Skip to main content
Log in

Potential New Methods for Antiepileptic Drug Delivery

  • Leading Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Use of novel drug delivery methods could enhance the efficacy and reduce the toxicity of antiepileptic drugs (AEDs). Slow-release oral forms of medication or depot drugs such as skin patches might improve compliance and therefore seizure control. In emergency situations, administration via rectal, nasal or buccal mucosa can deliver the drug more quickly than can oral administration. Slow-release oral forms and rectal forms of AEDs are already approved for use, nasal and buccal administration is currently off-label and skin patches for AEDs are an attractive but currently hypothetical option.

Therapies under development may result in the delivery of AEDs directly to the regions of the brain involved in seizures. Experimental protocols are underway to allow continuous infusion of potent excitatory amino acid antagonists into the CSF. In experiments with animal models of epilepsy, AEDs have been delivered successfully to seizure foci in the brain by programmed infusion pumps, acting in response to computerised EEG seizure detection. Inactive prodrugs can be given systemically and activated at the site of the seizure focus by locally released compounds. One such drug under development is DP-VPA (or DP16), which is cleaved to valproic acid (sodium valproate) by phospholipases at the seizure focus.

Liposomes and nanoparticles are engineered micro-reservoirs of a drug, with attached antibodies or receptor-specific binding agents designed to target the particles to a specific region of the body. Liposomes in theory could deliver a high concentration of an AED to a seizure focus. Penetration of the blood-brain barrier can be accomplished by linking large particles to iron transferrin or biological toxins that can cross the barrier.

In the near future, it is likely that cell transplants that generate neurotransmitters and neuromodulators will accomplish renewable endogenous drug delivery. However, the survival and viability of transplanted cells have yet to be demonstrated in the clinical setting. Gene therapy also may play a role in local drug delivery with the use of adenovirus, adeno-associated virus, herpesvirus or other delivery vectors to induce brain cells to produce local modulatory substances.

New delivery systems should significantly improve the therapeutic/toxic ratio of AEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The use of tradenames is for product identification only and does not imply endorsement.

References

  1. Schlienger RG, Shapiro LE, Shear NH. Lamotrigine-induced severe cutaneous adverse reactions. Epilepsia 1998; 39Suppl. 7: S22–6

    Article  PubMed  CAS  Google Scholar 

  2. Johnson MA, Krauss GL, Miller NR, et al. Visual function loss from vigabatrin: effect of stopping the drug. Neurology 2000; 55: 40–5

    Article  PubMed  CAS  Google Scholar 

  3. Kwan P, Sills GJ, Brodie MJ. The mechanisms of action of commonly used antiepileptic drugs. Pharmacol Ther 2001; 90: 21–34

    Article  PubMed  CAS  Google Scholar 

  4. Kwan P, Brodie MJ. Effectiveness of first antiepileptic drug. Epilepsia 2001; 42: 1255–60

    Article  PubMed  CAS  Google Scholar 

  5. Cleland JL, Daugherty A, Mrsny R. Emerging protein delivery methods. Curr Opin Biotechnol 2001; 12: 212–9

    Article  PubMed  CAS  Google Scholar 

  6. Kueltzo LA, Middaugh CR. Potential use of non-classical pathways for the transport of macromolecular drugs. Expert Opin Investig Drugs 2000; 9: 2039–50

    Article  PubMed  CAS  Google Scholar 

  7. Treiman DM, Meyers PD, Walton NY, et al. A comparison of four treatments for generalized convulsive status epilepticus: Veterans Affairs Status Epilepticus Cooperative Study Group. N Engl J Med 1998; 339: 792–8

