Skip to main content
Log in

Skeletal Muscle Damage with Exercise and Aging

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Skeletal muscle comprises the largest organ system in the human body and is essential for force generation and movement. Skeletal muscle is subjected to considerable stresses during everyday use. However, muscle has the unique ability to adapt and remodel to provide protection against such stresses. This adaptation occurs at the structural through to the cellular level, which includes changes in transcription of a range of protective proteins. Failure in such processes can be catastrophic. This failure in adaptation is particularly notable in older individuals. Our skeletal muscles become smaller and weaker as we age. This loss of muscle bulk results in a reduced capacity to generate force and results in a loss of the ability to undertake everyday tasks. This article describes the normal adaptive responses of muscle in younger individuals to the stress of various forms of exercise and the implications of a failure of these adaptive responses in the elderly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Newham DJ, Mills KR, Quigley BM, et al. Pain and fatigue after concentric and eccentric muscle contractions. Clin Sci (Lond) 1983; 64 (1): 55–62

    CAS  Google Scholar 

  2. Faulkner JA. Terminology for contractions of muscles during shortening, while isometric, and during lengthening. J Appl Physiol 2003; 95 (2): 455–9

    PubMed  Google Scholar 

  3. Clarkson PM, Nosako K, Braun B. Muscle function after exercise-induced muscle damage and rapid adaptation. Med Sci Sports Exerc 1992; 24 (5): 512–50

    PubMed  CAS  Google Scholar 

  4. McCully KK, Faulkner JA. Injury to skeletal muscle fibers of mice following lengthening contractions. J Appl Physiol 1985; 59 (1): 119–26

    PubMed  CAS  Google Scholar 

  5. McCully KK, Faulkner JA. Characteristics of lengthening contractions associated with injury to skeletal muscle fibers. J Appl Physiol 1986; 61 (1): 293–9

    PubMed  CAS  Google Scholar 

  6. Proske U, Morgan DL. Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J Physiol 2001; 537 (2): 335–45

    Google Scholar 

  7. Faulkner JA, Brooks SV, Zerba E. Skeletal muscle weakness and fatigue in old age: underlying mechanisms. Annu Rev Gerontol Geriatr 1990; 10: 147–66

    PubMed  CAS  Google Scholar 

  8. Jones DA, Round JM. Human muscle damage induced by eccentric exercise or reperfusion injury: a common mechanism. In: Salmons S, editor. Muscle damage. Oxford: Oxford University Press, 1997: 64–75

    Google Scholar 

  9. Brooks SV, Zerba E, Faulkner JA. Injury to muscle fibres after single stretches of passive and maximally stimulated muscles in mice. J Physiol 1995; 488 (Pt 2): 459–69

    PubMed  CAS  Google Scholar 

  10. Faulkner JA, Brooks SV. Muscle damage induced by contraction: an in situ single skeletal muscle model. Salmons S, editor. Oxford: Oxford University Press, 1997

    Google Scholar 

  11. McArdle A, Dillmann WH, Mestril R, et al. Overexpression of HSP70 in mouse skeletal muscle protects against muscle damage and age-related muscle dysfunction. FASEB J 2004; 18 (2): 355–7

    PubMed  CAS  Google Scholar 

  12. Eston RG, Mickleborough J, Baltzopoulos V. Eccentric activation and muscle damage: biomechanical and physiological considerations during downhill running. Br J Sports Med 1995; 29 (2): 89–94

    PubMed  CAS  Google Scholar 

  13. McArdle A, Jackson MJ. Intracellular mechanisms involved in skeletal muscle damage. Salmons S, editor. Oxford: Oxford University Press, 1997: 90–106

    Google Scholar 

  14. Maglara A, Jackson MJ, McArdle A. Programmed cell death in skeletal muscle [abstract]. Biochem Soc Trans 1998; 26 (3): S259

    Google Scholar 

  15. McArdle A, Maglara A, Appleton P, et al. Apoptosis in multinucleated skeletal muscle myotubes. Lab Invest 1999; 79 (9): 1069–76

