Skip to main content
Log in

Muscle Fatigue in Males and Females during Multiple-Sprint Exercise

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Females have often been reported to have a greater muscle fatigue resistance than males, especially during exercise at low-to-moderate intensities. Differences in muscle mass, muscle metabolism and voluntary activation patterns have been the primary explanations for the differences in performance and physiological responses to exercise between sexes. However, while ample data are available for isometric contractions, dynamic activity is a less studied mode of exercise, and there is even less information regarding multiple- sprint exercise (MSE). This is surprising given that MSE places unique demands on metabolic processes in the muscle where energy supply oscillates between fuelling contractile activity and restoring homeostasis. As such, MSE provides a rich area for future applied research. This review examines the limited data available concerning the physiological responses of males and females to sprint exercise, and discusses the methodological confounds arising from non-appropriate comparison methods. Based on original findings, we highlight that sex differences in the absolute mechanical work performed during a given task might explain a significant part of the differences in physiological responses of males and females to sprint exercise. We therefore suggest that future studies using male and female subjects to answer basic physiological questions use mechanical work as a covariate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Table I
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Enoka RM, Stuart DG. Neurobiology of muscle fatigue. J Appl Physiol 1992; 72 (5): 1631–48

    PubMed  CAS  Google Scholar 

  2. Gandevia S. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 2001; 81: 1725–89

    PubMed  CAS  Google Scholar 

  3. Bigland-Ritchie B, Furbush F, Woods JJ. Fatigue of intermittent submaximal voluntary contractions: central and peripheral factors. J Appl Physiol 1986; 61 (2): 421–9

    PubMed  CAS  Google Scholar 

  4. Fuglevand A, Zackowski K, Huey K, et al. Impairment of neuromuscular propagation during human fatiguing contractions at submaximal forces. J Physiol 1993; 460: 549–72

    PubMed  CAS  Google Scholar 

  5. Gibson H, Edwards RHT. Muscular exercise and fatigue. Sports Med 1985; 2: 120–32

    Article  PubMed  CAS  Google Scholar 

  6. Merton P. Voluntary strength and fatigue. J Physiol 1954; 123: 553–64

    PubMed  CAS  Google Scholar 

  7. Kent-Braun JA. Central and peripheral contributions to muscle fatigue in humans during sustained maximal effort. Eur J Appl Physiol 1999; 80: 57–63

    Article  CAS  Google Scholar 

  8. Taylor JL, Allen GM, Butler JE, et al. Supraspinal fatigue during intermittent maximal voluntary contractions of the human elbow flexors. J Appl Physiol 2000; 89: 305–11

    PubMed  CAS  Google Scholar 

  9. Drinkwater BL. Women and exercise: physiological aspects. Exerc Sport Sci Rev 1984; 12: 21–51

    Article  PubMed  CAS  Google Scholar 

  10. Hicks AL, Kent-Braun J, Ditor DS. Sex differences in human skeletal muscle fatigue. Exerc Sport Sci Rev 2001; 29 (3): 109–12

    Article  PubMed  CAS  Google Scholar 

  11. Shephard RJ. Exercise and training in women: part I. Influence of gender on exercise and training responses. Can J Appl Physiol 2000; 25 (1): 19–34

    Article  PubMed  CAS  Google Scholar 

  12. Bangsbo J, Norregaard L, Thorso F. Activity profile of competition soccer. Can J Sport Sci 1991; 16 (2): 110–6

    PubMed  CAS  Google Scholar 

  13. Mendez-Villanueva A, Fernandez-Fernandez J, Bishop D, et al. Activity patterns, blood lactate concentrations and ratings of perceived exertion during a professional singles tennis tournament. Br J Sports Med 2007; 41 (5): 296–300

    Article  PubMed  Google Scholar 

  14. Spencer M, Lawrence S, Rechichi C, et al. Time-motion analysis of elite field hockey, with special reference to repeated-sprint activity. J Sports Sci 2004; 22: 843–50

    Article  PubMed  Google Scholar 

  15. Balsom PD, Seger JY, Sjodin B, et al. Maximal-intensity intermittent exercise: effect of recovery duration. Int J Sports Med 1992; 13 (7): 528–33

    Article  PubMed  CAS  Google Scholar 

  16. Billaut F, Giacomoni M, Falgairette G. Maximal intermittent cycling exercise: effects of recovery duration and gender. J Appl Physiol 2003; 95: 1632–7

    PubMed  Google Scholar 

  17. Batterham AM, Birch KM. Allometry of anaerobic performance: a gender comparison. Can J Appl Physiol 1996; 21: 45–62

    Article  Google Scholar 

  18. Cramer JT, Housh TH, Weir JP, et al. Power output, mechanomyographic, and electromyographic responses tomaximal concentric, isokinetic muscle actions in men and women. J Strength Cond Res 2002; 16: 399–408

    PubMed  Google Scholar 

  19. Esbjörnsson-Liljedahl M, Sylvén C, Holm I, et al. Fast twitch fibres may predict anaerobic performance in both females and males. Int J Sports Med 1993; 14: 257–63

    Article  Google Scholar 

  20. Falgairette G, Billaut F, Giacomoni M, et al. Effect of inertia on performance and fatigue pattern during repeated cycle sprints in males and females. Int J Sports Med 2004; 25: 235–40

    Article  PubMed  CAS  Google Scholar 

  21. Falkel JE, Sawka MN, Levine L, et al. Upper to lower body muscular strength and endurance ratios for women and men. Ergonomics 1985; 28 (12): 1661–70

    Article  PubMed  CAS  Google Scholar 

  22. Green S. Measurement of anaerobic work capacities in humans. Sports Med 1995; 19 (1): 32–42

    Article  PubMed  CAS  Google Scholar 

  23. Hunter SK, Enoka RM. Sex differences in the fatigability of arm muscles depends on absolute force during isometric contractions. J Appl Physiol 2001; 91: 2686–94

    PubMed  CAS  Google Scholar 

  24. Ikegawa S, Fukunaga T. Comparison of muscle cross-sectional area and strength between untrained women and men. Eur J Appl Physiol Occup Physiol 1994; 68 (2): 148–54

    Article  PubMed  Google Scholar 

  25. Krivickas LS, Suh D, Wilkins J, et al. Age- and gender related differences in maximum shortening velocity of skeletal muscle fibers. Am J Phys Med Rehabil 2001; 80(6): 447–55

