Skip to main content
Log in

Use of Immunological and Viral Parameters to Predict Progression of HIV Infection During Natural Course and Antiretroviral Treatment

  • Current Opinion
  • Published:
BioDrugs Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Polk BF, Fox R, Brookmeyer R, et al. Predictors of the acquired immunodeficiency syndrome developing in a cohort of seropositive homosexual men. N Engl J Med 1987; 316: 61–6

    Article  PubMed  CAS  Google Scholar 

  2. Eyster ME, Gail MH, Ballard JO, et al. Natural history of human immunodeficiency virus infections in hemophiliacs: effects of T-cell subsets, platelet counts, and age. Ann Intern Med 1987; 107: 1–6

    PubMed  CAS  Google Scholar 

  3. Moss AR, Bachetti P, Osmond D, et al. Seropositivity of HIV and the development of AIDS or AIDS-related conditions: three year follow-up of the San Francisco General Hospital cohort. BMJ 1988; 296: 745–50

    Article  PubMed  CAS  Google Scholar 

  4. Eyster ME, Ballard JO, Gail MH, et al. Predictive markers for the acquired immunodeficiency syndrome (AIDS) in hemophiliacs: persistence of p24 antigen and low T4 cell count. Ann Intern Med 1989; 110: 963–9

    PubMed  CAS  Google Scholar 

  5. Goedert JJ, Kessler CM, Aledort LM, et al. A prospective study of human immunodeficiency virus type 1 infection and the development of AIDS in subjects with hemophilia. N Engl J Med 1989; 321: 1141–8

    Article  PubMed  CAS  Google Scholar 

  6. De Wolf F, Lange JMA, Houweling JTM, et al. Numbers of CD4+ cells and the levels of core antigens of and antibodies to the human immunodeficiency virus as predictors of AIDS among seropositive homosexual men. J Infect Dis 1988; 158: 615–22

    Article  PubMed  Google Scholar 

  7. De Wolf F, Lange JMA, Houweling JTM, et al. Appearance of predictors of disease progression in relation to the development of AIDS. AIDS 1989; 3: 563–9

    Article  PubMed  Google Scholar 

  8. De Wolf F, Goudsmit J, Paul DA, et al. Persistent HIV antigenemia is associated with rapid clinical and immunological deterioration. BMJ 1987; 295: 569–72

    Article  PubMed  Google Scholar 

  9. Phillips AN, Lee CA, Elford J, et al. Serial CD4 lymphocyte counts and development of AIDS. Lancet 1991; 337: 389–92

    Article  PubMed  CAS  Google Scholar 

  10. Keet IPM, Krijnen P, Koot M, et al. Predictors of rapid progression to AIDS in HIV-1 seroconverters. AIDS 1993; 7: 51–7

    Article  PubMed  CAS  Google Scholar 

  11. Masur H, Ognibene FP, Yarchoan R, et al. CD4 counts as predictors of opportunistic pneumonias in human immunodeficiency virus (HIV) infection. Ann Intern Med 1989; 111: 223–31

    PubMed  CAS  Google Scholar 

  12. Lifson AR, Hessol NA, Buchbinder SP, et al. Serum β2-microglobulin and prediction of progression to AIDS in HIV infection. Lancet 1992; 339: 1436–40

    Article  PubMed  CAS  Google Scholar 

  13. Fahey JL, Taylor JMG, Detels R, et al. The prognostic value of cellular and serologic markers in infection with human immunodeficiency virus type 1. N Engl J Med 1990; 322: 166–72

    Article  PubMed  CAS  Google Scholar 

  14. Easterbrook PJ, Emami J, Gazzard B. Rate of CD4 cell decline and prediction of survival in zidovudine-treated patients. AIDS 1993; 7: 959–67

    Article  PubMed  CAS  Google Scholar 

  15. Koot M, Keet IPM, Vos AHV, et al. Prognostic value of human immunodeficiency virus type 1 biological phenotype for rate of CD4+ cell depletion and progression to AIDS. Ann Intern Med 1993; 118: 681–8

    PubMed  CAS  Google Scholar 

  16. Phillips AN. Studies of prognostic markers in HIV infection: implications for pathogenesis. AIDS 1992; 6: 1391–4

    Article  PubMed  CAS  Google Scholar 

  17. Phillips AN, Eron JJ, Bartlett JA, et al. HIV-1 RNA levels and the development of clinical disease. AIDS 1996; 10: 859–65