    Article  PubMed  CAS  Google Scholar 

  8. Browne TR. Fosphenytoin (Cerebyx®). Clin Neuropharmacol 1997; 20: 1–12

    Article  PubMed  CAS  Google Scholar 

  9. Devinsky O, Leppik I, Willmore LJ, et al. Safety of intravenous valproate. Ann Neurol 1995; 38: 670–4

    Article  PubMed  CAS  Google Scholar 

  10. Wheless JW, Venkataraman V. New formulations of drugs in epilepsy. Expert Opin Pharmacother 1999; 1(1): 49–60

    Article  PubMed  CAS  Google Scholar 

  11. Cardot JM, Degen P, Flesch G, et al. Comparison of plasma and saliva concentrations of the active monohydroxy metabolite of oxcarbazepine in patients at steady state. Biopharm Drug Dispos 1995; 16: 603–14

    Article  PubMed  CAS  Google Scholar 

  12. Tauboll E, Lindstrom S, Klem W, et al. A new injectable carbamazepine solution: antiepileptic effects and pharmaceutical properties. Epilepsy Res 1990; 7: 59–64

    Article  PubMed  CAS  Google Scholar 

  13. Loscher W, Honack D. Intravenous carbamazepine: comparison of different parenteral formulations in a mouse model of convulsive status epilepticus. Epilepsia 1997; 38: 106–13

    Article  PubMed  CAS  Google Scholar 

  14. Wheless JW. Pediatric use of intravenous and intramuscular phenytoin: lessons learned. J Child Neurol 1998; 13Suppl. 1: S11–4

    Article  PubMed  Google Scholar 

  15. Stirling LC, Kurowska A, Tookman A. The use of phenobarbitone in the management of agitation and seizures at the end of life. J Pain Symptom Manage 1999; 17: 363–8

    Article  PubMed  CAS  Google Scholar 

  16. Grimshaw D, Holroyd E, Anthony D, et al. Subcutaneous midazolam, diamorphine and hyoscine infusion in palliative care of a child with neurodegenerative disease. Child Care Health Dev 1995; 21: 377–81

    Article  PubMed  CAS  Google Scholar 

  17. Maniatis AK, Klingensmith GJ, Slover RH, et al. Continuous subcutaneous insulin infusion therapy for children and adolescents: an option for routine diabetes care. Pediatrics 2001; 107: 351–6

    Article  PubMed  CAS  Google Scholar 

  18. Kalia YN, Guy RH. Modeling transdermal drug release. Adv Drug Deliv Rev 2001; 48: 159–72

    Article  PubMed  CAS  Google Scholar 

  19. Asbill CS, El-Kattan AF, Michniak B. Enhancement of transdermal drug delivery: chemical and physical approaches. Crit Rev Ther Drug Carrier Syst 2000; 17: 621–5

    Article  PubMed  CAS  Google Scholar 

  20. Jeannet PY, Roulet E, Maeder-Ingvar M, et al. Home and hospital treatment of acute seizures in children with nasal midazolam. Eur J Paediatr Neurol 1999; 3: 73–7

    Article  PubMed  CAS  Google Scholar 

  21. Khalil S, Philbrook L, Rabb M, et al. Sublingual midazolam premedication in children: a dose response study. Paediatr Anaesth 1998; 8: 461–5

    Article  PubMed  CAS  Google Scholar 

  22. Geldner G, Hubmann M, Knoll R, et al. Comparison between three transmucosal routes of administration of midazolam in children. Paediatr Anaesth 1997; 7: 103–9

    Article  PubMed  CAS  Google Scholar 

  23. Ugwoke MI, Verbeke N, Kinget R. The biopharmaceutical aspects of nasal mucoadhesive drug delivery. J Pharm Pharmacol 2001; 53: 3–21

    Article  PubMed  CAS  Google Scholar 

  24. Loftsson T, Gudmundsdottir H, Sigurjonsdottir JF, et al. Cyclodextrin solubilization of benzodiazepines: formulation of midazolam nasal spray. Int J Pharm 2001; 212: 29–40

