of target vessel revascularization in Benestent-Stress lesions to non Benestent-Stress lesions [abstract]. Circulation 1996; 94: I–332

    Google Scholar 

  64. Fenton S, Fischman DL, Savage MP, et al. Long-term angiographic and clinical outcome after implantation of balloon expandable stents in aortocoronary saphenous vein grafts. Am J Cardiol 1994; 74: 1187–91

    Article  PubMed  CAS  Google Scholar 

  65. Hoffmann R, Mintz GS, Dussaillant GR, et al. Patterns and mechanisms of instent restenosis: a serial intravascular ultrasound study. Circulation 1996; 94: 1247–54

    Article  PubMed  CAS  Google Scholar 

  66. Mudra H, Regar E, Klauss V, et al. Serial follow-up after optimized ultrasound-guided deployment of Palmaz-Schatz stents. Circulation 1997; 95: 363–70

    Article  PubMed  CAS  Google Scholar 

  67. Hehrlein CGC, Dönges K, Metz J, et al. Low-dose radioactive endovascular stents prevent smooth muscle cell proliferation and neointimal hyperplasia in rabbits. Circulation 1995; 92: 1570–5

    Article  PubMed  CAS  Google Scholar 

  68. Babapulle M, Joseph L, Belisle P, et al. A hierarchical Bayesian meta-analysis of randomised clinical trials of drug eluting stents. Lancet 2004; 364: 583–91

    Article  PubMed  CAS  Google Scholar 

  69. Wessely R, Hausleiter J, Michaelis C, et al. Inhibition of neointima formation by a novel drug-eluting stent system that allows for dose-adjustable, multiple, and on-site stent coating. Arterioscler Thromb Vasc Biol 2005; 25: 748–53

    Article  PubMed  CAS  Google Scholar 

  70. Sangiorgi G, Arbustini E, Lanzarini P, et al. Nonbiodegradable expanded polytetrafluoroethylene-covered stent implantation in porcine peripheral arteries: histologic evaluation of vascular wall response compared with uncoated stents. Cardiovasc Interven Radiol 2001; 24: 260–70

    Article  CAS  Google Scholar 

  71. Honda Y, Grube E, de la Fuente LM, et al. Novel drug-delivery stent: intravascular ultrasound observations from the first human experience with the QP2-eluting polymer stent system. Circulation 2001; 104: 380–3

    Article  PubMed  CAS  Google Scholar 

  72. Caves J, Chaikof EL. The evolving impact of microfabrication and nanotechnology on stent design. J Vasc Surg 2006; 44(6): 1363–8

    Article  PubMed  Google Scholar 

  73. Wong A, Waugh JM, Amabile PG, et al. In vivo vascular engineering: directed migration of smooth muscle cells to limit neointima. Tissue Eng 2002; 8: 189–99

    Article  PubMed  Google Scholar 

  74. Kolodgie F, John M, Khurana C, et al. Sustained reduction of in-stent neointimal growth with the use of a novel systemic nanoparticle paclitaxel. Circulation 2002; 106: 1195–8

    Article  PubMed  CAS  Google Scholar 

  75. Winter PMN, Neubauer AM, Caruthers SD, et al. Endothelial alpha-(nu)-beta 3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler Thromb Vasc Biol 2006; 26: 2103–9

    Article  PubMed  CAS  Google Scholar 

  76. Bimbaum Y, Luo H, Nagai T, et al. Noninvasive in vivo clot dissolution without a thrombolytic drug: recanalization of thrombosed iliofemoral arteries by transcutaneous ultrasound combined with intravenous infusion of microbubbles. Circulation 1998; 97(2): 130–4

    Article  Google Scholar 

  77. Porter TR, LeVeen RF, Fox R, et al. Thrombolytic enhancement with perfluorocarbon-exposed sonicated dextrose albumin microbubbles. Am Heart J 1996; 132: 964–8

    Article  PubMed  CAS  Google Scholar 

  78. Culp WC, Porter TR, McCowan TC, et al. Microbubble-augmented ultrasound declotting of thrombosed arteriovenous dialysis grafts in dogs. J Vasc Interven Radiol 2003; 14: 343–7

    Article  Google Scholar 

  79. Unger EC, Porter T, Culp WC, et al. Therapeutic applications of lipid-coated microbubbles. Adv Drug Deliv Rev 2004; 56(9): 1291–314

    Article  PubMed  CAS  Google Scholar 

  80. Bardsley-Elliot A. Biotechnology Industry Organization, BIO 2006: annual international convention; 9–12 April 2006, Chicago, (IL) [meeting report]. BioDrugs 2006; 20(3): 181–90

    Article  PubMed  Google Scholar 

  81. Unger E. Treatment of ischemic stroke with nanobubbles and ultrasound. J Acoust Soc Am 2006; 119(5): 3437

    Google Scholar 

  82. Stieger SM, Bloch SH, Foreman O, et al. Ultrasound assessment of angiogenesis in a matrigel model in rats. Ultrasound Med Biol 2006 May; 32(5): 673–81

    Article  PubMed  Google Scholar 

  83. Tsutsui JM, Xie F, Johanning J, et al. Treatment of deeply located acute intravascular thrombi with therapeutic ultrasound guided by diagnostic ultrasound and intravenous microbubbles. J Ultrasound Med 2006 Sep; 25(9): 1161–8