    Article  PubMed  CAS  Google Scholar 

  18. Roos MTL, Miedema F, Koot M, et al. T-cell function in vitro is an independent progression marker for AIDS in human immunodeficiency virus (HIV)-infected asymptomatic individuals. J Infect Dis 1995; 171: 531–6

    Article  PubMed  CAS  Google Scholar 

  19. Miedema F, Meyaard L, Koot M, et al. Changing virus-host interactions in the course of HIV-1 infection. Immunol Rev 1994; 140: 35–72

    Article  PubMed  CAS  Google Scholar 

  20. Hofmann B, Orskov Lindhardt B, Gerstoft J, et al. Lymphocyte transformation response to pokeweed mitogen as a marker for the development of AIDS and AIDS related symptoms in homosexual men with HIV antibodies. BMJ 1987; 295: 293–6

    Article  PubMed  CAS  Google Scholar 

  21. Blatt SP, Hendrix CW, Butzin CA, et al. Delayed type hypersensitivity skin testing predicts progression to AIDS in HIV-infected patients. Ann Intern Med 1993; 119: 177–84

    PubMed  CAS  Google Scholar 

  22. Schellekens PTA, Roos MTL, De Wolf F, et al. Low T-cell responsiveness to activation via CD3/TCR is a prognostic marker for AIDS in HIV-1 infected men. J Clin Immunol 1990; 10: 121–7

    Article  PubMed  CAS  Google Scholar 

  23. Keet IPM, Krol A, Klein MR, et al. Characteristics of long-term asymptomatic infection with the human immunodeficiency virus type 1 with normal and low CD4+ cell counts. J Infect Dis 1994; 169: 1236–43

    Article  PubMed  CAS  Google Scholar 

  24. Keet IPM, Krol A, Koot M, et al. Predictors of disease progression in HIV-infected homosexual men with CD4+ cells <200 × 106/L but free of AIDS-defining clinical disease. AIDS 1994; 8: 1577–83

    Article  PubMed  CAS  Google Scholar 

  25. Bindeis PJE, Krol A, Roos MTL, et al. The predictive value of T cell function in vitro and pre AIDS zidovudine use for survival after AIDS diagnosis in a cohort of homosexual men in Amsterdam. J Infect Dis 1995; 172: 97–104

    Article  Google Scholar 

  26. Melmed RN, Taylor JMG, Detels R, et al. Serum neopterin changes in HIV-infected subjects: indicator of significant pathology, CD4 T cell changes, and the development of AIDS. J Acquir Immune Defic Syndr 1989; 2: 70–6

    PubMed  CAS  Google Scholar 

  27. Gruters RA, Terpstra FG, De Goede REY, et al. Immunological and virological markers in individuals progressing from seroconversion to AIDS. AIDS 1991; 5: 837–44

    Article  PubMed  CAS  Google Scholar 

  28. Kestens L, Vanham G, Vereecken C, et al. Selective increase of activation antigens HLA-DR and CD38 on CD4+CD45RO+ T lymphocytes during HIV-1 infection. Clin Exp Immunol 1994; 95: 436–41

    Article  PubMed  CAS  Google Scholar 

  29. Ho HN, Hultin LE, Mitsuyasu RT, et al. Circulating HIV-specific CD8+ cytotoxic T cells express CD38 and HLA-DR antigens. J Immunol 1993; 150: 3070–9

    PubMed  CAS  Google Scholar 

  30. Salazar-González JF, Moody DJ, Giorgi JV, et al. Reduced ecto-5′-nucleotidase activity and enhanced OKT 10 and HLA-DR expression on CD8 lymphocytes in the acquired immune deficiency syndrome: evidence of CD8 cell immaturity. J Immunol 1985; 135: 1778–85

    PubMed  Google Scholar 

  31. Giorgi JV, Detels R. T-cell subset alterations in HIV-infected homosexual men: NIAID Multicentre AIDS Cohort study. Clin Immunol Immunopathol 1989; 52: 10–8

    Article  PubMed  CAS  Google Scholar 

  32. Lange JMA, Paul DA, Huisman HG, et al. Persistent HIV anti-genaemia and decline of HIV core antibodies associated with transition to AIDS. BMJ 1986; 293: 1459–62

    Article  PubMed  CAS  Google Scholar 

  33. Koot M, Van’ t Wout AB, Kootstra NA, et al. Relation between changes in cellular load, evolution of viral phenotype, and the clonal composition of virus populations in the course of human immunodeficiency virus type 1 infection. J Infect Dis 1996; 173: 349–54