    Article  PubMed  CAS  Google Scholar 

  25. Physicians’ Desk Reference. 55th ed. Montvale (NJ): Medical Economics Company, Ltd., 2001

  26. O’Regan ME, Brown JK, Clarke M. Nasal rather than rectal benzodiazepines in the management of acute childhood seizures? Dev Med Child Neurol 1996; 38: 1037–45

    Article  PubMed  Google Scholar 

  27. Fisgin T, Gurer Y, Senbil N, et al. Nasal midazolam effects on childhood acute seizures. J Child Neurol 2000; 15: 833–5

    Article  PubMed  CAS  Google Scholar 

  28. Lejus C, Renaudin M, Testa S, et al. Midazolam for premedication in children: nasal vs rectal administration. Eur J Anaesthesiol 1997; 14: 244–9

    Article  PubMed  CAS  Google Scholar 

  29. van Hoogdalem E, de Boer AG, Breimer DD. Pharmacokinetics of rectal drug administration. Part I: general considerations and clinical applications of centrally acting drugs. Clin Pharmacokinet 1991; 21: 11–26

    Article  PubMed  Google Scholar 

  30. Dieckmann RA. Rectal diazepam for prehospital pediatric status epilepticus. Ann Emerg Med 1994; 23: 216–24

    Article  PubMed  CAS  Google Scholar 

  31. SneadIII OC, Miles MV. Treatment of status epilepticus in children with rectal sodium valproate. J Pediatr 1985; 106: 323–5

    Article  PubMed  Google Scholar 

  32. Cereghino JJ, Mitchell WG, Murphy J, et al. Treating repetitive seizures with a rectal diazepam formulation: a randomized study: the North American Diastat Study Group. Neurology 1998; 51: 1274–82

    Article  PubMed  CAS  Google Scholar 

  33. Sharma S, White D, Imondi AR, et al. Development of inhalational agents for oncologic use. J Clin Oncol 2001; 19: 1839–47

    PubMed  CAS  Google Scholar 

  34. Le Brun PP, de Boer AH, Heijerman HG, et al. A review of the technical aspects of drug nebulization. Pharm World Sci 2000; 22: 75–81

    Article  PubMed  Google Scholar 

  35. Ganderton D. Targeted delivery of inhaled drugs: current challenges and future goals. J Aerosol Med 1999; 12Suppl. 1: S3–8

    PubMed  Google Scholar 

  36. Meeke RI, Soifer BE, Gelb AW. Isoflurane for the management of status epilepticus. DICP 1989; 23: 579–81

    PubMed  CAS  Google Scholar 

  37. Xi LY, Zheng WM, Zhen SM, et al. Rapid arrest of seizures with an inhalation aerosol containing diazepam. Epilepsia 1994; 35: 356–8

    Article  PubMed  CAS  Google Scholar 

  38. Takeuchi H, Yamamoto H, Kawashima Y. Nasal mucoadhesive drag delivery. Adv Drag Deliv Rev 2001; 47: 39–54

    Article  CAS  Google Scholar 

  39. Ciordia R, Supko J, Gatineau M, et al. Cytotoxic chemotherapy: advances in delivery, pharmacology, and testing. Curr Oncol Rep 2000; 2: 445–53

    Article  PubMed  CAS  Google Scholar 

  40. Temsamani J, Scherrmann JM, Rees AR, et al. Brain drag technologies: novel approaches for transporting therapeutics. Pharm Sci Technol Today 2000; 3: 155–62

    Article  PubMed  CAS  Google Scholar 

  41. Doolittle ND, Abrey LE, Ferrari N, et al. Targeted delivery in primary and metastatic brain tumors: summary report of the seventh annual meeting of the blood-brain barrier disruption consortium. Clin Cancer Res 2002; 8: 1702–9

    PubMed  Google Scholar 

  42. Siegal T, Rubinstein R, Bokstein F, et al. In vivo assessment of the window of barrier opening after osmotic blood-brain barrier disruption in humans. J Neurosurg 2000; 92: 599–605