    PubMed  CAS  Google Scholar 

  16. Jackson MJ, O’Farrell S. Free radicals and muscle damage. Br Med Bull 1993; 49 (3): 630–41

    PubMed  CAS  Google Scholar 

  17. Boveris A, Chance B. The mitochondrial generation of hydrogen peroxide: general properties and effect of hyperbaric oxygen. Biochem J 1973; 134 (3): 707–16

    PubMed  CAS  Google Scholar 

  18. Jackson MJ, Edwards RHT, Symons MCR. Electron spin resonance studies of intact mammalian skeletal muscle. Biochim Biophys Acta 1985; 847: 184–90

    Google Scholar 

  19. McArdle A, Pattwell D, Vasilaki A, et al. Contractile activity-induced oxidative stress: cellular origin and adaptive responses. Am J Physiol Cell Physiol 2001; 280 (3): C621–7

    Google Scholar 

  20. O’Neill CA, Stebbins CL, Bonigut S, et al. Production of hydroxyl radicals in contracting skeletal muscle of cats. J Appl Physiol 1996; 81 (3): 1197–206

    PubMed  Google Scholar 

  21. Reid MB, Shoji T, Moody MR, et al. Reactive oxygen in skeletal muscle II: extracellular release of free radicals. J Appl Physiol 1992; 73 (5): 1805–9

    PubMed  CAS  Google Scholar 

  22. Close GL, Ashton T, Cable T, et al. Eccentric exercise, isokinetic muscle torque and delayed onset muscle soreness: the role of reactive oxygen species. Eur J Appl Physiol 2004; 91 (5–6): 615–21

    PubMed  CAS  Google Scholar 

  23. Sen CK. Antioxidants in exercise nutrition. Sports Med 2001; 31 (13): 891–908

    PubMed  CAS  Google Scholar 

  24. Packer L. Protective role of vitamin E in biological systems. Am J Clin Nutr 1991; 53 (4 Suppl.): 1050S-5S

    Google Scholar 

  25. Sumida S, Tanaka K, Kitao H, et al. Exercise-induced lipid peroxidation and leakage of enzymes before and after vitamin E supplementation. Int J Biochem 1989; 21 (8): 835–8

    CAS  Google Scholar 

  26. McBride JM, Kraemer WJ, Triplett-McBride T, et al. Effect of resistance exercise on free radical production. Med Sci Sports Exerc 1998; 30 (1): 67–72

    PubMed  CAS  Google Scholar 

  27. Jakeman P, Maxwell S. Effect of antioxidant vitamin supplementation on muscle function after eccentric exercise. Eur J Appl Physiol Occup Physiol 1993; 67 (5): 426–30

    PubMed  CAS  Google Scholar 

  28. Kaminski M, Boal R. An effect of ascorbic acid on delayed-onset-muscle-soreness. Pain 1992; 50 (3): 317–21

    PubMed  CAS  Google Scholar 

  29. Staton WM. The influence of ascorbic acid supplementation in minimizing post-exercise muscle soreness in young men. Res Q 1952; 23: 356–60

    Google Scholar 

  30. Thompson D, Williams C, Kingsley M, et al. Muscle soreness and damage parameters after prolonged intermittent shuttle-running following acute vitamin C supplementation. Int J Sports Med 2001; 22 (1): 68–75

    PubMed  CAS  Google Scholar 

  31. Close GL, Ashton T, Cable NT, et al. Prolonged ascorbic acid supplementation attenuates post-exercise lipid peroxidation but has no effect on delayed onset muscle soreness following downhill running in man [abstract]. J Physiol 2004; 555P: PC95

    Google Scholar 

  32. McArdle A, van der Meulen JH, Catapano M, et al. Free radical activity following contraction-induced injury to the extensor digitorum longus muscles of rats. Free Radic Biol Med 1999; 26 (9/10): 1085–91

    PubMed  CAS  Google Scholar 

  33. van der Meulen JH, McArdle A, Jackson MJ, et al. Contraction-induced injury to the extensor digitorum longus muscles of rats: the role of vitamin E. J Appl Physiol 1997; 83 (3): 817–23