    Article  PubMed  CAS  Google Scholar 

  34. Schuitemaker H, Koot M, Kootstra NA, et al. Biological phenotype of human immunodeficiency virus type 1 clones at different stages of infection: progression of disease is associated with a shift from monocytotropic to T-cell-tropic virus populations. J Virol 1992; 66: 1354–60

    PubMed  CAS  Google Scholar 

  35. Ho DD, Moudgil T, Alam M. Quantitation of human immunodeficiency virus type 1 in the blood of infected persons. N Engl J Med 1989; 321: 1621–5

    Article  PubMed  CAS  Google Scholar 

  36. Connor RI, Mohri H, Cao Y, et al. Increased viral burden and cytopathicity correlate temporally with CD4+ T-lymphocyte decline and clinical progression in human immunodeficiency virus type 1 infected individuals. J Virol 1993; 67: 1772–7

    PubMed  CAS  Google Scholar 

  37. Henrard DR, Phillips JF, Muenz LR, et al. Natural history of HIV-1 cell-free viremia. JAMA 1995; 274: 554–8

    Article  PubMed  CAS  Google Scholar 

  38. Mellors JW, Kingsley L, Rinaldo Jr CR, et al. Quantitation of HIV-1 RNA in plasma predicts outcome after seroconversion. Ann Intern Med 1995; 122: 573–9

    PubMed  CAS  Google Scholar 

  39. O’Brien TR, Blattner WA, Waters D, et al. Serum HIV-1 RNA levels and time to development of AIDS in the Multicenter Hemophilia Cohort Study. JAMA 1996; 276: 105–10

    Article  PubMed  Google Scholar 

  40. Mellors JW, Rinaldo Jr CR, Gupta P, et al. Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science 1996; 272: 1167–70

    Article  PubMed  CAS  Google Scholar 

  41. Saksela K, Stevens CE, Rubinstein P, et al. HIV-1 messenger RNA in peripheral blood mononuclear cells as an early marker of risk for progression to AIDS. Ann Intern Med 1995; 123: 641–8

    PubMed  CAS  Google Scholar 

  42. Schnittman SM, Greenhouse JJ, Psallidopoulos MC, et al. Increasing viral burden in CD4+ T cells from patients with human immunodeficiency virus (HIV) infection reflects rapidly progressive immunosuppression and clinical disease. Ann Intern Med 1990; 113: 438–43

    PubMed  CAS  Google Scholar 

  43. Chevret S, Kirstetter M, Mariotti M, et al. Provirus copy number to predict disease progression in asymptomatic immunodeficiency virus type 1 infection. J Infect Dis 1994; 169: 882–5

    Article  PubMed  CAS  Google Scholar 

  44. Asjo B, Albert J, Karlsson A, et al. Replicative capacity of human immunodeficiency virus from patients with varying severity of HIV infection. Lancet 1986; II: 660–2

    Google Scholar 

  45. Tersmette M, De Goede REY, Al BJM, et al. Differential syncytium-inducing capacity of human immunodeficiency virus isolates: frequent detection of syncytium-inducing isolates in patients with acquired immunodeficiency syndrome (AIDS) and AIDS-related complex. J Virol 1988; 62: 2026–32

    PubMed  CAS  Google Scholar 

  46. Tersmette M, Gruters RA, De Wolf F, et al. Evidence for a role of virulent human immunodeficiency virus (HIV) variants in the pathogenesis of acquired immunodeficiency syndrome: studies on sequential HIV isolates. J Virol 1989; 63: 2118–25

    PubMed  CAS  Google Scholar 

  47. Cheng-Mayer C, Seto D, Tateno M, et al. Biologic features of HIV-1 that correlate with virulence in the host. Science 1988; 240: 80–2

    Article  PubMed  CAS  Google Scholar 

  48. Zhu T, Mo H, Wang N, et al. Genotypic and phenotypic characterization of HIV-1 in patients with primary infection. Science 1993; 261: 1179–81

    Article  PubMed  CAS  Google Scholar 

  49. Van’ t Wout AB, Kootstra NA, Mulder-Kampinga GA, et al. Macrophage-tropic variants initiate human immunodeficiency virus type 1 infection after sexual, parenteral and vertical transmission. J Clin Invest 1994; 94: 2060–7