    Article  PubMed  CAS  Google Scholar 

  43. Orr RM. Technology evaluation: electroporation therapy, Genetronics Inc. Curr Opin Mol Ther 2000; 2: 205–10

    PubMed  CAS  Google Scholar 

  44. Comford EM. Epilepsy and the blood brain barrier: endothelial cell responses to seizures. Adv Neurol 1999; 79: 845–62

    Google Scholar 

  45. Bialer M, Johannessen SI, Kupferberg HJ, et al. Progress report on new antiepileptic drags: a summary of the Fifth Eilat Conference (EILAT V). Epilepsy Res 2001; 43: 11–58

    Article  PubMed  CAS  Google Scholar 

  46. Brightman MW, Kaya M. Permeable endothelium and the interstitial space of brain. Cell Mol Neurobiol 2000; 20: 111–30

    Article  PubMed  CAS  Google Scholar 

  47. Bobo RH, Laske DW, Akbasak A, et al. Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci U S A 1994; 91: 2076–80

    Article  PubMed  CAS  Google Scholar 

  48. Chen MY, Lonser RR, Morrison PF, et al. Variables affecting convection-enhanced delivery to the striatum: a systematic examination of rate of infusion, cannula size, infusate concentration, and tissue-cannula sealing time. J Neurosurg 1999; 90: 315–20

    Article  PubMed  CAS  Google Scholar 

  49. Nance P, Meythaler J. Intrathecal drag therapy. Phys Med Rehabil Clin N Am 1999; 10: 385–401

    PubMed  CAS  Google Scholar 

  50. McCabe T. Medtronic & Cognetix to collaborate on revolutionary new treatment for epilepsy [online]. Available from URL: http://www.cognetix.com/go.html [Accessed 2002 Jun 2]

  51. Meythaler JM, McCary A, Hadley MN. Prospective assessment of continuous intrathecal infusion of baclofen for spasticity caused by acquired brain injury: a preliminary report. J Neurosurg 1997; 87: 415–9

    Article  PubMed  CAS  Google Scholar 

  52. Munsat TL, Taft J, Jackson IM, et al. Intrathecal thyrotropin-releasing hormone does not alter the progressive course of ALS: experience with an intrathecal drug delivery system. Neurology 1992; 42: 1049–53

    Article  PubMed  CAS  Google Scholar 

  53. Kumar K, Kelly M, Pirlot T. Continuous intrathecal morphine treatment for chronic pain of nonmalignant etiology: long-term benefits and efficacy. Surg Neurol 2001; 55: 79–86

    Article  PubMed  CAS  Google Scholar 

  54. Smith DC, Krahl SE, Browning RA, et al. Rapid cessation of focally induced generalized seizures in rats through microinfusion of lidocaine hydrochloride into the focus. Epilepsia 1993; 34: 43–53

    Article  PubMed  CAS  Google Scholar 

  55. Meldrum B, Millan M, Patel S, et al. Anti-epileptic effects of focal micro-injection of excitatory amino acid antagonists. J Neural Transm 1988; 72: 191–200

    Article  PubMed  CAS  Google Scholar 

  56. Hammarlund-Udenaes M. The use of microdialysis in CNS drag delivery studies: pharmacokinetic perspectives and results with analgesics and antiepileptics. Adv Drag Deliv Rev 2000; 45: 283–94

    Article  CAS  Google Scholar 

  57. Eder HG, Jones DB, Fisher RS. Local perfusion of diazepam attenuates interictal and ictal events in the bicuculline model of epilepsy in rats. Epilepsia 1997; 38: 516–21

    Article  PubMed  CAS  Google Scholar 

  58. Eder HG, Stein A, Fisher RS. Interictal and ictal activity in the rat cobalt/pilocarpine model of epilepsy decreased by local perfusion of diazepam. Epilepsy Res 1997; 29: 17–24