    Article  PubMed  CAS  Google Scholar 

  26. Laubach LL. Comparative muscular strength of men and women: a review of the literature. Aviat Space Environ Med 1976; 47 (5): 534–42

    PubMed  CAS  Google Scholar 

  27. Martin RJ, Dore E, Twisk J, et al. Longitudinal changes of maximal short-term peak power in girls and boys during growth. Med Sci Sports Exerc 2004; 36 (3): 498–503

    Article  PubMed  Google Scholar 

  28. Mayhew J, Salm P. Gender differences in anaerobic power tests. Eur J Appl Physiol 1990; 60: 133–8

    Article  CAS  Google Scholar 

  29. Miller AEJ, MacDougall JD, Tarnopolsky MA, et al. Gender differences in strength and muscle fibre characteristics. Eur J Appl Physiol 1993; 66: 254–62

    Article  CAS  Google Scholar 

  30. Winter EM, Brookes FBC, Hamley EJ. Maximal exercise performance and lean leg volume in men and women. J Sports Sci 1991; 9: 3–13

    Article  PubMed  CAS  Google Scholar 

  31. Clark BC, Manini T M, Thé DJ, et al. Gender differences in skeletal muscle fatigability are related to contraction type and EMG spectral compression. J Appl Physiol 2003; 94: 2263–72

    PubMed  Google Scholar 

  32. Linnamo V, Hakkinen K, Komi PV. Neuromuscular fatigue and recovery in maximal compared to explosives trength loading. Eur J Appl Physiol Occup Physiol 1998; 77 (1-2): 176–81

    Article  PubMed  CAS  Google Scholar 

  33. Maughan RJ, Harmon M, Leiper JB, et al. Endurance capacity of untrained males and females in isometric and dynamic muscular contractions. Eur J Appl Physiol 1986; 55: 395–400

    Article  CAS  Google Scholar 

  34. Semmler JG, Kutzscher DV, Enoka RM. Gender differences in the fatigability of the human skeletal muscle. J Neurophysiol 1999; 82: 3590–93

    PubMed  CAS  Google Scholar 

  35. West W, Hicks AL, Clements L, et al. The relationship between voluntary electromyogram, endurance time and intensity of effort in isometric handgrip exercise. Eur J Appl Physiol 1995; 71: 301–5

    Article  CAS  Google Scholar 

  36. Esbjörnsson-Liljedahl M, Bodin K, Jansson E. Smaller muscle ATP reduction in women than in men by repeated bouts of sprints exercise. J Appl Physiol 2002; 93: 1075–83

    PubMed  Google Scholar 

  37. Froese E, Houston M. Performance during the Wingate anaerobic test and muscle morphology in males and females. Int J Sports Med 1987; 8: 35–9

    Article  PubMed  CAS  Google Scholar 

  38. Glenmark B, Hedberg G, Jansson E. Changes in muscle fibre type from adolescence to adulthood in women and men. Acta Physiol Scand 1992; 146 (2): 251–9

    Article  PubMed  CAS  Google Scholar 

  39. Hill DW, Smith JC. Gender difference in anaerobic capacity: role of aerobic contribution. Br J Sports Med 1993; 27 (1): 45–8

    Article  PubMed  CAS  Google Scholar 

  40. Kumagai K, Abe T, Brechue WF, et al. Sprint performance is related to muscle fascicle length in male 100-m sprinters. J Appl Physiol 2000; 88 (3): 811–6

    PubMed  CAS  Google Scholar 

  41. Maughan RJ, Watson JS, Weir J. Strength and cross-sectional area of human skeletal muscle. J Physiol 1983; 338: 37–49

    PubMed  CAS  Google Scholar 

  42. Jaworowski A, Porter MM, Holmback AM, et al. Enzyme activities in the tibialis anterior muscle of young moderately active men and women: relationship with body composition, muscle cross-sectional area and fibre type composition. Acta Physiol Scand 2002; 176 (3): 215–25

    Article  PubMed  CAS  Google Scholar 

  43. Wright A, Marino F, Kay D, et al. Influence of lean body mass on performance differences of male and female distance runners in warm, humid environments. Am J Phys Anthropol 2002; 118: 285–91

    Article  PubMed  Google Scholar 

  44. Hakkinen K, Keskinen KL. Muscle cross-sectional area and voluntary force production characteristics in elite strength- and endurance-trained athletes and sprinters. Eur J Appl Physiol Occup Physiol 1989; 59 (3): 215–20

    Article  PubMed  CAS  Google Scholar 

  45. Maughan RJ. The limits of human athletic performance. Ann Transplant 2005; 10 (4): 52–4

    PubMed  CAS  Google Scholar 

  46. Seynnes OR, de Boer M, Narici MV. Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. J Appl Physiol 2007; 102 (1): 368–73

    Article  PubMed  CAS  Google Scholar 

  47. Tesch PA. Skeletal muscle adaptations consequent to long-term heavy resistance exercise. Med Sci Sports Exerc 1988; 20 (5 Suppl.): S 132–4

    Google Scholar 

  48. Bishop D, Lawrence S, Spencer M. Predictors of repeated sprints ability in elite females hockey players. J Sci Med Sport 2003; 6 (2): 199–209

    Article  PubMed  CAS  Google Scholar 

  49. Maud PJ, Schultz BB. Gender comparisons in anaerobic power and anaerobic capacity test. Br J Sports Med 1986; 20: 51–4

    Article  PubMed  CAS  Google Scholar 

  50. Nindl BC, Mahar MT, Harman EA, et al. Lower and upper body anaerobic performance in male and female adolescent athletes. Med Sci Sports Exerc 1995; 27 (2): 235–41

    PubMed  CAS  Google Scholar 

  51. Perez-Gomez J, Rodriguez GV, Ara I, et al. Role of muscle mass on sprint performance: gender differences? Eur J Appl Physiol 2008; 102 (6): 685–94

    Article  PubMed  Google Scholar 

  52. Weber CL, Chia M, Inbar O. Gender differences in anaerobic power of the arms and legs: a scaling issue. Med Sci Sports Exerc 2006; 38: 129–37

    Article  PubMed  Google Scholar 

  53. Ditor DS, Kent-Braun J. The effect of age and gender on the relative fatigability of the human adductor pollicis muscle. Can J Physiol Pharmacol 2000; 78: 781–90

    Article  PubMed  CAS  Google Scholar 

  54. Esbjörnsson-Liljedahl M, Sundberg CJ, Norman B, et al. Metabolic response in type I and type II muscle fibers during a 30-s cycle sprint in men and women. J Appl Physiol 1999; 87: 1326–32