    Article  Google Scholar 

  50. Koot M, Vos AHV, Keet RPM, et al. HIV-1 biological phenotype in long term infected individuals, evaluated with an MT-2 cocultivation assay. AIDS 1992; 6: 49–54

    Article  PubMed  CAS  Google Scholar 

  51. Richman DD, Bozzette SA. The impact of the syncytium-inducing phenotype of human immunodeficiency virus on disease progression. J Infect Dis 1994; 169: 968–74

    Article  PubMed  CAS  Google Scholar 

  52. Karlsson A, Parsmyr K, Sandstrom E, et al. MT-2 cell tropism as prognostic marker for disease progression in human immunodeficiency virus type 1 infection. J Clin Microbiol 1994; 32: 364–70

    PubMed  CAS  Google Scholar 

  53. O’Brien WA, Hartigan PM, Martin D, et al. Changes in plasma HIV-1 RNA and CD4+ lymphocyte counts and the risk of progression to AIDS. N Engl J Med 1996; 334: 426–31

    Article  PubMed  Google Scholar 

  54. Cooper DA, Gatell JM, Kroon S, et al. Zidovudine in persons with asymptomatic HIV infection and CD4+ cell counts greater than 400 per cubic millimeter. N Engl J Med 1993; 329: 297–303

    Article  PubMed  CAS  Google Scholar 

  55. Concorde Coordinating Committee. Concorde: MRC/ANRS randomised double-blind controlled trial of immediate and deferred zidovudine in symptom-free HIV infection. Lancet 1994; 343: 871–81

    Article  Google Scholar 

  56. Mayers D, Saravolatz L, Winslow D, et al. Viral burden measurements in CPCRA 007 [abstract]. XI International Conference on AIDS; 1996 Jul 7–12; Vancouver, Th.B.911

  57. Katzenstein DA, Hammer SM, Hughes MD, et al. The relation of virologic and immunologic markers to clinical outcomes after nucleoside therapy in HIV-infected adults with 200 to 500 CD4 cells per cubic millimeter. N Engl J Med 1996; 335: 1091–8

    Article  PubMed  CAS  Google Scholar 

  58. Brun-Vezinet F, The Delta Virology Group. HIV viral load changes in Delta patients [abstract]. XI International Conference on AIDS; 1996 Jul 7–12; Vancouver, Mo.B.292

  59. Choi S, Lagakos SW, Schooley RT, et al. CD4+ lymphocytes are an incomplete surrogate marker for clinical progression in persons with asymptomatic HIV infection taking zidovudine. Ann Intern Med 1993; 118: 674–80

    PubMed  CAS  Google Scholar 

  60. Kelleher AD, Carr A, Zaunders J, et al. Alterations in the immune response of human immunodeficiency virus (HIV) infected subjects treated with an HIV-specific protease inhibitor, ritonavir. J Infect Dis 1996; 173: 321–9

    Article  PubMed  CAS  Google Scholar 

  61. Gruters RA, Terpstra FG, Lange JMA, et al. Differences in clinical course in zidovudine-treated asymptomatic HIV-infected men associated with T-cell function at intake. AIDS 1991; 5: 43–7

    Article  PubMed  CAS  Google Scholar 

  62. Koot M, Schellekens PTA, Mulder JW, et al. Viral phenotype and T-cell reactivity in human immunodeficiency virus type 1-infected asymptomatic men treated with zidovudine. J Infect Dis 1993; 168: 733–6

    Article  PubMed  CAS  Google Scholar 

  63. Pakker NG, Roos MTL, De Jong MD, et al. Patterns of T cell repopulation, virus load reduction, and restoration of T cell function in HIV-infected persons during therapy with different antiretrovirals. J AIDS Hum Retrovirol 1997. In press

    Google Scholar 

  64. Jacobson MA, DeGruttola V, Reddy M, et al. The predictive value of changes in serologic and cell markers of HIV activity for subsequent clinical outcome in patients with asymptomatic HIV disease treated with zidovudine. AIDS 1995; 9: 727–34

    Article  PubMed  CAS  Google Scholar 

  65. Carr A, Vella S, De Jong MD, et al. A controlled trial of nevirapine plus zidovudine versus zidovudine alone in p24 antigenaemic HIV-infected patients. AIDS 1996; 10: 635–41

    Article  PubMed  CAS  Google Scholar 

  66. Katlama C, Ingrand D, Loveday C, et al. Safety and efficacy of lamuvidine-zidovudine combination therapy in antiretroviral-naive patients. JAMA 1996; 276: 118–25