    Article  PubMed  CAS  Google Scholar 

  59. Stein AG, Eder HG, Blum DE, et al. An automated drag delivery system for focal epilepsy. Epilepsy Res 2000; 39: 103–14

    Article  PubMed  CAS  Google Scholar 

  60. Osorio I, Frei MG, Wilkinson SB. Real-time automated detection and quantitative analysis of seizures and short-term prediction of clinical onset. Epilepsia 1998; 39: 615–27

    Article  PubMed  CAS  Google Scholar 

  61. Kost J, Langer R. Responsive polymeric delivery systems. Adv Drag Deliv Rev 2001; 46: 125–48

    Article  CAS  Google Scholar 

  62. Haroon RI, Brem H. Local drug delivery. Curr Opin Oncol 2000; 12: 187–93

    Article  Google Scholar 

  63. Brem H, Piantadosi S, Burger PC, et al. Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas: the Polymer-brain Tumor Treatment Group. Lancet 1995; 345: 1008–12

    Article  PubMed  CAS  Google Scholar 

  64. Kokaia M, Aebischer P, Elmer E, et al. Seizure suppression in kindling epilepsy by intracerebral implants of GABA-but not by noradrenaline-releasing polymer matrices. Exp Brain Res 1994; 100: 385–94

    Article  PubMed  CAS  Google Scholar 

  65. Tamargo R, Rossell LA, Tyler BM, et al. Interstitial delivery of diphenylhydantoin in the brain for the treatment of seizures in a rat model. J Neurosurg 1994; 80: 372

    Google Scholar 

  66. Bjorklund A, Lindvall O. Cell replacement therapies for central nervous system disorders. Nat Neurosci 2000; 3: 537–44

    Article  PubMed  CAS  Google Scholar 

  67. Shoichet MS, Winn SR. Cell delivery to the central nervous system. Adv Drug Deliv Rev 2000; 42: 81–102

    Article  PubMed  CAS  Google Scholar 

  68. Tresco PA, Biran R, Noble MD. Cellular transplants as sources for therapeutic agents. Adv Drug Deliv Rev 2000; 42: 3–27

    Article  PubMed  CAS  Google Scholar 

  69. Stafekhina VS, Bragin AG, Vinogradova OS. Integration of hippocampal suspension grafts with host neocortex. Neuroscience 1995; 64: 643–51

    Article  PubMed  CAS  Google Scholar 

  70. Park KI. Transplantation of neural stem cells: cellular & gene therapy for hypoxic-ischemic brain injury. Yonsei Med J 2000; 41: 825–35

    PubMed  CAS  Google Scholar 

  71. Svendsen CN, Smith AG. New prospects for human stem-cell therapy in the nervous system. Trends Neurosci 1999; 22: 357–64

    Article  PubMed  CAS  Google Scholar 

  72. Tseng JL, Aebischer P. Encapsulated neural transplants. Prog Brain Res 2000; 127: 189–202

    Article  PubMed  CAS  Google Scholar 

  73. Buzsaki G, Gage FH. Fetal brain tissue grafts modulate neuronal excitability in a chronic model of epilepsy. Epilepsy Res Suppl 1992; 8: 271–81

    PubMed  CAS  Google Scholar 

  74. Sloviter R. Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: the ‘dormant basket cell’ hypothesis and its relevance to temporal lobe epilepsy. Hippocampus 1991; 1: 41–66

    Article  PubMed  CAS  Google Scholar 

  75. Shetty AK, Zaman V, Turner DA. Pattern of long-distance projections from fetal hippocampal field CA3 and CA1 cell grafts in lesioned CA3 of adult hippocampus follows intrinsic character of respective donor cells. Neuroscience 2000; 99: 243–55