    PubMed  Google Scholar 

  84. Chin CT, Burns PN. Predicting the acoustic response of a microbubble population for contrast imaging in medical ultrasound. Ultrasound Med Biol 2000 Oct; 26(8): 1293–300

    Article  PubMed  CAS  Google Scholar 

  85. Chappell JC, Price RJ. Targeted therapeutic applications of acoustically active microspheres in the microcirculation. Microcirculation 2006 Jan; 13(1): 57–70

    Article  PubMed  CAS  Google Scholar 

  86. Price R, Chappell J, Song J, et al. Nanoparticle delivery into biological tissues by ultra sonic microbubble destruction. Nanomedicine 2006; 2: 269–312

    Google Scholar 

  87. Wang JZ, Plourde N, Iverson N, et al. Design of nanoscale macromolecules for differential display of anionic groups toward inhibition of cellular uptake of oxidized low density lipoproteins. Int J Nanomed. In press

  88. Shepherd J, Packard CJ, Bicker S, et al. Effect of cholestyramine on low-density lipoproteins. N Engl J Med 1980; 303: 943–4

    PubMed  CAS  Google Scholar 

  89. Stamler J, Wentworth D, Neaton JD. Is relationship between serum cholesterol and risk of premature death from coronary heart disease continuous and graded? Findings in 356,222 primary screenees of the Multiple Risk Factor Intervention Trial (MRFIT). JAMA 1986; 256: 2823–8

    Article  PubMed  CAS  Google Scholar 

  90. Shepherd J, Cobbe SM, Ford I, et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. N Engl J Med 1995; 333: 1301–17

    Article  PubMed  CAS  Google Scholar 

  91. Mabuchi H, Sakai T, Sakai Y, et al. Reduction of serum cholesterol in heterozygous patients with familial hypercholesterolemia: additive effects of compactin and cholestyramine. N Engl J Med 1983; 308: 609–13

    Article  PubMed  CAS  Google Scholar 

  92. Altschul R, Hoffer A, Stephen JD. Influence of nicotinic acid on serum cholesterol in man. Arch Biochem 1955; 54: 558–9

    Article  PubMed  CAS  Google Scholar 

  93. Carlson L, Oro L. The effect of nicotinic acid on the plasma free fatty acid: demonstration of a metabolic type of sympathicolysis. Acta Med Scand 1962; 172: 641–5

    Article  PubMed  CAS  Google Scholar 

  94. Tian L, Yam L, Zhou N, et al. Amphiphilic scorpion-like macromolecules: design, synthesis, and characterization. Macromolecules 2004; 37(2): 538–43

    Article  CAS  Google Scholar 

  95. Chnari E, Nikitczuk JS, Uhrich KE, et al. Nanoscale anionic macromolecules can inhibit cellular uptake of differentially oxidized LDL. Biomacromolecules 2006; 7: 597–603

    Article  PubMed  CAS  Google Scholar 

  96. Chnari E, Lari HB, Tian L, et al. Nanoscale anionic macromolecules for selective retention of low-density lipoproteins. Biomaterials 2005; 26: 3749–58

    Article  PubMed  CAS  Google Scholar 

  97. Chnari E, Nikitczuk JS, Wang J, et al. Engineered polymeric nanoparticles for receptor-targeted blockage of oxidized low density lipoprotein uptake and atherogenesis. Biomacromolecules 2006; 7: 1796–805

    Article  PubMed  CAS  Google Scholar 

  98. Takahashi Y, Kinoshita T, Sakashita T, et al. Growth stimulation and epidermal growth factor receptor induction in cyclooxygenase-overexpressing human colon carcinoma cells. Adv Exp Med Biol 2002; 507: 403–7

    PubMed  Google Scholar 

  99. Weissberg P, Bennett MR, Boyle JJ. Human macrophage-induced vascular smooth muscle cell apoptosis requires NO enhancement of Fas/Fas-L interactions. Arterioscler Thromb Vasc Biol 2002; 22(10): 1624–30

    Article  PubMed  Google Scholar 

  100. Wada Y, Sugiyama A, Yamamoto T, et al. Lipid accumulation in smooth muscle cells under LDL loading is independent of LDL receptor pathway and enhanced by hypoxic conditions. Arterioscler Thromb Vasc Biol 2002; 22(10): 1712–9

    Article  PubMed  CAS  Google Scholar 

  101. Absood A, Furutani A, Kawamura T, et al. Differential PDGF secretion by graft and aortic SMC in response to oxidized LDL. Am J Physiol Heart Circ Physiol 2002; 283(2): H725–32

    PubMed  CAS  Google Scholar 

  102. Absood A, Furutani A, Kawamura T, et al. A comparison of oxidized LDL-induced collagen secretion by graft and aortic SMCs: role of PDGF. Am J Physiol Heart Circ Physiol 2004; 287(3): H1200–6

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding support from the National Institutes of Health (Rutgers-UMDNJ T32 Biotechnology Training Program), the National Science Foundation (IGERT on Biointerfaces: DGE 0333196; BES 0201788), and the American Heart Association (0455823T; 0756036T). For the studies on nanolipoblockers, the authors are grateful for the significant contributions from Professor Kathryn E. Uhrich and her laboratory co-workers at Rutgers.

The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhas V. Moghe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iverson, N., Plourde, N., Chnari, E. et al. Convergence of Nanotechnology and Cardiovascular Medicine. BioDrugs 22, 1–10 (2008). https://doi.org/10.2165/00063030-200822010-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-200822010-00001

Keywords

Navigation