Skip to main content

Advertisement

Log in

The Effects of Strength Training and Disuse on the Mechanisms of Fatigue

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Summary

Increases in force, electromyography, reflex potentiation, muscle action potential amplitude and protein synthesis occur with strength training. Training-induced increases in the efficiency of the neuromuscular system and capacity of the muscle to generate force result in an improved ability to cope with a submaximal load. There is also some evidence of improved fatigue resistance with maximal contractions which could be attributed to a prolongation of membrane excitation or decreased antagonist activity with training.

On the other hand, although a variety of factors including strength are diminished with disuse, a number of studies have demonstrated no significant difference in the rate of fatigue with maximal contractions (fatigue index) between trained, untrained and disused muscle. Equivalent control and disuse fatigue indexes in some studies might be attributed to decreased muscle activation resulting in a comparison of maximal (control) and submaximal (disuse) efforts. Furthermore, increases in the duration of muscle membrane electrical propagation with disuse may increase the quantity of Ca++ released, augmenting force production. In addition, the smaller volume of disused muscle may allow a more efficient diffusion of oxygen and energy substrates in comparison with a hypertrophied muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asmussen E. Muscle fatigue. Med Sci Sports Exerc 1979; 11 (4): 313–21

    CAS  Google Scholar 

  2. Fitts RH, Metzger JM. Mechanisms of muscular fatigue. In: Hebbelinck M, Shephard RJ, editors. Principles of exercise biochemistry. 2nd ed. Basel: Karger 1993; 33: 248–68

    Google Scholar 

  3. Degens H, Veerkamp JH. Changes in the oxidative capacity and fatigue resistance in skeletal muscle. Int J Biochem 1994; 26 (7): 871–8

    Article  PubMed  CAS  Google Scholar 

  4. Enoka RM, Stuart DG. Neurobiology of muscle fatigue. J Appl Physiol 1992; 72 (5): 1631–48

    PubMed  CAS  Google Scholar 

  5. Behm DG. Neuromuscular implications and applications of resistance training. J Strength Cond Res 1995; 9 (4): 264–74

    Google Scholar 

  6. Jones DA, Rutherford OM, Parker DF. Physiological changes in skeletal muscle as a result of strength training. Q J Exp Physiol 1989; 74: 233–56

    PubMed  CAS  Google Scholar 

  7. Komi PV. Training of muscle strength and power: interaction of neuromotoric, hypertrophic and mechanical factors. Int J Sports Med 1986; 7: 10–5

    Article  PubMed  Google Scholar 

  8. Sale DG. Neural adaptation to resistance training. Med Sci Sports Exerc 1988; 20 (5 Suppl.): S135–45

    PubMed  CAS  Google Scholar 

  9. Appell HJ. Muscular atrophy following immobilisation: a review. Sports Med 1990; 10 (1): 42–58

    Article  PubMed  CAS  Google Scholar 

  10. Behm DG. Debilitation to adaptation. J Strength Cond Res 1993; 7 (2): 65–75

    Google Scholar 

  11. Booth FW. Effect of limb immobilization on skeletal muscle. J Appl Physiol 1982; 52 (5): 1113–8

    PubMed  CAS  Google Scholar 

  12. St-Pierre DMM, Gardiner PF. The effect of immobilization and exercise on muscle function: a review. Physiother Can 1987; 39 (1): 24–36

    Google Scholar 

  13. Enoka RM. Fatigue of adapted systems: neural and neuromuscular aspects of muscle fatigue. In: Enoka RM, Gandevia SC, McComas AJ, et al. editors. Muscle Nerve Suppl 1996; 4: S29–32

    Google Scholar 

  14. Duchateau J, Hainaut K. Training effects on muscle fatigue in man. Eur J Appl Physiol 1984; 53: 248–52

    Article  CAS  Google Scholar 

  15. Shaver LG. Maximum dynamic strength, relative dynamic endurance, and their relationships. Res Q 1964; 42 (4): 460–5

    Google Scholar 

  16. Fuglevand AJ, Bilodeau M, Enoka RM. Short-term immobilization has a minimal effect on the strength and fatiguability of a human hand muscle. J Appl Physiol 1995; 78 (3): 847–55