    Google Scholar 

  34. Cannon JG, Orencole SF, Fielding RA, et al. Acute phase response in exercise: interaction of age and vitamin E on neutrophils and muscle enzyme release. Am J Physiol 1990; 259 (6 Pt 2): R1214–9

    Google Scholar 

  35. Balon TW, Nadler JL. Nitric oxide release is present from incubated skeletal muscle preparations. J Appl Physiol 1994; 77 (6): 2519–21

    PubMed  CAS  Google Scholar 

  36. Ji LL. Antioxidant enzyme response to exercise and aging. Med Sci Sports Exerc 1993; 25 (2): 225–31

    PubMed  CAS  Google Scholar 

  37. Higuchi M, Cartier LJ, Chen M, et al. Superoxide dismutase and catalase in skeletal muscle: adaptive response to exercise. J Gerontol 1985; 40 (3): 281–6

    PubMed  CAS  Google Scholar 

  38. Jenkins RR, Friedland R, Howald H. The relationship of oxygen uptake to superoxide dismutase and catalase activity in human skeletal muscle. Int J Sports Med 1984; 5 (1): 11–4

    PubMed  CAS  Google Scholar 

  39. Khassaf M, Child RB, McArdle A, et al. Time course of responses of human skeletal muscle to oxidative stress induced by nondamaging exercise. J Appl Physiol 2001; 90 (3): 1031–5

    PubMed  CAS  Google Scholar 

  40. Radak Z. Free radicals in exercise and ageing. Leeds: Human Kinetics, 2000: ix

    Google Scholar 

  41. Robertson JD, Maughan RJ, Duthie GG, et al. Increased blood antioxidant systems of runners in response to training load. Clin Sci (Lond) 1991; 80 (6): 611–8

    CAS  Google Scholar 

  42. Vertuani S, Angusti A, Manfredini S. The antioxidants and pro-antioxidants network: an overview. Curr Pharm Des 2004; 10 (14): 1677–94

    PubMed  CAS  Google Scholar 

  43. Powers SK, DeRuisseau KC, Quindry J, et al. Dietary antioxidants and exercise. J Sports Sci 2004; 22 (1): 81–94

    PubMed  Google Scholar 

  44. Sen CK. Oxidants and antioxidants in exercise. J Appl Physiol 1995; 79 (3): 675–86

    PubMed  CAS  Google Scholar 

  45. McArdle A, Jackson MJ. Stress proteins and exercise-induced muscle damage. Boca Raton (FL): CRC Press, 2002: 137–50

    Google Scholar 

  46. Locke M, Noble EG. Exercise and stress response: the role of stress proteins. Boca Raton (FL): CRC Press, 2002

    Google Scholar 

  47. Hernando R, Manso R. Muscle fibre stress in response to exercise: synthesis, accumulation and isoform transitions of 70-kDa heat-shock proteins. Eur J Biochem 1997; 243 (1–2): 460–7

    PubMed  CAS  Google Scholar 

  48. Kelly DA, Tiidus PM, Houston ME, et al. Effect of vitamin E deprivation and exercise training on induction of HSP70. J Appl Physiol 1996; 81 (6): 2379–85

    PubMed  CAS  Google Scholar 

  49. Salo DC, Donovan CM, Davies KJ. HSP70 and other possible heat shock or oxidative stress proteins are induced in skeletal muscle, heart, and liver during exercise. Free Radic Biol Med 1991; 11 (3): 239–46

    PubMed  CAS  Google Scholar 

  50. Samelman TR. Heat shock protein expression is increased in cardiac and skeletal muscles of Fischer 344 rats after endurance training. Exp Physiol 2000; 85 (1): 92–102

    PubMed  CAS  Google Scholar 

  51. Naito H, Powers SK, Demirel HA, et al. Exercise training increases heat shock protein in skeletal muscles of old rats. Med Sci Sports Exerc 2001; 33 (5): 729–34

    PubMed  CAS  Google Scholar 

  52. Freeman ML, Borrelli MJ, Meredith MJ, et al. On the path to the heat shock response: destabilization and formation of partially folded protein intermediates, a consequence of protein thiol modification. Free Radic Biol Med 1999; 26 (5–6): 737–45