    PubMed  Google Scholar 

  55. Fulco CS, Rock PB, Muza SR, et al. Slower fatigue and faster recovery of the adductor pollicis muscle in women matched for strength with men. Acta Physiol Scand 1999; 167: 233–9

    Article  PubMed  CAS  Google Scholar 

  56. Gratas-Delamarche A, Le Cam R, Delamarche P, et al. Lactate and catecholamine responses in male and females printers during a Wingate test. Eur J Appl Physiol 1994; 68: 362–6

    Article  CAS  Google Scholar 

  57. Hunter SK, Critchlow A, Shin I-S, et al. Men are more fatigable than strength-matched women when performing intermittent submaximal contractions. J Appl Physiol 2004; 96: 2125–32

    Article  PubMed  Google Scholar 

  58. Vincent S, Berthon P, Zouhal H, et al. Plasma glucose, insulin and catecholamine responses to a Wingate test in physically active women and men. Eur J Appl Physiol 2004; 91 (1): 15–21

    Article  PubMed  CAS  Google Scholar 

  59. Yanagiya T, Kanehisa H, Kouzaki M, et al. Effect of gender on mechanical power output during repeated bouts of maximal running in trained teenagers. Int J Sports Med 2003; 24: 304–10

    Article  PubMed  CAS  Google Scholar 

  60. Ahtiainen JP, Pakarinen A, Alen M, et al. Muscle hypertrophy, hormonal adaptations and strength development during strength training in strength-trained and untrained men. Eur J Appl Physiol 2003; 89 (6): 555–63

    Article  PubMed  CAS  Google Scholar 

  61. Sinha-Hikim I, Cornford M, Gaytan H, et al. Effects of testosterone supplementation on skeletal muscle fiber hypertrophy and satellite cells in community-dwelling older men. J Clin Endocrinol Metab 2006; 91 (8): 3024–33

    Article  PubMed  CAS  Google Scholar 

  62. Nygaard E. Skeletal muscle fibre characteristics in young women. Acta Physiol Scand 1981; 112 (3): 299–304

    Article  PubMed  CAS  Google Scholar 

  63. Ruby B, Robergs R, Waters D, et al. Effects of estradiol on substrate turnover during exercise in amenorrheic females. Med Sci Sports Exerc 1997; 29 (9): 1160–9

    Article  PubMed  CAS  Google Scholar 

  64. Giustina A, Veldhuis JD. Pathophysiology of the neuroregulation of growth hormone secretion in experimental animals and the human. Endocr Rev 1998; 19 (6): 717–97

    Article  PubMed  CAS  Google Scholar 

  65. Pincus SM, Gevers EF, Robinson IC, et al. Females secrete growth hormone with more process irregularity than males in both humans and rats. Am J Physiol 1996; 270(1 Pt 1): E107–15

    Google Scholar 

  66. Veldhuis JD. The neuroendocrine regulation and implications of pulsatile GH secretion: gender effects. Endocrinology 1995; 5: 198–213

    Article  Google Scholar 

  67. Wideman L, Weltman JY, Shah N, et al. Effects of gender on exercise-induced growth hormone release. J Appl Physiol 1999; 87 (3): 1154–62

    PubMed  CAS  Google Scholar 

  68. Sandoval DA, Matt KS. Gender differences in the endocrine and metabolic responses to hypoxic exercise. J Appl Physiol 2002; 92 (2): 504–12

    PubMed  Google Scholar 

  69. Thompson DL, Weltman JY, Rogol AD, et al. Cholinergic and opioid involvement in release of growth hormone during exercise and recovery. J Appl Physiol 1993; 75 (2): 870–8

    PubMed  CAS  Google Scholar 

  70. Tarnopolsky LJ, MacDougall JD, Atkinson SA, et al. Gender differences in substrate for endurance exercise. J Appl Physiol 1990; 68 (1): 302–8

    PubMed  CAS  Google Scholar 

  71. Weber CL, Schneider DA. Maximal accumulated oxygen deficit expressed relative to the active muscle mass for cycling in untrained male and female subjects. Eur J Appl Physiol 2000; 82 (4): 255–61

    Article  PubMed  CAS  Google Scholar 

  72. Dar DE, Zinder O. Short term effect of steroids on catecholamine secretion from bovine adrenal medulla chromaffin cells. Neuropharmacology 1997; 36 (11-12): 1783–8

    Article  PubMed  CAS  Google Scholar 

  73. Lebrun CM, Rumball JS. Relationship between athletic performance and menstrual cycle. Curr Women’s Health Rep 2001; 1: 232–40

    CAS  Google Scholar 

  74. Glenmark B. Skeletal muscle fibre types, physical performance, physical activity and attitude to physical activity in women and men: a follow-up from age 16 to 27. Acta Physiol Scand Suppl 1994; 623: 1–47

    PubMed  CAS  Google Scholar 

  75. Glenmark B, Nilsson M, Gao H, et al. Difference in skeletal muscle function in males versus females: role of estrogen receptor-β. Am J Physiol Endocrinol Metab 2004; 287: E1125–31

    Article  CAS  Google Scholar 

  76. Middleton LE, Wenger HA. Effects of menstrual phase on performance and recovery in intense intermittent activity. Eur J Appl Physiol 2006; 96: 53–8

    Article  PubMed  Google Scholar 

  77. Phillips SK, Sanderson AG, Birch K, et al. Changes in maximal voluntary force of human adductor pollicis muscle during the menstrual cycle. J Physiol 1996; 496(Pt 2): 551–7

    PubMed  CAS  Google Scholar 

  78. Sarwar R, Niclos BB, Rutherford OM. Changes in muscle strength, relaxation rate and fatiguability during the human menstrual cycle. J Physiol 1996; 493 (Pt 1): 267–72

    PubMed  CAS  Google Scholar 

  79. Jurkowski JE, Jones NL, Toews CJ, et al. Effects of menstrual cycle on blood lactate, O2 delivery, and performance during exercise. J Appl Physiol 1981; 51 (6): 1493–9

    PubMed  CAS  Google Scholar 

  80. McCracken M, Ainsworth B, Hackney AC. Effects of the menstrual cycle phase on the blood lactate responses to exercise. Eur J Appl Physiol Occup Physiol 1994; 69 (2): 174–5

    Article  PubMed  CAS  Google Scholar 

  81. Matsuo T, Saitoh S, Suzuki M. Effects of the menstrual cycle on excess postexercise oxygen consumption in healthy young women. Metabolism 1999; 48 (3): 275–7