    PubMed  CAS  Google Scholar 

  17. Snyder-Mackler L, Binder-MacLeod A, Williams PR. Fatiguability of human quadriceps femoris muscle following anterior cruciate ligament reconstruction. Med Sci Sports Exerc 1993; 25 (7): 783–9

    Article  PubMed  CAS  Google Scholar 

  18. Gandevia SC, Allen GM, McKenzie DK. Central fatigue: critical issues, quantification and practical implications. In: Gandevia S, et al. editors. Fatigue. New York: Plenum Press, 1995: 281–94

    Google Scholar 

  19. Enoka RM, Gandevia SC, McComas AJ, et al. Neural and neuromuscular aspects of muscle fatigue. Muscle Nerve Suppl 1996; 4: S2–37

    Google Scholar 

  20. Edwards RHT. Interaction of chemical with electromechanical factors in human skeletal muscle fatigue. Acta Physiol Scand 1986; 128 Suppl. 556: 149–55

    Google Scholar 

  21. Newsholme EA, Blomstrand E, Ekblom B. Physical and mental fatigue: metabolic mechanisms and importance of plasma amino acids. Br Med Bull 1992; 48 (3): 477–95

    PubMed  CAS  Google Scholar 

  22. Baldwin KM, Cheadle WG, Martinez OM, et al. Effect of functional overload on enzyme levels in different types of skeletal muscle. J Appl Physiol 1977; 42 (2): 312–7

    PubMed  CAS  Google Scholar 

  23. Baldwin KM, Valdez RE, Herrick RE, et al. Biochemical properties of overload fast-twitch skeletal muscle. J Appl Physiol 1982; 52 (2): 467–72

    PubMed  CAS  Google Scholar 

  24. Ianuzzo CD, Chen V. Metabolic character of hypertrophied rat muscle. J Appl Physiol 1979; 46 (4): 738–42

    PubMed  CAS  Google Scholar 

  25. Michel RN, Olha AE, Gardiner PF. Influence of weight-bearing on the adaptations of rat plantaris to ablation of its synergists. J Appl Physiol 1989; 67: 636–42

    PubMed  CAS  Google Scholar 

  26. Roy RR, Meadows ID, Baldwin KM, et al. Functional significance of compensatory overloaded rat fast muscle. J Appl Physiol 1982; 52: 473–8

    PubMed  CAS  Google Scholar 

  27. St-Pierre DMM, Leonard D, Houle R, et al. Recovery of muscle from tetrodotoxin induced disuse and the influence of daily exercise. II: muscle enzymes and fatigue characteristics. Exp Neurol 1988; 101: 327–46

    Article  PubMed  CAS  Google Scholar 

  28. McDonagh MJN, Hayward CM, Davies CTM. Isometric training in human elbow flexor muscles: the effects on voluntary and electrically evoked forces. J Bone Joint Surg Br 1983; 65 (3): 355–8

    PubMed  CAS  Google Scholar 

  29. Rube N, Secher NH. Effect of training on central factors in fatigue following two and one-leg static exercise in man. Acta Physiol Scand 1990; 141: 87–95

    Article  Google Scholar 

  30. Grimby G, Bjorntorp P, Fahlen M, et al. Metabolic effects of isometric training. Scand J Clin Lab Invest 1973; 31: 301–5

    Article  PubMed  CAS  Google Scholar 

  31. Costill DL, Coyle EF, Fink WF, et al. Adaptation in skeletal muscle following strength training. J Appl Physiol 1979; 46: 96–9

    PubMed  CAS  Google Scholar 

  32. Huczel HA, Clarke DH. A comparison of strength and muscle endurance in strength-trained and untrained women. Eur J Appl Physiol 1992; 64: 467–70