    PubMed  CAS  Google Scholar 

  53. Marber MS, Mestril R, Chi SH, et al. Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J Clin Invest 1995; 95 (4): 1446–56

    PubMed  CAS  Google Scholar 

  54. Radford NB, Fina M, Benjamin IJ, et al. Cardioprotective effects of 70-kDa heat shock protein in transgenic mice. Proc Natl Acad Sci U S A 1996; 93 (6): 2339–42

    PubMed  CAS  Google Scholar 

  55. Rajdev S, Hara K, Kokubo Y, et al. Mice overexpressing rat heat shock protein 70 are protected against cerebral infarction. Ann Neurol 2000; 47 (6): 782–91

    PubMed  CAS  Google Scholar 

  56. Belcastro AN, Shewchuk LD, Raj DA. Exercise-induced muscle injury: a calpain hypothesis. Mol Cell Biochem 1998; 179 (1–2): 135–45

    PubMed  CAS  Google Scholar 

  57. Tidball JG. Inflammatory cell response to acute muscle injury. Med Sci Sports Exerc 1995; 27 (7): 1022–32

    PubMed  CAS  Google Scholar 

  58. Merly F, Lescaudron L, Rouaud T, et al. Macrophages enhance muscle satellite cell proliferation and delay their differentiation. Muscle Nerve 1999; 22 (6): 724–32

    PubMed  CAS  Google Scholar 

  59. Mauro A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 1961; 9: 493–5

    PubMed  CAS  Google Scholar 

  60. Gibson MC, Schultz E. The distribution of satellite cells and their relationship to specific fiber types in soleus and extensor digitorum longus muscles. Anat Rec 1982; 202 (3): 329–37

    PubMed  CAS  Google Scholar 

  61. Wokke JH, Van den Oord CJ, Leppink GJ, et al. Perisynaptic satellite cells in human external intercostal muscle: a quantitative and qualitative study. Anat Rec 1989; 223 (2): 174–80

    PubMed  CAS  Google Scholar 

  62. Schmalbruch H, Hellhammer U. The number of nuclei in adult rat muscles with special reference to satellite cells. Anat Rec 1977; 189 (2): 169–75

    PubMed  CAS  Google Scholar 

  63. Shultz E, Jaryszak DL, Valliere CR. Response of satellite cells to focal skeletal muscle injury. Muscle Nerve 1985; 8: 217–22

    Google Scholar 

  64. Shultz E, McCormick KM. Skeletal muscle satellite cells. Rev Physiol Biochem 1994; 123: 213–57

    Google Scholar 

  65. Hawke TJ, Garry DJ. Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 2001; 91 (2): 534–51

    PubMed  CAS  Google Scholar 

  66. Morgan JE, Partridge TA. Muscle satellite cells. Int J Biochem Cell Biol 2003; 35: 1151–6

    PubMed  CAS  Google Scholar 

  67. Brooks SV, Faulkner JA. Contractile properties of skeletal muscles from young, adult and aged mice. J Physiol 1988; 404: 71–82

    PubMed  CAS  Google Scholar 

  68. Goldspink G. Cellular and molecular aspects of adaptation in skeletal muscle. Komi PV, editor. London: Blackwell Science, 1994: 211–29

    Google Scholar 

  69. McBride TA, Gorin FA, Carlsen RC. Prolonged recovery and reduced adaptation in aged rat muscle following eccentric exercise. Mech Ageing Dev 1995; 83 (3): 185–200

    PubMed  CAS  Google Scholar 

  70. Schwane JA, Johnson SR, Vandernakker CB, et al. Delayed onset muscle soreness and plasma CPK and LDH activities after downhill running. Med Sci Sports Exerc 1983; 15 (1): 51–6

    PubMed  CAS  Google Scholar 

  71. Schwane JA, Williams JS, Sloan JH. Effects of training on delayed muscle soreness and serum creatine kinase activity after running. Med Sci Sports Exerc 1987; 19 (6): 584–90