    Article  PubMed  CAS  Google Scholar 

  82. DiBrezzo R, Fort IL, Brown B. Relationships among strength, endurance, weight and body fat during three phases of the menstrual cycle. J Sports Med Phys Fitness 1991; 31 (1): 89–94

    Google Scholar 

  83. Gur H. Concentric and eccentric isokinetic measurements in knee muscles during the menstrual cycle: a special reference to reciprocal moment ratios. Arch Phys Med Rehabil 1997; 78 (5): 501–5

    Article  PubMed  CAS  Google Scholar 

  84. Janse de Jonge XA, Boot CR, Thom JM, et al. The influence of menstrual cycle phase on skeletal muscle contractile characteristics in humans. J Physiol 2001; 530(Pt 1): 161–6

    Article  PubMed  CAS  Google Scholar 

  85. Lebrun CM, McKenzie DC, Prior JC, et al. Effects of menstrual cycle phase on athletic performance. Med Sci Sports Exerc 1995; 27 (3): 437–44

    PubMed  CAS  Google Scholar 

  86. Blomstrand E, Radegran G, Saltin B. Maximum rate of oxygen uptake by human skeletal muscle in relation to maximal activities of enzymes in the Krebs cycle. J Physiol 1997; 501 (Pt 2): 455–60

    Article  PubMed  CAS  Google Scholar 

  87. Borges O, Essen-Gustavsson B. Enzyme activities in type I and II muscle fibres of human skeletal muscle in relation to age and torque development. Acta Physiol Scand 1989; 136 (1): 29–36

    Article  PubMed  CAS  Google Scholar 

  88. Komi PV, Karlsson J. Skeletal muscle fiber types, enzyme activities and physical performance in young males and females. Acta Physiol Scand 1978; 103: 212–8

    Article  Google Scholar 

  89. Gauthier JM, Theriault R, Theriault G, et al. Electrical stimulation-induced changes in skeletal muscle enzymes of men and women. Med Sci Sports Exerc 1992; 24 (11): 1252–6

    PubMed  CAS  Google Scholar 

  90. Green HJ, Fraser IG, Ranney DA. Male and female differences in enzyme activities of energy metabolism invastus lateralis muscle. J Neurol Sci 1984; 65: 323–31

    Article  PubMed  CAS  Google Scholar 

  91. Simoneau JA, Bouchard C. Human variation in skeletal muscle fiber-type proportion and enzyme activities. Am J Physiol 1989; 257 (4 Pt 1): E567–72

    Google Scholar 

  92. Simoneau JA, Lortie G, Boulay MR, et al. Skeletal muscle histochemical and biochemical characteristics in sedentary male and female subjects. Can J Physiol Pharmacol 1985; 63 (1): 30–5

    Article  PubMed  CAS  Google Scholar 

  93. Dovey SM, Reeder AI, Chalmers DJ. Continuity and change in sporting and leisure time physical activities during adolescence. Br J Sports Med 1998; 32 (1): 53–7

    Article  PubMed  CAS  Google Scholar 

  94. Engstrom LM. Physical activity of children and youth. Acta Paediatr Scand Suppl 1980; 283: 101–5

    Article  PubMed  CAS  Google Scholar 

  95. Santos MP, Gomes H, Mota J. Physical activity and sedentary behaviors in adolescents. Ann Behav Med 2005; 30 (1): 21–4

    Article  PubMed  Google Scholar 

  96. Telama R, Yang X. Decline of physical activity from youth to young adulthood in Finland. Med Sci Sports Exerc 2000; 32: 1617–22

    PubMed  CAS  Google Scholar 

  97. Kent-Braun JA, Ng AV, Doyle JW, et al. Human skeletal muscle responses vary with age and gender during fatigue due to incremental isometric exercise. J Appl Physiol 2002; 93: 1813–23

    PubMed  CAS  Google Scholar 

  98. Carter SL, Rennie CD, Hamilton SJ, et al. Changes in skeletal muscle in males and females following endurance training. Can J Physiol Pharmacol 2001; 79 (5): 386–92

    Article  PubMed  CAS  Google Scholar 

  99. Hoppeler H, Howald H, Conley K, et al. Endurance training in humans: aerobic capacity and structure of skeletal muscle. J Appl Physiol 1985; 59 (2): 320–7

    PubMed  CAS  Google Scholar 

  100. McKenzie S, Phillips SM, Carter SL, et al. Endurance exercise training attenuates leucine oxidation and BCOAD activation during exercise in humans. Am J Physiol Endocrinol Metab 2000; 278 (4): E580–7

    Google Scholar 

  101. Esbjörnsson-Liljedahl M, Holm I, Christer S, et al. Different responses of skeletal muscle following sprint training in men and women. Eur J Appl Physiol 1996; 74: 375–83

    Article  Google Scholar 

  102. Harber V, Petersen S, Chilibeck P. Thyroid hormone concentrations and muscle metabolism in amenorrheic and eumenorrheic athletes. Can J Appl Physiol 1998; 23 (3): 293–306

    Article  PubMed  CAS  Google Scholar 

  103. Russ DW, Kent-Braun JA. Sex differences in human skeletal muscle fatigue are eliminated under ischemic conditions. J Appl Physiol 2003; 94: 2414–22

    PubMed  Google Scholar 

  104. Brooks S, Nevill ME, Meleagros L, et al. The hormonal responses to repetitive brief maximal exercise in humans. Eur J Appl Physiol 1990; 60: 144–8

    Article  CAS  Google Scholar 

  105. Nevill ME, Holmyard DJ, Hall GM, et al. Growth hormone responses to treadmill sprinting in sprint- and endurance-trained athletes. Eur J Appl Physiol Occup Physiol 1996; 72 (5-6): 460–7

    Article  PubMed  CAS  Google Scholar 

  106. Jacobs I, Tesch P, Bar-Or O, et al. Lactate in human skeletal muscle after 10 and 30 s of supramaximal exercise. J Appl Physiol 1983; 55 (2): 365–7

    PubMed  CAS  Google Scholar 

  107. Bodin K, Esbjörnsson-Liljedahl M, Jansson E. Alactic ATP turnover rate during a 30-s cycle sprint in females and males [abstract]. Clin Sci 1994; 87 Suppl.: 205

    Google Scholar 

  108. Bishop D, Edge J, Dawson B, et al. Gender differences in muscle metabolism during repeated-sprint exercise [abstract]. International Biochemistry of Exercise Conference; 2003 Jul 13-16; Maastricht