    Article  CAS  Google Scholar 

  33. St-Pierre DMM, LaForest S, Paradis S, et al. Isokinetic rehabilitation after arthroscopic meniscectomy. Physiother Can 1992; 64: 437–43

    CAS  Google Scholar 

  34. McKenzie DK, Gandevia SC. Recovery from fatigue of human diaphragm and limb muscles. Respir Physiol 1991; 84: 49–60

    Article  PubMed  CAS  Google Scholar 

  35. McKenzie DK, Bigland-Ritchie B, Gorman RB, et al. Central and peripheral fatigue of human diaphragm and limb muscles assessed by twitch interpolation. J Physiol 1992; 454: 643–56

    PubMed  CAS  Google Scholar 

  36. Behm DG, St-Pierre DMM. Effects of fatigue duration and muscle type on voluntary and evoked contractile properties. J Appl Physiol 1997; 82 (5): 1654–61

    PubMed  CAS  Google Scholar 

  37. Newham DJ, McCarthy T, Turner J. Voluntary activation of human quadriceps during and after isokinetic exercise. J Appl Physiol 1991; 71 (6): 2122–6

    PubMed  CAS  Google Scholar 

  38. Bigland-Ritchie B, Furbush F, Woods JJ. Fatigue of intermittent submaximal voluntary contractions: central and peripheral factors. J Appl Physiol 1986; 61 (2): 421–9

    PubMed  CAS  Google Scholar 

  39. Merton PA. Voluntary strength and fatigue. J Physiol Lond 1954; 123: 553–64

    PubMed  CAS  Google Scholar 

  40. Vollestad NK, Bahr R, Sejersted OM, et al. Motor drive and metabolic responses during repeated submaximal contractions in humans. J Appl Physiol 1988; 64 (4): 1421–7

    PubMed  CAS  Google Scholar 

  41. Kernell D. CNS issues, the case for central fatigue: neural and neuromuscular aspects of muscle fatigue. In: Enoka RM, Gandevia SC, McComas AJ, et al. editors. Muscle Nerve 1996; 4 Suppl.: S21–3

    Google Scholar 

  42. Moritani T, de Vries HA. Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med 1979; 58 (3): 115–30

    PubMed  CAS  Google Scholar 

  43. Belanger AY, McComas AJ. Extent of motor unit activation during effort. J Appl Physiol 1981; 51 (5): 1131–5

    PubMed  CAS  Google Scholar 

  44. Bellemare F, Woods JJ, Johansson R, et al. Motor unit discharge rates in maximal voluntary contractions of three human muscles. J Neurophysiol 1983; 50 (6): 1380–92

    PubMed  CAS  Google Scholar 

  45. Gandevia SC, McKenzie DK. Activation of human muscles at short muscle lengths during maximal static efforts. J Physiol Lond 1988; 407: 599–613

    PubMed  CAS  Google Scholar 

  46. Rutherford OM, Jones DA, Newham DJ. Clinical and experimental application of the percutaneous twitch superimposition technique for the study of human muscle activation. J Neurol Neurosurg Psychiatry 1986; 49: 1288–91

    Article  PubMed  CAS  Google Scholar 

  47. Dowling JJ, Konert E, Ljucovic P, et al. Are humans able to voluntarily elicit maximum force? Neurosci Lett 1994; 179: 25–8

    Article  PubMed  CAS  Google Scholar 

  48. Lloyd AR, Gandevia SC, Hales JP. Muscle performance, voluntary activation, twitch properties and perceived effort in normal subjects and patients with the chronic fatigue syndrome. Brain 1991; 114: 85–98

    PubMed  Google Scholar 

  49. Norregard J, Bulow PM, Danneskiold-Samsoe B. Muscle strength, voluntary activation, twitch properties and endurance in patients with fibromyalgia. J Neurol Neurosurg Psychiatry 1994; 57: 1106–11