    PubMed  CAS  Google Scholar 

  72. Pierrynowski MR, Tudus PM, Plyley MJ. Effects of downhill or uphill training prior to a downhill run. Eur J Appl Physiol 1987; 56: 668–72

    CAS  Google Scholar 

  73. Brown SJ, Child RB, Day SH, et al. Exercise induced muscle damage and adaptation following repeated bouts of eccentric muscle contraction. J Sports Sci 1997; 15: 215–22

    PubMed  CAS  Google Scholar 

  74. Whitehead NP, Allen TJ, Morgan DL, et al. Damage to human muscle from eccentric exercise after training with concentric exercise. J Physiol 1998; 512 (Pt 2): 615–20

    PubMed  CAS  Google Scholar 

  75. McHugh MP, Pasiakos S. The role of exercising muscle length in the protective adaptation to a single bout of eccentric exercise. Eur J Appl Physiol. Epub 2004 Aug 27

    Google Scholar 

  76. Koh TJ, Brooks SV. Lengthening contractions are not required to induce protection from contraction-induced muscle injury. Am J Physiol Regul Integr Comp Physiol 2001; 281 (1): R155–61

    Google Scholar 

  77. McHugh MP, Connolly DAJ, Eston RG, et al. Exercise induced muscle damage and potential mechanisms for the repeated bout effect. Sports Med 1999; 27 (3): 157–70

    PubMed  CAS  Google Scholar 

  78. Lapointe BM, Fremont P, Cote CH. Adaptation to lengthening contractions is independent of voluntary muscle recruitment but relies on inflammation. Am J Physiol Regul Integr Comp Physiol 2002; 282 (1): R323–9

    Google Scholar 

  79. Devor ST, Faulkner JA. Regeneration of new fibers in muscles of old rats reduces contraction-induced injury. J Appl Physiol 1999; 87 (2): 750–6

    PubMed  CAS  Google Scholar 

  80. Porter MM, Vandervoort AA, Lexell J. Aging of human muscle: structure, function and adaptability. Scand J Med Sci Sports 1995; 5 (3): 129–42

    PubMed  CAS  Google Scholar 

  81. Sato T, Akatsuka H, Kito K, et al. Age changes in size and number of muscle fibers in human minor pectoral muscle. Mech Ageing Dev 1984; 28 (1): 99–109

    PubMed  CAS  Google Scholar 

  82. Lexell J, Downham D, Sjostrom M. Distribution of different fibre types in human skeletal muscles: fibre type arrangement in m. vastus lateralis from three groups of healthy men between 15 and 83 years. J Neurol Sci 1986; 72 (2–3): 211–22

    PubMed  CAS  Google Scholar 

  83. Lexell J, Taylor CC, Sjostrom M. What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci 1988; 84 (2–3): 275–94

    PubMed  CAS  Google Scholar 

  84. Larsson L, Karlsson J. Isometric and dynamic endurance as a function of age and skeletal muscle characteristics. Acta Physiol Scand 1978; 104 (2): 129–36

    PubMed  CAS  Google Scholar 

  85. Larsson L. Morphological and functional characteristics of the ageing skeletal muscle in man: a cross-sectional study. Acta Physiol Scand Suppl 1978; 457: 1–36

    PubMed  CAS  Google Scholar 

  86. Stanley SN, Taylor NA. Isokinematic muscle mechanics in four groups of women of increasing age. Eur J Appl Physiol Occup Physiol 1993; 66 (2): 178–84

    PubMed  CAS  Google Scholar 

  87. Faulkner JA, Brooks SV, Zerba E. Skeletal muscle weakness, fatigue, and injury: inevitable concomitants of aging? In: Ghesquire J, Tolleneer J, editors. Leuven: Liber Amicorum – Hermes XXI, 1990: 269–80

    Google Scholar 

  88. Faulkner JA, White TP. Changes that occur and do not occur in the structure and function of skeletal muscle with aging. J Gerontol 1988; 43 (1): B3–4