    Article  PubMed  CAS  Google Scholar 

  76. Nadler JV. Minireview: kainic acid as a tool for the study of temporal lobe epilepsy. Life Sci 1981; 29: 2031–42

    Article  PubMed  CAS  Google Scholar 

  77. Shetty AK, Turner DA. Fetal hippocampal grafts containing CA3 cells restore host hippocampal glutamate decarboxylase-positive intemeuron numbers in a rat model of temporal lobe epilepsy. J Neurosci 2000; 20: 8788–801

    PubMed  CAS  Google Scholar 

  78. Loscher W, Ebert U, Lehmann H, et al. Seizure suppression in kindling epilepsy by grafts of fetal GABAergic neurons in rat substantia nigra. J Neurosci Res 1998; 51: 196–209

    Article  PubMed  CAS  Google Scholar 

  79. Brevig T, Holgersson J, Widner H. Xenotransplantation for CNS repair: immunological barriers and strategies to overcome them. Trends Neurosci 2000; 23: 337–4

    Article  PubMed  CAS  Google Scholar 

  80. Schachter SC, Schomer DL, Blume H, et al. Porcine fetal GABA-producing neural cell transplants for human partial-onset seizures: safety and feasibility [abstract]. Epilepsia 1998; 39Suppl. 6:67

    Google Scholar 

  81. Scheffer IE, Berkovic SF. Genetics of the epilepsies. Curr Opin Pediatr 2000; 12: 536–42

    Article  PubMed  CAS  Google Scholar 

  82. Pennacchio LA, Lehesjoki AE, Stone NE, et al. Mutations in the gene encoding cystatin B in progressive myoclonus epilepsy (EPM1). Science 1996; 271: 1731–4

    Article  PubMed  CAS  Google Scholar 

  83. Engelhard HH. Gene therapy for brain tumors: the fundamentals. Surg Neurol 2000; 54: 3–9

    Article  PubMed  CAS  Google Scholar 

  84. Lam PY, Breakefield XO. Potential of gene therapy for brain tumors. Hum Mol Genet 2001; 10: 777–87

    Article  PubMed  CAS  Google Scholar 

  85. Poenaru L. From gene transfer to gene therapy in lysosomal storage diseases affecting the central nervous system. Ann Med 2001; 33: 28–36

    Article  PubMed  CAS  Google Scholar 

  86. Latchman DS, Coffin RS. Viral vectors for gene therapy in Parkinson’s disease. Rev Neurosci 2001; 12: 69–78

    PubMed  CAS  Google Scholar 

  87. Baekelandt V, De Strooper B, Nuttin B, et al. Gene therapeutic strategies for neurodegenerative diseases. Curr Opin Mol Ther 2000; 2: 540–54

    PubMed  CAS  Google Scholar 

  88. Gunnett CA, Heistad DD. The future of gene therapy for stroke. Curr Hypertens Rep 2001; 3: 36–40

    Article  PubMed  CAS  Google Scholar 

  89. Jacobs A, Breakefield XO, Fraefel C. HSV-1-based vectors for gene therapy of neurological diseases and brain tumors. Part II: vector systems and applications. Neoplasia 1999; 1: 402–16

    Article  PubMed  CAS  Google Scholar 

  90. Davidson BL, Hilfinger JM, Beer SJ. Extended release of adenovirus from polymer microspheres: potential use in gene therapy for brain tumors. Adv Drug Deliv Rev 1997; 27: 59–66

    Article  PubMed  Google Scholar 

  91. Bueler H. Adeno-associated viral vectors for gene transfer and gene therapy. Biol Chem 1999; 380: 613–22

    Article  PubMed  CAS  Google Scholar 

  92. Suhr ST, Gage FH. Gene therapy in the central nervous system: the use of recombinant retroviruses. Arch Neurol 1999; 56: 287–92