    Article  Google Scholar 

  50. Strojnic V. Muscle activation level during maximal voluntary effort. Eur J Appl Physiol 1995; 72: 144–9

    Article  Google Scholar 

  51. Allen GM, Gandevia SC, McKenzie DK. Reliability of measurements of muscle strength and voluntary activation using twitch interpolation. Muscle Nerve 1995; 18: 593–600

    Article  PubMed  CAS  Google Scholar 

  52. Garfinkel S, Cafarelli E. Relative changes in maximal force, EMG and muscle cross-sectional area after isometric training. Med Sci Sports Exerc 1992; 24 (11): 1220–7

    PubMed  CAS  Google Scholar 

  53. Jones DA, Rutherford OM. Human muscle strength training: the effects of three different regimes and the nature of the resultant changes. J Physiol 1987; 391: 1–11

    PubMed  CAS  Google Scholar 

  54. Rutherford OM, Jones DA. The role of learning and co-ordination in strength training. Eur J Appl Physiol 1986; 55: 100–5

    Article  CAS  Google Scholar 

  55. Sale DG, Martin JE, Moroz DE. Hypertrophy without increased isometric strength after weight training. Eur J Appl Physiol 1992; 64: 51–5

    Article  CAS  Google Scholar 

  56. Behm DG, St-Pierre DMM. Fatigue mechanisms in trained and untrained plantar flexors. J Strength Cond Res. In press

  57. Duchateau J, Hainaut K. Training effects of submaximal electrostimulation in a human muscle. Med Sci Sports Exerc 1988; 20 (1): 99–104

    Article  PubMed  CAS  Google Scholar 

  58. Sale DG, MacDougall JD, Upton ARM, et al. Effect of strength training upon motoneuron excitability in man. Med Sci Sports Exerc 1983; 15 (1): 57–62

    PubMed  CAS  Google Scholar 

  59. Sale DG, McComas AJ, MacDougall JD, et al. Neuromuscular adaptation in human thenar muscle following strength training and immobilization. J Appl Physiol 1982; 53: 419–24

    PubMed  CAS  Google Scholar 

  60. Sale DG, Upton ARM, McComas AJ, et al. Neuromuscular function in weight trainers. Exp Neurology 1983; 82: 521–31

    Article  CAS  Google Scholar 

  61. Upton ARM, Radford PF. Motoneuron excitability in elite sprinters. In: Komi PV, editor. Biomechanics V-A. Baltimore: University Park Press, 1975: 82–7

    Google Scholar 

  62. Casabona A, Polizzi MC, Perciavalle V. Differences in H-reflex between athletes trained for explosive contractions and nontrained subjects. Eur J Appl Physiol 1990; 61: 26–32

    Article  CAS  Google Scholar 

  63. Nielsen J, Crone C, Hultborn H. H-reflexes are smaller in dancers from the Royal Danish Ballet then in well trained athletes. Eur J Appl Physiol 1993; 66: 116–21

    Article  CAS  Google Scholar 

  64. Cracraft JD, Petajan JH. Effect of muscle training on the pattern of firing of single motor units. Am J Phys Med 1977; 56 (4): 183–94

    PubMed  CAS  Google Scholar 

  65. Kawakami M. Training effect and the electromyogram. I: spatial distribution of spike potentials. Jap J Physiol 1955; 51: 1–8

    Article  Google Scholar 

  66. Grimby L, Hannerz J, Hedman NB. The fatigue and voluntary discharge properties of single motor units in man. J Physiol Lond 1981; 316: 545–55

    PubMed  CAS  Google Scholar 

  67. Hannerz J. Discharge properties of motor units in relation to recruitment order in voluntary contraction. Acta Physiol Scand 1974; 91: 374–84

    Article  PubMed  CAS  Google Scholar 

  68. Leong B, Kamen G, Patten C, et al. Motor unit discharge rates in older weight lifters during maximum voluntary contractions. Med Sci Sports Exerc 1995; 27 Suppl.: S6

    Google Scholar 

  69. Patten C, Kamen G, Rowland D, et al. Rapid adaptations of motor unit firing rate during the initial phase of strength development. Med Sci Sports Exerc 1995; 27 Suppl.: S6