    Article  PubMed  CAS  Google Scholar 

  67. Staszewski S, Loveday C, Picazo JJ, et al. Safety and efficacy of lamuvidine-zidovudine combination therapy in zidovudine-experienced patients. JAMA 1996; 276: 111–7

    Article  PubMed  CAS  Google Scholar 

  68. Bartlett JA, Benoit SL, Johnson VA, et al. Lamivudine plus zidovudine compared with zalcitabine plus zidovudine in patients with HIV infection. Ann Intern Med 1996; 125: 161–72

    PubMed  CAS  Google Scholar 

  69. Collier AC, Coombs RW, Schoenfeld DA, et al. Treatment of human immunodeficiency infection with saquinavir, zidovudine, and zalcitabine. N Engl J Med 1996; 334: 1011–7

    Article  PubMed  CAS  Google Scholar 

  70. Jacobson MA, Bacchetti P, Kolokathis A, et al. Surrogate markers for survival in patients with AIDS and AIDS related complex treated with zidovudine. BMJ 1991; 302: 73–8

    Article  PubMed  CAS  Google Scholar 

  71. Shafer RW, Merigan TC. HIV virology in clinical trials. AIDS 1996; 9: 193–202

    Google Scholar 

  72. DeGruttola V, Beckett LA, Coombs RW, et al. Serum p24 antigen level as an intermediate endpoint in clinical trials of zidovudine in people infected with human immunodeficiency virus type 1. J Infect Dis 1994; 169: 713–21

    Article  PubMed  CAS  Google Scholar 

  73. Schapiro JM, Winters MA, Stewart F, et al. The effect of high-dose saquinavir on viral load and CD4+ T-cell counts in HIV-infected patients. Ann Intern Med 1996; 124: 1039–50

    PubMed  CAS  Google Scholar 

  74. D’Aquila RT, Hughes MD, Johnson VA, et al. Nevirapine, zidovudine, and didanosine compared with zidovudine and didanosine in patients with HIV infection. Ann Intern Med 1996; 124: 1019–30

    PubMed  Google Scholar 

  75. Perelson AS, Neumann AU, Markowitz M, et al. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 1996; 271: 1582–6

    Article  PubMed  CAS  Google Scholar 

  76. Van’ t Wout AB, De Jong MD, Kootstra NA, et al. Changes in cellular virus load and zidovudine resistance of syncytium-inducing and non-syncytium-inducing human immunodeficiency virus populations under zidovudine pressure: a clonal analysis. J Infect Dis 1996; 174: 845–9

    Article  PubMed  Google Scholar 

  77. Schuurman R, Nijhuis M, Van Leeuwen R, et al. Rapid changes in human immunodeficiency virus type I RNA load and appearance of drug resistant virus populations in persons treated with lamivudine (3TC). J Infect Dis 1995; 171: 1411–9

    Article  PubMed  CAS  Google Scholar 

  78. Wei X, Ghosh SK, Taylor ME, et al. Viral dynamics in human immunodeficiency virus type 1 infection. Nature 1995; 373: 117–22

    Article  PubMed  CAS  Google Scholar 

  79. Ho DD, Neumann AU, Perelson AS, et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 1995; 373: 123–6

    Article  PubMed  CAS  Google Scholar 

  80. Montoya JG, Wood RD, Katzenstein DA, et al. Peripheral blood mononuclear cell human immunodeficiency virus type 1 pro-viral DNA quantification by polymerase chain reaction: relationship to immunodeficiency and drug effect. J Clin Microbiol 1993; 31: 2692–6

    PubMed  CAS  Google Scholar 

  81. Donovan RM, Dickover RE, Goldstein E, et al. HIV-1 proviral copy number in blood mononuclear cells from AIDS patients on zidovudine therapy. J Acquir Immune Defic Syndr 1991; 4: 766–9

    PubMed  CAS  Google Scholar 

  82. Aoki S, Yarchoan R, Thomas RV, et al. Quantitative analysis of HIV-1 proviral DNA in peripheral blood mononuclear cells from patients with AIDS or ARC: decrease of proviral DNA content following treatment with 2,3-dideoxyinosine (ddI). AIDS Res Hum Retroviruses 1990; 6: 1331–9

    PubMed  CAS  Google Scholar 

  83. Clark AGB, Holodniy M, Schwatz DH, et al. Decrease in HIV provirus in peripheral blood mononuclear cells during zidovudine and rIL-2 administration. J Acquir Immune Defic Syndr 1992; 5: 52–9