    Article  PubMed  CAS  Google Scholar 

  93. Kafri T, van Praag H, Gage FH, et al. Lentiviral vectors: regulated gene expression. Mol Ther 2000; 1: 516–21

    Article  PubMed  CAS  Google Scholar 

  94. Papadopoulos MC, Giffard RG, Bell BA. Principles of gene therapy: potential applications in the treatment of cerebral ischaemia. Br J Neurosurg 2000; 14: 407–14

    Article  PubMed  CAS  Google Scholar 

  95. Partridge W. Gene targeting technology and gene therapy of the brain. Drug Discov Today 2001; 6: 125–6

    Article  Google Scholar 

  96. Yenari MA, Dumas TC, Sapolsky RM, et al. Gene therapy for treatment of cerebral ischemia using defective herpes simplex viral vectors. Neurol Res 2001; 23: 543–52

    Article  PubMed  CAS  Google Scholar 

  97. Hecker JG, Hall LL, Irion VR. Nonviral gene delivery to the lateral ventricles in rat brain: initial evidence for widespread distribution and expression in the central nervous system. Mol Ther 2001; 3: 375–84

    Article  PubMed  CAS  Google Scholar 

  98. Schwartz JJ, Zhang S. Peptide-mediated cellular delivery. Curr Opin Mol Ther 2000; 2: 162–7

    PubMed  CAS  Google Scholar 

  99. Tabbaa S, Goulah C, Tran RK, et al. Gene transfer into the central nervous system using herpes simplex virus-1 vectors. Folia Morphol (Warsz) 2000; 59: 221–32

    CAS  Google Scholar 

  100. Lachmann RH, Efstathiou S. Use of herpes simplex virus type 1 for transgene expression within the nervous system. Clin Sci (Colch) 1999; 96: 533–41

    Article  CAS  Google Scholar 

  101. Yenari MA, Minami M, Sun GH, et al. Calbindin d28k over-expression protects striatal neurons from transient focal cerebral ischemia. Stroke 2001; 32: 1028–35

    Article  PubMed  CAS  Google Scholar 

  102. Roy M, Horn J, Sapolsky RM. Neuroprotection with herpes simplex vectors expressing virally derived anti-apoptotic agents. Brain Res 2001; 901: 12–22

    Article  PubMed  CAS  Google Scholar 

  103. Dilber MS, Gahrton G. Suicide gene therapy: possible applications in haematopoietic disorders. J Intern Med 2001; 249: 359–67

    Article  PubMed  CAS  Google Scholar 

  104. Fathallah-Shaykh HM, Kafrouni AI, Zhao LJ, et al. Demyelination but no cognitive, motor or behavioral deficits after adenovirus-mediated gene transfer into the brain. Gene Ther 2000; 7: 2094–8

    Article  PubMed  CAS  Google Scholar 

  105. Driesse MJ, Esandi MC, Kros JM, et al. Intra-CSF administered recombinant adenovirus causes an immune response-mediated toxicity. Gene Ther 2000; 7: 1401–9

    Article  PubMed  CAS  Google Scholar 

  106. Kochanek PM, Janesko KL, Jenkins LW, et al. Adenovirus-mediated transfer and expression of beta-gal in injured hippocampus after traumatic brain injury in mice. J Neurotrauma 2001; 18: 73–82

    Article  PubMed  CAS  Google Scholar 

  107. Lundberg C, Jungles SJ, Mulligan RC. Direct delivery of leptin to the hypothalamus using recombinant adeno-associated virus vectors results in increased therapeutic efficacy. Nat Biotechnol 2001; 19: 169–72

    Article  PubMed  CAS  Google Scholar 

  108. Demeneix B, Behr J, Boussif O, et al. Gene transfer with lipospermines and polyethylenimines. Adv Drug Deliv Rev 1998; 30: 85–95

    Article  PubMed  Google Scholar 

  109. Kaneda Y. Virosomes: evolution of the liposome as a targeted drug delivery system. Adv Drug Deliv Rev 2000; 43: 197–205