    Google Scholar 

  109. Brooke MH, Engel WK. The histographic analysis of human muscle biopsies with regard to fiber types, 1: adult male and female. Neurology 1969; 19 (3): 221–33

    Article  PubMed  CAS  Google Scholar 

  110. Gerdle B, Karlsson S, Crenshaw AG, et al. The relationships between EMG and muscle morphology throughout sustained static knee extension at two submaximal force levels. Acta Physiol Scand 1997; 160 (4): 341–51

    Article  PubMed  CAS  Google Scholar 

  111. Ruby B, Robergs R. Gender differences in substrate utilisation during exercise. Sports Med 1994; 17 (6): 393–410

    Article  PubMed  CAS  Google Scholar 

  112. Sale DG, MacDougall JD, Alway SE, et al. Voluntary strength and muscle characteristics in untrained men and women and male bodybuilders. J Appl Physiol 1987; 62(5): 1786–93

    PubMed  CAS  Google Scholar 

  113. Gerdle B, Karlsson S, Crenshaw AG, et al. The influences of muscle fibre proportions and areas upon EMG during maximal dynamic knee extensions. Eur J Appl Physiol 2000; 81 (1-2): 2–10

    Article  PubMed  CAS  Google Scholar 

  114. De Luca CJ. The use of surface electromyography in biomechanics. J Appl Biomechanics 1997; 13: 135–63

    Google Scholar 

  115. Farina D, Merletti R, Enoka RM. The extraction of neural strategies from the surface EMG. J Appl Physiol 2004; 96: 1486–95

    Article  PubMed  Google Scholar 

  116. Hakkinen K. Neuromuscular fatigue and recovery in male and female athletes during heavy resistance exercise. Int J Sports Med 1993; 14: 53–9

    Article  PubMed  CAS  Google Scholar 

  117. Gandevia SC, Allen GM, Butler JE, et al. Supraspinal factors in human muscle fatigue: evidence for suboptimal output from the motor cortex. J Physiol 1996; 490 (Pt 2): 529–36

    PubMed  CAS  Google Scholar 

  118. Todd G, Taylor JL, Gandevia SC. Measurement of voluntary activation of fresh and fatigued human muscles using transcranial magnetic stimulation. J Physiol 2003; 551 (Pt 2): 661–71

    Article  PubMed  CAS  Google Scholar 

  119. Hunter SK, Butler JE, Todd G, et al. Supraspinal fatigue does not explain the sex difference in muscle fatigue of maximal contractions. J Appl Physiol 2006; 101 (4): 1036–44

    Article  PubMed  Google Scholar 

  120. Gerdle B, Fugl-Meyer AR. Is the mean power frequency shift of the EMG a selective indicator of fatigue of the fast twitch motor units? Acta Physiol Scand 1992; 145 (2): 129–38

    Article  PubMed  CAS  Google Scholar 

  121. Juel C. Muscle action potential propagation velocity changes during activity. Muscle Nerve 1988; 11: 714–9

    Article  PubMed  CAS  Google Scholar 

  122. Kupa E, Roy S, Kandarian S, et al. Effects of muscle fiber type and size on EMG median frequency and conduction velocity. J Appl Physiol 1995; 79: 23–32

    PubMed  CAS  Google Scholar 

  123. Glaister M. Multiple sprint work: physiological responses, mechanisms of fatigue and the influence of aerobic fitness. Sports Med 2005; 35: 757–77

    Article  PubMed  Google Scholar 

  124. Spencer M, Bishop D, Dawson B, et al. Physiological and metabolic responses of repeated-sprint activities: specific to field-based team sports. Sports Med 2005; 35 (12): 1025–44

    Article  PubMed  Google Scholar 

  125. Bilodeau M, Schindler-Ivens S, Williams DM, et al. EMG frequency content changes with increasing force an dduring fatigue in the quadriceps femoris muscle of men and women. J Electromyogr Kinesiol 2003; 13: 83–92

    Article  PubMed  CAS  Google Scholar 

  126. Evetovich T, Housh T, Johnson G, et al. Gender comparisons of the mechanomyographic responses to maximal concentric and eccentric isokinetic muscle actions. MedSci Sports Exerc 1998; 30: 1697–702

    Article  PubMed  CAS  Google Scholar 

  127. Hunter SK, Ryan DL, Ortega JD, et al. Task differences with the same load torque alter the endurance time of submaximal fatiguing contractions in humans. J Neurophysiol 2002; 88: 3087–96

    Article  PubMed  Google Scholar 

  128. Bogdanis GC, Nevill ME, Lakomy HK, et al. Power output and muscle metabolism during and following recovery from 10 and 20 s of maximal sprint exercise in humans. Acta Physiol Scand 1998; 163 (3): 261–72

    Article  PubMed  CAS  Google Scholar 

  129. Bogdanis GC, Nevill ME, Lakomy HK, et al. Effects of active recovery on power output during repeated maximal sprint cycling. Eur J Appl Physiol Occup Physiol 1996; 74(5): 461–9

    Article  PubMed  CAS  Google Scholar 

  130. Cheetham ME, Boobis LH, Brooks S, et al. Human muscle metabolism during sprint running. J Appl Physiol 1986; 61 (1): 54–60

    PubMed  CAS  Google Scholar 

  131. Lakomy H. Measurement of work and power output using friction-loaded cycle ergometer. Ergonomics 1986; 29 (4): 509–17

    Article  PubMed  CAS  Google Scholar 

  132. Gaitanos GC, Williams C, Boobis LH, et al. Human muscle metabolism during intermittent maximal exercise. J Appl Physiol 1993; 75 (2): 712–9

    PubMed  CAS  Google Scholar 

  133. Boobis L, Williams C, Wootton S. Human muscle metabolism during brief maximal exercise [abstract]. J Physiol (Lond) 1982; 338 (21P): 22P

    Google Scholar 

  134. Parolin ML, Chesley A, Matsos MP, et al. Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. Am J Physiol 1999; 277(5 Pt 1): E890–900

    Google Scholar 

  135. Bogdanis GC, Nevill ME, Boobis LH, et al. Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J Appl Physiol 1996; 80 (3): 876–84

    PubMed  CAS  Google Scholar 

  136. Bogdanis GC, Nevill ME, Boobis LH, et al. Recovery of power output and muscle metabolism after 10s and 20s of maximal sprint exercise in man. Clin Sci 1994; 87 Suppl. 1: 121–2