    Google Scholar 

  70. Kamen G, Sison SV, Du Duke CC, et al. Motor unit discharge behaviour in older adults during maximal effort contractions. J Appl Physiol 1995; 79 (6): 1908–13

    PubMed  CAS  Google Scholar 

  71. Macefield VG, Fuglevand AJ, Bigland-Ritchie B. Contractile properties of single motor units in human toe extensors assessed by intraneural motor axon stimulation. J Neurophysiol 1996; 75 (6): 2509–19

    PubMed  CAS  Google Scholar 

  72. Desmedt J, Godaux L. Ballistic contractions in man: characteristic recruitment pattern of single motor units of the tibialis anterior muscle. J Physiol 1977; 264: 673–93

    PubMed  CAS  Google Scholar 

  73. Kukulka CG, Clamann HP. Comparison of the recruitment and discharge properties of motor units in human brachial bices and adductor pollicis during isometric contractions. Brain Res 1981; 219: 45–55

    Article  PubMed  CAS  Google Scholar 

  74. Person RS, Kudina LP. Discharge frequency and discharge pattern of human motor units during voluntary contraction of muscle. Electroencephalogr Clin Neurophys 1972; 32: 471–83

    Article  CAS  Google Scholar 

  75. Bigland-Ritchie B, Cafarelli E, Vollestad NK. Fatigue of submaximal contractions. Acta Physiol Scand 1986; 128 Suppl. 556: 137–48

    Google Scholar 

  76. Krogh-Lund C. Myo-electric fatigue and force failure from submaximal static elbow flexion sustained to exhaustion. Eur J Appl Physiol 1993; 67: 389–401

    Article  CAS  Google Scholar 

  77. Loscher WN, Cresswell AG, Thorstensson A. Electromyographic responses of the human triceps surae and force tremor during sustained submaximal isometric plantar flexion. Acta Physiol Scand 1994; 152: 73–82

    Article  PubMed  CAS  Google Scholar 

  78. Maton B, Gamet D. The fatiguability of two agonistic muscles in human isometric voluntary submaximal contraction: an EMG study. II: motor unit firing rate and recruitment. Eur J Appl Physiol 1989; 58: 369–74

    Article  CAS  Google Scholar 

  79. Moritani T, Nagata A, Muro M. Electromyographic manifestations of muscular fatigue. Med Sci Sports Exerc 1982; 14 (3): 198–202

    PubMed  CAS  Google Scholar 

  80. Vitasallo JT, Komi PV. Signal characteristics of EMG during fatigue. Eur J Appl Physiol 1977; 37: 111–21

    Article  Google Scholar 

  81. Dolmage T, Cafarelli E. Rate of fatigue during repeated submaximal contractions of human quadriceps muscle. Can J Physiol Pharmacol 1991; 69: 1410–5

    Article  PubMed  CAS  Google Scholar 

  82. Duchateau J, Hainaut K. Behaviour of short and long latency reflexes in fatigued human muscles. J Physiol Lond 1993; 471: 787–99

    PubMed  CAS  Google Scholar 

  83. Petrofsky JS, Philips CA. Discharge characteristics of motor units and the surface EMG during fatiguing isometric contractions at submaximal tensions. Aviat Space Environ Med 1985; 56: 581–6

    PubMed  CAS  Google Scholar 

  84. Bigland-Ritchie B, Johansson R, Lippold OCJ, et al. Contractile speed and EMG changes during fatigue of sustained maximal voluntary contractions. J Neurophysiol 1983; 50 (1): 313–24

    PubMed  CAS  Google Scholar 

  85. Krogh-Lund C, Jorgensen K. Changes in the conduction velocity, median frequency, and root mean square-amplitude of the electromyogram during 25% maximal voluntary contraction of the triceps brachii muscle, to limit of endurance. Eur J Appl Physiol 1991; 63: 60–90