    Article  PubMed  CAS  Google Scholar 

  110. Leone P, Janson CG, Bilaniuk L, et al. Aspartoacylase gene transfer to the mammalian central nervous system with therapeutic implications for Canavan disease. Ann Neurol 2000; 48: 27–38

    Article  PubMed  CAS  Google Scholar 

  111. Shi N, Pardridge WM. Noninvasive gene targeting to the brain. Proc Natl Acad Sci U S A 2000; 97: 7567–72

    Article  PubMed  CAS  Google Scholar 

  112. Lian T, Ho RJ. Trend and developments in liposome drug delivery systems. J Pharm Sci 2001; 90: 667–80

    Article  PubMed  CAS  Google Scholar 

  113. Drummond DC, Meyer L, Hong K, et al. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev 1999; 51: 691–743

    PubMed  CAS  Google Scholar 

  114. Lehtonen JY, Adlercreutz H, Kinnunen PK. Binding of daidzein to liposomes. Biochim Biophys Acta 1996; 1285: 91–100

    Article  PubMed  CAS  Google Scholar 

  115. Yuyama Y, Tsujimoto M, Fujimoto Y, et al. Potential usage of thermosensitive liposomes for site-specific delivery of cytokines. Cancer Lett 2000; 155: 71–7

    Article  PubMed  CAS  Google Scholar 

  116. Ishida T, Iden DL, Allen TM. A combinatorial approach to producing sterically stabilized (Stealth) immunoliposomal drugs. FEBS Lett 1999; 460: 129–33

    Article  PubMed  CAS  Google Scholar 

  117. Yuan F, Dellian M, Fukumura D, et al. Vasuclar permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 1995; 55: 3752–6

    PubMed  CAS  Google Scholar 

  118. Rubin LL, Staddon JM. The cell biology of the blood brain barrier. Annu Rev Neurosci 1999; 22: 11–28

    Article  PubMed  CAS  Google Scholar 

  119. Bikel U, Yoshikawa T, Pardridge WM. Delivery of peptides and proteins through the blood-brain barrier. Adv Drug Deliv Rev 2001; 46: 247–79

    Article  Google Scholar 

  120. Leppla SH, Arora N, Varughese M. Anthrax toxin fusion proteins for intracellular delivery of macromolecules. J Appl Microbiol 1999; 87: 284

    Article  PubMed  Google Scholar 

  121. Hamm-Alvarez SF. Molecular motors and their role in membrane traffic. Adv Drug Deliv Rev 1998; 29: 229–42

    Article  PubMed  CAS  Google Scholar 

  122. Bengzon J, Brundin P, Kalen P, et al. Host regulation of noradrenaline release from grafts of seizure-suppressant locus coeruleus neurons. Exp Neurol 1991; 111: 49–54

    Article  PubMed  CAS  Google Scholar 

  123. Ferencz I, Kokaia M, Elmer E, et al. Suppression of kindling epileptogenesis in rats by intrahippocampal cholinergic grafts. Eur J Neurosci 1998; 10: 213–20

    Article  PubMed  CAS  Google Scholar 

  124. Clough R, Statnick M, Maring-Smith M, et al. Fetal raphe transplants reduce seizure severity in serotonin-depleted GEPRs. Neuroreport 1996; 8: 341–6

    Article  PubMed  CAS  Google Scholar 

  125. Huber A, Padrun V, Deglon N, et al. Grafts of adenosine-releasing cells suppress seizures in kindling epilepsy. Proc Natl Acad Sci U S A 2001; 98: 7611–6

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Dr Fisher is supported by the Maslah Saul MD Chair for Epilepsy and by the James & Carrie Anderson laboratory, and has received research grant funding from Medtronic, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. Fisher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fisher, R.S., Ho, J. Potential New Methods for Antiepileptic Drug Delivery. Mol Diag Ther 16, 579–593 (2002). https://doi.org/10.2165/00023210-200216090-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-200216090-00001

Keywords

Navigation