    Google Scholar 

  137. Boobis LH. Metabolic aspects of fatigue during sprinting. In: MacLeod D, Maughan RJ, Nimmo MA, et al., editors. Exercise: benefits, limitations and adaptations. London: E & FN Spon ed., 1987: 116–40

    Google Scholar 

  138. Spriet L, Söderlund K, Bergström M, et al. Anaerobic energy release in skeletal muscle during electrical stimulation in men. J Appl Physiol 1987; 62 (2): 611–5

    Article  PubMed  CAS  Google Scholar 

  139. Medbø JI, Tabata I. Anaerobic energy release in working muscle during 30 s to 3 min of exhausting bicycling. J Appl Physiol 1993; 75 (4): 1654–60

    PubMed  Google Scholar 

  140. Dawson B, Goodman C, Lawrence S, et al. Muscle phosphocreatine repletion following single and repeated short sprint efforts. Scand J Med Sci Sports 1997; 7: 206–13

    Article  PubMed  CAS  Google Scholar 

  141. Parra J, Cadefau J, Rodas G, et al. The distribution of rest periods affects performance and adaptations of energy metabolism induced by high-intensity training in human muscle. Acta Physiol Scand 2000; 169: 157–65

    Article  PubMed  CAS  Google Scholar 

  142. Bogdanis GC, Nevill ME, Lakomy HKA, et al. Muscle metabolism during repeated sprint exercise in man. J Physiol 1994; 475: 25P–6P

    Google Scholar 

  143. Bogdanis GC, Nevill ME, Boobis LH, et al. Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man. J Physiol 1995; 482 (Pt 2): 467–80

    PubMed  CAS  Google Scholar 

  144. Casey A, Constantin-Teodosiu D, Howell S, et al. Metabolic response of type I and II muscle fibers during repeated bouts of maximal exercise in humans. Am J Physiol 1996; 271 (1 Pt 1): E38–43

    Google Scholar 

  145. Hirvonen J, Rehunen S, Rusko H, et al. Breakdown of high-energy phosphate compounds and lactate accumulation during short supramaximal exercise. Eur J Appl Physiol Occup Physiol 1987; 56 (3): 253–9

    Article  PubMed  CAS  Google Scholar 

  146. Karatzaferi C, de Haan A, Ferguson RA, et al. Phosphocreatine and ATP content in human single muscle fibres before and after maximum dynamic exercise. Pflügers Arch-Eur J Physiol 2001; 442: 467–74

    Article  CAS  Google Scholar 

  147. Bangsbö J, Graham TE, Kiens B, et al. Elevated muscle glycogen and anaerobic energy production during exhaustive exercise in man. J Physiol 1992; 451: 205–27

    PubMed  Google Scholar 

  148. Hargreaves M, McKenna MJ, Jenkins DG, et al. Muscle metabolites and performance during high-intensity, intermittent exercise. J Appl Physiol 1998; 84 (5): 1687–91

    PubMed  CAS  Google Scholar 

  149. Nevill ME, Boobis LH, Brooks S, et al. Effect of training on muscle metabolism during treadmill sprinting. J Appl Physiol 1989; 67 (6): 2376–82

    PubMed  CAS  Google Scholar 

  150. Fitts R. Cellular mechanisms of muscle fatigue. Physiol Rev 1994; 74 (1): 49–94

    Article  PubMed  CAS  Google Scholar 

  151. Harris R, Sahlin K, Hultman E. Phosphagen and lactate contents of m. quadriceps femoris of man after exercise. J Appl Physiol 1977; 43 (5): 852–7

    PubMed  CAS  Google Scholar 

  152. Spriet L, Lindinger M, McKelvie R, et al. Muscle glycogenolysis and H+ concentration during maximal intermittent cycling. J Appl Physiol 1989; 66 (1): 8–13

    PubMed  CAS  Google Scholar 

  153. Spriet L, Söderlund K, Bergström M, et al. Skeletal muscle glycogenolysis, glycolysis, and pH during electrical stimulation in men. J Appl Physiol 1987; 62 (2): 616–21

    PubMed  CAS  Google Scholar 

  154. Allen DG, Westerblad H, Lännergren J. The role of intracellular acidosis in muscle fatigue. Adv Exp Med Biol 1995; 384: 57–68

    PubMed  CAS  Google Scholar 

  155. Harris R, Edwards R, Hultman E, et al. The time course of phosphorylcreatine resynthesis during recovery of the quadriceps muscle in man. Pflügers Arch 1976; 367: 137–42

    Article  PubMed  CAS  Google Scholar 

  156. Mercier J, Mercier B, Prefaut C. Blood lactate increases during the force velocity exercise test. Int J Sports Med 1991; 12 (1): 17–20

    Article  PubMed  CAS  Google Scholar 

  157. Bergström M, Hultman E. Relaxation and force during fatigue and recovery of human quadriceps muscle: relations to metabolite changes. Eur J Appl Physiol 1991; 418: 153–60

    Google Scholar 

  158. MacIntosh BR, Allen DG. Contractile changes and mechanisms of muscle fatigue. In: Nigg BM, MacIntosh BR, Mester J, editors. Biomechanics and biology of movement. Champaign (IL): Human Kinetics, 2000: 365–83

    Google Scholar 

  159. Rotto DM, Kaufman MP. Effect of metabolic products of muscular contraction on discharge of group III and IV afferents. J Appl Physiol 1988; 64 (6): 2306–13

    PubMed  CAS  Google Scholar 

  160. Sacco P, Newberry R, McFadden L, et al. Depression of human electromyographic activity by fatigue of a synergistic muscle. Muscle Nerve 1997; 20: 710–7

    Article  PubMed  CAS  Google Scholar 

  161. Sinoway LI, Hill JM, Pickar JG, et al. Effects of contraction and lactic acid on the discharge of group III muscle afferents in cats. J Neurophysiol 1993; 69 (4): 1053–9

    PubMed  CAS  Google Scholar 

  162. Juel C, Pilegaard H, Nielsen JJ, et al. Interstitial K(+) in human skeletal muscle during and after dynamic graded exercise determined by microdialysis. Am J Physiol Regul Integr Comp Physiol 2000; 278 (2): R400–6

    Google Scholar 

  163. Lindinger MI, Heigenhauser GJ. The roles of ion fluxes in skeletal muscle fatigue. Can J Physiol Pharmacol 1991; 69(2): 246–53