    PubMed  CAS  Google Scholar 

  84. D’Aquila RT, Johnson VA, Welles SL, et al. Zidovudine resistance and HIV-1 disease progression during antiretroviral therapy. Ann Intern Med 1995; 122: 401–8

    PubMed  Google Scholar 

  85. Japour AJ, Welles S, D’Aquila RT, et al. Prevalence and clinical significance of zidovudine resistance mutations in human immunodeficiency virus isolated from patients after long-term zidovudine treatment. J Infect Dis 1995; 171: 1172–9

    Article  PubMed  CAS  Google Scholar 

  86. Boucher CAB, Lange JMA, Miedema F, et al. HIV-1 biological phenotype and development of zidovudine resistance in relation to disease progression in asymptomatic individuals during treatment. AIDS 1992; 6: 1259–64

    Article  PubMed  CAS  Google Scholar 

  87. Schuurman R, Delta Virology Working Group. Measurements of viral load and MT-2 phenotype in the virology subset (242 patients) of the Delta study. Fifth Workshop on HIV Drug Resistance; 1996 Jul 3–6; Whistler (Canada): 36

  88. Karlsson A, Parsmyr K, Aperia K, et al. MT-2 cell tropism of human immunodeficiency virus type 1 isolates as a marker for response to treatment and development of drug resistance. J Infect Dis 1994; 170: 1367–75

    Article  PubMed  CAS  Google Scholar 

  89. Kuritzkes DR, Quinn JB, Benoit SL, et al. Drug resistance and virologic response in NUCA 3001, a randomized trial of lamivudine (3TC) versus zidovudine (ZDV) versus ZDV plus 3TC in previously untreated patients. AIDS 1996; 10: 975–81

    Article  PubMed  CAS  Google Scholar 

  90. St Clair MH, Hartigan PM, Andrews JC, et al. Zidovudine resistance, syncytium-inducing phenotype, and HIV disease in a case-control study. J Acquir Immune Defic Syndr 1993; 6: 891–7

    PubMed  CAS  Google Scholar 

  91. Angarano G, Monno L, Vivirito MC, et al. The role of HIV type 1 phenotype and genotype in long-term responders to zidovudine therapy. AIDS Res Hum Retroviruses 1996; 12: 969–75

    Article  PubMed  CAS  Google Scholar 

  92. Delforge M-L, Liesnard C, Debaisieux L, et al. In vivo inhibition of syncytium inducing variants of HIV in patients treated with didanosine. AIDS 1995; 9: 89–101

    Article  PubMed  CAS  Google Scholar 

  93. Crumpacker CS, Welles S, Yen-Lieberman B, et al. Correlation of plasma HIV-1 RNA level and development of resistance mutations to AZT and ddI with disease progression in patients with advanced HIV-1 disease and little or no AZT therapy [abstract]. J Acquir Immune Defic Syndr 1995; 10 Suppl. 3: S1–46

    Google Scholar 

  94. Zheng NN, McQueen PW, Hurren L, et al. Changes in biologic phenotype of human immunodeficiency virus during treatment of patients with didanosine. J Infect Dis 1996; 173: 1092–6

    Article  PubMed  CAS  Google Scholar 

  95. Richman DD. Drug resistance in relation to pathogenesis. AIDS 1995; 9 Suppl. A: S49–53

    PubMed  Google Scholar 

  96. Kozal MJ, Shafer RW, Winters MA, et al. HIV-1 syncytium-inducing phenotype, virus burden, codon 215 reverse transcriptase mutation and CD4 cell decline in zidovudine-treated patients. J Acquir Immune Defic Syndr 1994; 7: 832–8

    PubMed  CAS  Google Scholar 

  97. Wainberg MA, Drosopoulos WC, Salomon H, et al. Enhanced fidelity of 3TC-selected mutant HIV-1 reverse transcriptase. Science 1996; 271: 1282–5

    Article  PubMed  CAS  Google Scholar 

  98. Pantaleo G, Graziosi C, Demarest JF, et al. HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature 1993; 362: 355–8

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koot, M., van’t Wout, A.B., Miedema, F. et al. Use of Immunological and Viral Parameters to Predict Progression of HIV Infection During Natural Course and Antiretroviral Treatment. BioDrugs 8, 243–249 (1997). https://doi.org/10.2165/00063030-199708040-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-199708040-00001

Keywords

Navigation