    Article  CAS  Google Scholar 

  86. Moritani T, Muro M, Nagata A. Intramuscular and surface electromyogram changes during muscle fatigue. J Appl Physiol 1986; 60 (4): 1179–85

    PubMed  CAS  Google Scholar 

  87. Stephens JA, Taylor A. Fatigue of maintained voluntary muscle contraction in man. J Physiol Lond 1972; 220: 1–18

    PubMed  CAS  Google Scholar 

  88. Nilsson J, Tesch P, Thortensson A. Fatigue and EMG of repeated fast voluntary contractions in man. Acta Physiol Scand 1977; 101: 194–8

    Article  PubMed  CAS  Google Scholar 

  89. Garland SJ, Garner SH, McComas AJ. Reduced voluntary electromyographic activity after fatiguing stimulation of human muscle. J Physiol Lond 1988; 401: 547–56

    PubMed  CAS  Google Scholar 

  90. Davies CTM, McGrath K. Effects of training and chronic tetanic (40 Hz.) stimulation on voluntary and electrically evoked contractions of the triceps surae in a human subject. J Physiol 1982; 336 Suppl.: 22–3P

    Google Scholar 

  91. Thepaut-Mathieu C, Van Hoecke J, Maton B. Myoelectrical and mechanical changes linked to length specificity during isometric training. J Appl Physiol 1988; 64 (4): 1500–5

    PubMed  CAS  Google Scholar 

  92. Hakkinen K, Alen M, Komi PV. Changes in the isometric force relaxation time electromyographic and muscle fibre characteristics of human skeletal muscle during strength training and detraining. Acta Physiol Scand 1985; 125: 573–85

    Article  PubMed  CAS  Google Scholar 

  93. Hakkinen K, Komi PV. Training induced changes in neuromuscular performance under voluntary and reflex conditions. Eur J Appl Physiol 1986; 55: 147–55

    Article  CAS  Google Scholar 

  94. Hakkinen K, Komi PV. Electromyographic changes during strength training and detraining. Med Sci Sports Exerc 1983; 15 (6): 455–60

    PubMed  CAS  Google Scholar 

  95. Narici MV, Roi GS, Landoni AE, et al. Changes in force, crosssectional area, and neural activation during strength training and detraining of the human quadriceps. Eur J Appl Physiol 1989; 59: 310–9

    Article  CAS  Google Scholar 

  96. Hakkinen K, Komi PV. Effect of explosive type strength training on electromyographic and force production characteristics of leg extensor muscles during concentric and various stretch shortening cycle exercises. Scand J Sports Med 1985; 7 (2): 65–76

    Google Scholar 

  97. Hakkinen K, Komi PV, Alen M. Effect of explosive type strength training on isometric force and relaxation time electromyographic and muscle fibre characteristics of leg extensor muscles. Acta Physiol Scand 1985; 125: 587–600

    Article  PubMed  CAS  Google Scholar 

  98. Johansson C, Gerdle B. Mechanical output and EMG of single and repeated isokinetic plantar flexions: a study of untrained and endurance trained women. Int J Sports Med 1988; 9: 330–3

    Article  PubMed  CAS  Google Scholar 

  99. Lorentzon R, Johansson C, Fugl-Meyer AR. Fatigue during dynamic contractions in sprinters and marathon runners. Acta Physiol Scand 1988; 132: 531–6

    Article  PubMed  CAS  Google Scholar 

  100. Cannon RJ, Cafarelli. Neuromuscular adaptations to training. J Appl Physiol 1987; 63 (6): 2396–402

    PubMed  CAS  Google Scholar 

  101. Komi PV, Buskirk ER. Effect of eccentric and concentric muscle conditioning on tension and electrical activity of human muscle. Ergonomics 1972; 15 (4): 417–34

    Article  PubMed  CAS  Google Scholar 

  102. Thorstensson A, Karlsson J, Vitisalo JHT, et al. Effect of strength training on EMG of human skeletal muscle. Acta Physiol Scand 1976; 98: 232–6