    Article  PubMed  CAS  Google Scholar 

  164. Lindinger MI, Heigenhauser GJ, McKelvie RS, et al. Blood ion regulation during repeated maximal exercise and recovery in humans. Am J Physiol 1992; 262 (1 Pt 2): R126–36

    Google Scholar 

  165. Medbo JI, Sejersted OM. Plasma potassium changes with high intensity exercise. J Physiol 1990; 421: 105–22

    PubMed  CAS  Google Scholar 

  166. Mohr M, Nordsborg N, Nielsen JJ, et al. Potassium kinetics in human muscle interstitium during repeated intense exercise in relation to fatigue. Pflugers Arch 2004; 448 (4): 452–6

    Article  PubMed  CAS  Google Scholar 

  167. Allen DG, Westerblad H. Role of phosphate and calcium stores in muscle fatigue. J Physiol 2001; 536: 657–65

    Article  PubMed  CAS  Google Scholar 

  168. Steele D, Duke A. Metabolic factors contributing to altered Ca2+ regulation in skeletal muscle fatigue. Acta Physiol Scand 2003; 179: 39–48

    Article  PubMed  CAS  Google Scholar 

  169. Westerblad H, Lee JA, Lännergren J, et al. Cellular mechanisms of fatigue in skeletal muscle. Am J Physiol 1991; 261: C195–209

    Google Scholar 

  170. Vandewalle H, Maton B, Le Bozec S, et al. An electromyographic study of an all-out exercise on a cycle ergometer. Arch Int Physiol Biochim Biophys 1991; 99 (1): 89–93

    Article  PubMed  CAS  Google Scholar 

  171. Hunter AM, St Clair Gibson A, Lambert MI, et al. Effects of supramaximal exercise on the electromyographic signal. Br J Sports Med 2003; 37: 296–9

    Article  PubMed  CAS  Google Scholar 

  172. Taylor AD, Bronks R, Smith P, et al. Myoelectric evidence of peripheral muscle fatigue during exercise in severe hypoxia: some references to m. vastus lateralis myosin heavy chain composition. Eur J Appl Physiol Occup Physiol 1997; 75 (2): 151–9

    Article  PubMed  CAS  Google Scholar 

  173. Linnamo V, Bottas R, Komi PV. Force and EMG power spectrum during and after eccentric and concentric fatigue. J Electromyogr Kinesiol 2000; 10: 293–300

    Article  PubMed  CAS  Google Scholar 

  174. Linssen W, Jacobs M, Stegeman D, et al. Muscle fatigue in McArdle’s disease: muscle fibre conduction velocity and surface EMG frequency spectrum during ischaemic exercise. Brain 1990; 113: 1779–93

    Article  PubMed  Google Scholar 

  175. St Clair Gibson A, Lambert MI, Noakes TD. Neural control of force output during maximal and submaximal exercise. Sports Med 2001; 31: 637–50

    Article  PubMed  CAS  Google Scholar 

  176. Murphy M, Patton J, Frederick F. Comparative anaerobic power of men and women. Aviat Space Environ Med 1986; 57: 636–41

    PubMed  CAS  Google Scholar 

  177. Doré E, Martin R, Ratel S, et al. Gender differences in peak muscle performance during growth. Int J Sports Med 2005; 26: 274–80

    Article  PubMed  Google Scholar 

  178. Esbjörnsson-Liljedahl M, Jansson E. Sex difference in plasma ammonia but not in muscle inosine monophosphate accumulation following sprint exercise in humans. Eur J Appl Physiol Occup Physiol 1999; 79 (5): 404–8

    Article  PubMed  Google Scholar 

  179. Tarnopolsky MA. Gender differences in substrate metabolism during endurance exercise. Can J Appl Physiol 2000; 25 (4): 312–27

    Article  PubMed  CAS  Google Scholar 

  180. Tarnopolsky MA. Gender differences in metabolism, nutrition and supplements. J Sci Med Sport 2000; 3 (3): 287–98

    Article  PubMed  CAS  Google Scholar 

  181. Russ DW, Lanza IR, Rothman D, et al. Sex differences in glycolysis during brief, intense isometric contractions. Muscle Nerve 2005; 32: 647–55

    Article  PubMed  CAS  Google Scholar 

  182. Glenmark B, Hedberg G, Kaijser L, et al. Muscle strength from adolescence to adulthood: relationship to muscle fibre types. Eur J Appl Physiol Occup Physiol 1994; 68 (1): 9–19

    Article  PubMed  CAS  Google Scholar 

  183. Krotkiewski M, Kral JG, Karlsson J. Effects of castration and testosterone substitution on body composition and muscle metabolism in rats. Acta Physiol Scand 1980; 109 (3): 233–7

    Article  PubMed  CAS  Google Scholar 

  184. Bishop D, Edge J, Goodman C. Muscle buffer capacity and aerobic fitness are associated with repeated-sprint ability in women. Eur J Appl Physiol 2004; 92: 540–7

    Article  PubMed  Google Scholar 

  185. Mayhew SR, Wenger HA. Time-motion analysis of professional soccer. J Hum Mov Stud 1985; 11 (1): 49–52

    Google Scholar 

  186. Balsom PD, Seger JY, Sjodin B, et al. Physiological responses to maximal intensity intermittent exercise. Eur J Appl Physiol Occup Physiol 1992; 65 (2): 144–9

    Article  PubMed  CAS  Google Scholar 

  187. Spencer M, Bishop D, Lawrence S. Longitudinal assessment of the effects of field-hockey training on repeated sprint ability. J Sci Med Sport 2004; 7: 323–34

    Article  PubMed  CAS  Google Scholar 

  188. Stathis CG, Zhao S, Carey MF, et al. Purine loss after repeated sprint bouts in humans. J Appl Physiol 1999; 87: 2037–42

    PubMed  CAS  Google Scholar 

  189. Sjodin B, Hellsten Westing Y. Changes in plasma concentration of hypoxanthine and uric acid in man with short-distance running at various intensities. Int J Sports Med 1990; 11 (6): 493–5

    Article  PubMed  CAS  Google Scholar 

  190. Harris R, Hultman E, Kaijser L, et al. The effect of circulatory occlusion on isometric exercise capacity and energy metabolism of the quadriceps muscle in man. Scand J Clin Lab Invest 1975; 35: 87–95

    Article  PubMed  CAS  Google Scholar 

  191. Trump ME, Heigenhauser GJ, Putman CT, et al. Importance of muscle phosphocreatine during intermittent maximal cycling. J Appl Physiol 1996; 80 (5): 1574–80