    Google Scholar 

  89. Evans WJ. Exercise training guidelines for the elderly. Med Sci Sports Exerc 1999; 31 (1): 12–7

    PubMed  CAS  Google Scholar 

  90. Ploutz-Snyder LL, Giamis EL, Formikell M, et al. Resistance training reduces susceptibility to eccentric exercise-induced muscle dysfunction in older women. J Gerontol A Biol Sci Med Sci 2001; 56 (9): B384–90

    Google Scholar 

  91. Ebbeling CB, Clarkson PM. Exercise-induced muscle damage and adaptation. Sports Med 1989; 7 (4): 207–34

    PubMed  CAS  Google Scholar 

  92. Nosako K, Clarkson PM. Changes in indicators of inflammation after eccentric exercise of the elbow flexors. Med Sci Sports Exerc 1996; 28 (8): 953–61

    Google Scholar 

  93. Gibson MC, Schultz E. Age-related differences in absolute numbers of skeletal muscle satellite cells. Muscle Nerve 1983; 6 (8): 574–80

    PubMed  CAS  Google Scholar 

  94. Renault V, Thornell LE, Butler-Browne G, et al. Human skeletal muscle satellite cells: aging, oxidative stress and the mitotic clock. Exp Gerontol 2002; 37 (10–11): 1229–36

    PubMed  CAS  Google Scholar 

  95. Renault V, Piron-Hamelin G, Forestier C, et al. Skeletal muscle regeneration and the mitotic clock. Exp Gerontol 2000; 35 (6–7): 711–9

    PubMed  CAS  Google Scholar 

  96. Zerba E, Komorowski TE, Faulkner JA. Free radical injury to skeletal muscles of young, adult, and old mice. Am J Physiol 1990; 258 (3 Pt 1): C429–35

    Google Scholar 

  97. Carlson BM, Faulkner JA. Muscle transplantation between young and old rats: age of host determines recovery. Am J Physiol 1989; 256 (6 Pt 1): C1262–6

    Google Scholar 

  98. Liu AYC, Lee YK, Manola LD, et al. Attenuated heat shock transcriptional response in ageing: molecular mechanism and implication in the biology of ageing. In: Feige U, Morimoto RI, Yahara I, et al., editors. Berlin: Birkhauser, 1996: 393–408

    Google Scholar 

  99. Rao DV, Watson K, Jones GL. Age-related attenuation in the expression of the major heat shock proteins in human peripheral lymphocytes. Mech Ageing Dev 1999; 107 (1): 105–18

    PubMed  CAS  Google Scholar 

  100. Vasilaki A, Jackson MJ, McArdle A. Attenuated HSP70 response in skeletal muscle of aged rats following contractile activity. Muscle Nerve 2002; 25 (6): 902–5

    PubMed  CAS  Google Scholar 

  101. Poon HF, Calabrese V, Scapagnini G, et al. Free radicals: key to brain aging and heme oxygenase as a cellular response to oxidative stress. J Gerontol A Biol Sci Med Sci 2004; 59 (5): 478–93

    PubMed  Google Scholar 

  102. Zhang J, Dai J, Lu Y, et al. In vivo visualization of aging-associated gene transcription: evidence for free radical theory of aging. Exp Gerontol 2004; 39 (2): 239–47

    PubMed  CAS  Google Scholar 

  103. Meissner C, Mohamed SA, von Wurmb N, et al. The mitochondrial genome and aging. Z Gerontol Geriatr 2001; 34 (6): 447–51

    PubMed  CAS  Google Scholar 

  104. de Grey AD. The reductive hotspot hypothesis: an update. Arch Biochem Biophys 2000; 373 (1): 295–301

    PubMed  Google Scholar 

  105. de Grey AD. The reductive hotspot hypothesis of mammalian aging: membrane metabolism magnifies mutant mitochondrial mischief. Eur J Biochem 2002; 269 (8): 2003–9

    PubMed  Google Scholar 

  106. Sacco P, Jones DA. The protective effect of damaging eccentric exercise against repeated bouts of exercise in the mouse tibialis anterior muscle. Exp Physiol 1992; 77 (5): 757–60