    Article  PubMed  CAS  Google Scholar 

  103. Behm DG, Sale DG. Velocity specificity is determined by intended rather than actual contraction velocity. J Appl Physiol 1993; 74 (1): 359–68

    Article  PubMed  CAS  Google Scholar 

  104. MacDougall JD, Sale DG, Moroz JR, et al. Mitochondrial volume in human skeletal muscle following heavy resistance training. Med Sci Sports Exerc 1979; 11: 164–6

    CAS  Google Scholar 

  105. Deschenes MR, Maresh CM, Crivello JF, et al. The effects of exercise training of different intensities on neuromuscular junction morphology. J Neurocytol 1993; 22: 603–15

    Article  PubMed  CAS  Google Scholar 

  106. Waerhaug O, Dahl HA, Kardel K. Different effects of physical training on the morphology of motor nerve terminals in the rat extensor digitorum longus and soleus muscles. Anat Embryol (Berl) 1992; 186: 125–8

    Article  CAS  Google Scholar 

  107. Jasmin BJ, Gisiger V. Regulation by exercise of the pool of G4 acetylcholinesterase characterizing fast muscles: opposite effect of running training in antagonist muscles. J Neurosci 1990; 10 (5): 1444–54

    PubMed  CAS  Google Scholar 

  108. Dorlochter M, Irintchev A, Brinkers M, et al. Effects of enhanced activity on synaptic transmission in mouse extensor digitorum longus muscle. J Physiol 1991; 436: 283–92

    PubMed  CAS  Google Scholar 

  109. Diamond I, Franklin GM, Milfay D. The relationship of choline acetyltransferase activity at the neuromuscular junction to changes in muscle mass and function. J Physiol 1974; 236: 247–57

    PubMed  CAS  Google Scholar 

  110. Bellemare F, Garzanti T. Failure of neuromuscular propagation during human maximal voluntary contraction. J Appl Physiol 1988; 64 (3): 1084–93

    PubMed  CAS  Google Scholar 

  111. Miller RG, Giannini D, Milner-Brown HS, et al. Effects of fatiguing exercise on high energy phosphates, force and EMG: evidence for three phases of recovery. Muscle Nerve 1987; 10: 810–21

    Article  PubMed  CAS  Google Scholar 

  112. Milner-Brown HS, Miller RG. Muscle membrane excitation and impulse propagation velocity are reduced during muscle fatigue. Muscle Nerve 1986; 9: 367–74

    Article  PubMed  CAS  Google Scholar 

  113. Pagala MKD, Namba T, Grob D. Failure of neuromuscular transmission and contractility during muscle fatigue. Muscle Nerve 1984; 7: 454–64

    Article  PubMed  CAS  Google Scholar 

  114. Fuglevand AJ, Zackowski KM, Huey KA, et al. Impairment of neuromuscular propagation during human fatiguing contractions at submaximal forces. J Physiol 1993; 460: 549–72

    PubMed  CAS  Google Scholar 

  115. Moritani T, Muro M, Kijima A. Electromechanical changes during electrically induced and maximal voluntary contractions: electrophysiologic responses of different muscle fibre types during stimulating contractions. Exp Neurol 1985; 88: 471–83

    Article  PubMed  CAS  Google Scholar 

  116. Bigland-Ritchie B, Jones DA, Woods JJ. Excitation frequency and muscle fatigue: electrical responses during human voluntary and stimulated contractions. Exp Neurol 1979; 64: 414–27

    Article  PubMed  CAS  Google Scholar 

  117. Westerblad H. Fatigue of single muscle fibres: neural and neuromuscular aspects of muscle fatigue. In: Enoka RM, Gandevia SC, McComas AJ, et al. editors. Muscle Nerve 1996; 4 Suppl.: S2–5

    Google Scholar 

  118. Duchateau J, Hainaut K. Isometric or dynamic training: differential effects on mechanical properties of a human muscle. J Appl Physiol 1984; 56 (2): 296–301