    PubMed  CAS  Google Scholar 

  192. Wiroth JB, Bermon S, Andrei S, et al. Effects of oral creatine supplementation on maximal pedalling performance in older adults. Eur J Appl Physiol 2001; 84 (6): 533–9

    Article  PubMed  CAS  Google Scholar 

  193. Yquel RJ, Arsac LM, Thiaudiere E, et al. Effect of creatine supplementation on phosphocreatine resynthesis, inorganic phosphate accumulation and pH during intermittent maximal exercise. J Sports Sci 2002; 20 (5): 427–37

    Article  PubMed  CAS  Google Scholar 

  194. Bishop D, Edge J. Determinants of repeated-sprint ability in females matched for single-sprint performance. Eur J Appl Physiol 2006; 97 (4): 373–9

    Article  PubMed  Google Scholar 

  195. Edge J, Bishop D, Hill-Haas S, et al. Comparison of muscle buffer capacity and repeated-sprint ability of untrained, endurance-trained and team-sport athletes. Eur J Appl Physiol 2006; 96 (3): 225–34

    Article  Google Scholar 

  196. Mohr M, Krustrup P, Nielsen JJ, et al. Effect of two different intense training regimens on skeletal muscle ion transport proteins and fatigue development. Am J Physiol Regul Integr Comp Physiol 2007; 292 (4): R 1594–602

    Article  CAS  Google Scholar 

  197. Bishop D, Edge J, Davis C, et al. Induced metabolic alkalosis affects muscle metabolism and repeated-sprint ability. Med Sci Sports Exerc 2004; 36 (5): 807–13

    PubMed  CAS  Google Scholar 

  198. Gaitanos G, Nevill M, Brooks S, et al. Repeated bouts of sprint running after induced alkalosis. J Sports Sci 1991; 9: 355–70

    Article  PubMed  CAS  Google Scholar 

  199. Street D, Nielsen JJ, Bangsbo J, et al. Metabolic alkalosis reduces exercise-induced acidosis and potassium accumulation in human skeletal muscle interstitium. J Physiol 2005; 566 (Pt 2): 481–9

    Article  PubMed  CAS  Google Scholar 

  200. Sejersted OM, Sjogaard G. Dynamics and consequences of potassium shifts in skeletal muscle and heart during exercise. Physiol Rev 2000; 80 (4): 1411–81

    PubMed  CAS  Google Scholar 

  201. McKenna MJ, Heigenhauser GJ, McKelvie RS, et al. Sprint training enhances ionic regulation during intense exercise in men. J Physiol 1997; 501 (Pt 3): 687–702

    Article  PubMed  CAS  Google Scholar 

  202. Nielsen JJ, Mohr M, Klarskov C, et al. Effects of high-intensity intermittent training on potassium kinetics and performance in human skeletal muscle. J Physiol 2004; 554 (Pt 3): 857–70

    PubMed  CAS  Google Scholar 

  203. Billaut F, Basset FA. Effect of different recovery patterns on repeated-sprint ability and neuromuscular responses. J Sports Sci 2007; 25 (8): 905–13

    Article  PubMed  Google Scholar 

  204. Billaut F, Basset FA, Falgairette G. Muscle coordination changes during intermittent cycling sprints. Neurosci Lett 2005; 380: 265–9

    Article  PubMed  CAS  Google Scholar 

  205. Hautier C, Arsac L, Deghdegh K, et al. Influence of fatigue on EMG/force ratio and cocontraction in cycling. Med Sci Sports Exerc 2000; 32 (4): 839–43

    Article  PubMed  CAS  Google Scholar 

  206. Billaut F, Basset FA, Giacomoni M, et al. Effect of high-intensity intermittent cycling sprints on neuromuscular activity. Int J Sports Med 2006; 27: 25–30

    Article  PubMed  CAS  Google Scholar 

  207. Drust B, Rasmussen P, Mohr M, et al. Elevations in core and muscle temperature impairs repeated sprint performance. Acta Physiol Scand 2005; 183: 181–90

    Article  PubMed  CAS  Google Scholar 

  208. Mendez-Villanueva A, Hamer P, Bishop D. Physical fitness and performance: fatigue responses during repeated sprints matched for initial mechanical output. Med Sci Sports Exerc 2007; 39 (12): 2219–25

    Article  PubMed  Google Scholar 

  209. Racinais S, Bishop D, Denis R, et al. Muscle deoxygenation and neural drive to the muscle during repeated sprint cycling. Med Sci Sports Exerc 2007; 39 (2): 268–74

    Article  PubMed  Google Scholar 

  210. Balsom PD, Gaitanos GC, Soderlund K, et al. High-intensity exercise and muscle glycogen availability in humans. Acta Physiol Scand 1999; 165 (4): 337–45

    Article  PubMed  CAS  Google Scholar 

  211. Bishop D, Spencer M. Determinants of repeated-sprint ability in well-trained team-sport athletes and endurance-trained athletes. J Sports Med Phys Fitness 2004; 44: 1–7

    PubMed  CAS  Google Scholar 

  212. Blonc S, Casas H, Duché P, et al. Effect of recovery duration on the force-velocity relationship. Int J Sports Med 1998; 19: 272–6

    Article  PubMed  CAS  Google Scholar 

  213. Chamari K, Ahmaidi S, Fabre C, et al. Pulmonary gas exchange and ventilatory responses to brief intense intermittent exercise in young trained and untrained adults. Eur J Appl Physiol Occup Physiol 1995; 70 (5): 442–50

    Article  PubMed  CAS  Google Scholar 

  214. Hamilton A, Nevill M, Brooks S, et al. Physiological responses to maximal intermittent exercise: differences between endurance-trained runners and game players. J Sports Sci 1991; 9: 371–82

    Article  PubMed  CAS  Google Scholar 

  215. Wadley G, Le Rossignol P. The relationship between repeated sprint ability and the aerobic and anaerobic energy systems. J Sci Med Sport 1998; 1 (2): 100–10

    Article  PubMed  CAS  Google Scholar 

  216. Tomlin DL, Wenger HA. The relationship between aerobic fitness and recovery from high intensity intermittent exercise. Sports Med 2001; 31 (1): 1–11

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Billaut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Billaut, F., Bishop, D. Muscle Fatigue in Males and Females during Multiple-Sprint Exercise. Sports Med 39, 257–278 (2009). https://doi.org/10.2165/00007256-200939040-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200939040-00001

Keywords

Navigation