    PubMed  CAS  Google Scholar 

  107. Brooks SV, Opiteck JA, Faulkner JA. Conditioning of skeletal muscles in adult and old mice for protection from contraction-induced injury. J Gerontol A Biol Sci Med Sci 2001; 56 (4): B163–71

    Google Scholar 

  108. Gosselin LE. Attenuation of force deficit after lengthening contractions in soleus muscle from trained rats. J Appl Physiol 2000; 88 (4): 1254–8

    PubMed  CAS  Google Scholar 

  109. Fielding RA, LeBrasseur NK, Cuoco A, et al. High-velocity resistance training increases skeletal muscle peak power in older women. J Am Geriatr Soc 2002; 50 (4): 655–62

    PubMed  Google Scholar 

  110. Schulte JN, Yarasheski KE. Effects of resistance training on the rate of muscle protein synthesis in frail elderly people. Int J Sport Nutr Exerc Metab 2001; 11 Suppl.: S111–8

    Google Scholar 

  111. Trappe S, Williamson D, Godard M. Maintenance of whole muscle strength and size following resistance training in older men. J Gerontol A Biol Sci Med Sci 2002; 57 (4): B138–43

    Google Scholar 

  112. Lambert CP, Sullivan DH, Freeling SA, et al. Effects of testosterone replacement and/or resistance exercise on the composition of megestrol acetate stimulated weight gain in elderly men: a randomized controlled trial. J Clin Endocrinol Metab 2002; 87 (5): 2100–6

    PubMed  CAS  Google Scholar 

  113. Newton RU, Hakkinen K, Hakkinen A, et al. Mixed-methods resistance training increases power and strength of young and older men. Med Sci Sports Exerc 2002; 34 (8): 1367–75

    PubMed  Google Scholar 

  114. Ferri A, Scaglioni G, Pousson M, et al. Strength and power changes of the human plantar flexors and knee extensors in response to resistance training in old age. Acta Physiol Scand 2003; 177 (1): 69–78

    PubMed  CAS  Google Scholar 

  115. Kalapotharakos VI, Michalopoulou M, Godolias G, et al. The effects of high- and moderate-resistance training on muscle function in the elderly. J Aging Phys Act 2004; 12 (2): 131–43

    PubMed  Google Scholar 

  116. Hakkinen K, Kraemer WJ, Pakarinen A, et al. Effects of heavy resistance/power training on maximal strength, muscle morphology, and hormonal response patterns in 60–75-year-old men and women. Can J Appl Physiol 2002; 27 (3): 213–31

    PubMed  CAS  Google Scholar 

  117. Yarasheski KE. Exercise, aging, and muscle protein metabolism. J Gerontol A Biol Sci Med Sci 2003; 58 (10): M918–22

    Google Scholar 

  118. Hunter GR, McCarthy JP, Bamman MM. Effects of resistance training on older adults. Sports Med 2004; 34 (5): 329–48

    PubMed  Google Scholar 

  119. Doherty TJ. Invited review: aging and sarcopenia. J Appl Physiol 2003; 95 (4): 1717–27

    PubMed  CAS  Google Scholar 

  120. Macaluso A, De Vito G. Muscle strength, power and adaptations to resistance training in older people. Eur J Appl Physiol 2004; 91 (4): 450–72

    PubMed  Google Scholar 

  121. Capodaglio P, Facioli M, Burroni E, et al. Effectiveness of a home-based strengthening program for elderly males in Italy: a preliminary study. Aging Clin Exp Res 2002; 14 (1): 28–34

    PubMed  CAS  Google Scholar 

  122. Smith K, Winegard K, Hicks AL, et al. Two years of resistance training in older men and women: the effects of three years of detraining on the retention of dynamic strength. Can J Appl Physiol 2003; 28 (3): 462–74

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Biotechnology and Biological Sciences Research Council, Research Into Ageing, and the Wellcome Trust for providing funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne McArdle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Close, G.L., Kayani, A., Vasilaki, A. et al. Skeletal Muscle Damage with Exercise and Aging. Sports Med 35, 413–427 (2005). https://doi.org/10.2165/00007256-200535050-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200535050-00004

Keywords

Navigation