    PubMed  CAS  Google Scholar 

  119. Moss RF, Raven PB, Knochel JP, et al. The efect of training on resting muscle membrane potentials. Int Ser Sports Sci 1983; 13: 806–11

    Google Scholar 

  120. Hicks AL, Cupido CM, Martin J, et al. Muscle excitation in elderly adults: the effects of training. Muscle nerve 1992; 15: 87–93

    Article  PubMed  CAS  Google Scholar 

  121. McKenna MJ, Harmer AR, Fraser SF, et al. Effects of training on potassium, calcium and hydrogen ion regulation in skeletal muscle and blood during exercise. Acta Physiol Scand 1996; 156: 335–46

    Article  PubMed  CAS  Google Scholar 

  122. Edman KAP. Myofibrillar fatigue versus failure of activation: fatigue: neural and muscular mechanisms In: Gandevia SC, editor. Advances in experimental medicine and biology. Vol. 384. New York: Plenum Press 1994: 29–44

    Google Scholar 

  123. Kjeldsen K, EA Richter, Galbo H, et al. Training increases the concentration of [3 H] ouabain-binding sites in rat skeletal muscle. Biochem Biophys Acta 1986; 860: 708–12

    Article  PubMed  CAS  Google Scholar 

  124. Klitgaard H, Clausen T. Increased total concentration of Na-K pumps in vastus lateralis muscle of old trained human subjects. J Appl Physiol 1989; 67: 2491–4

    PubMed  CAS  Google Scholar 

  125. Grange RW, Houston ME. Simultaneous potentiation and fatigue in quadriceps after a 60-second maximal voluntary isometric contraction. J Appl Physiol 1991; 70 (2): 726–31

    PubMed  CAS  Google Scholar 

  126. Houston ME, Grange RW. Myosin phosphorylation, twitch potentiation and fatigue in human skeletal muscle. Can J Physiol Pharmacol 1990; 68: 908–13

    Article  PubMed  CAS  Google Scholar 

  127. Small SC, Stokes MJ. Stimulation frequency and force potentiation in the human adductor pollicis muscle. Eur J Appl Physiol 1992; 65: 229–33

    Article  CAS  Google Scholar 

  128. Polkey MI, Kyroussis D, Hamnegard CH, et al. Quadriceps strength and fatigue assessed by magnetic stimulation of the femoral nerve in man. Muscle Nerve 1996; 19: 549–55

    Article  PubMed  CAS  Google Scholar 

  129. Edwards RHT, Hill DK, Jones DA, et al. Fatigue of long duration in human skeletal muscle after exercise. J Physiol Lond 1977; 272: 769–78

    PubMed  CAS  Google Scholar 

  130. Williams JH, Klug GA. Calcium exchange hypothesis of skeletal muscle fatigue: a brief review. Muscle Nerve 1995; 18: 421–34

    Article  PubMed  CAS  Google Scholar 

  131. Freeman PL, Luff AR. Contractile properties of hindlimb muscles in rat during surgical overload. Am J Physiol 1982; 242: C259–64

    PubMed  CAS  Google Scholar 

  132. Gonyea WJ, Bonde-Petersen F. Alterations in muscle contractile properties and fiber composition after weight-lifting exercise in cats. Exp Neurol 1978; 59: 75–84

    Article  PubMed  CAS  Google Scholar 

  133. Alway SE, MacDougall JD, Sale DG. Contractile adaptations in the human triceps surae after isometric exercise. J Appl Physiol 1989; 66: 2725–32

    PubMed  CAS  Google Scholar 

  134. Alway SE, Sale DG, MacDougall JD. Twitch contractile adaptations are not dependent on the intensity of isometric exercise in the human triceps surae. Eur J Appl Physiol 1990; 67: 435–42

    Google Scholar 

  135. Alway SE, MacDougall JD, Sale DG, et al. Functional and structural adaptations in skeletal muscle of trained athletes. J Appl Physiol 1988; 64: 1114–20

    PubMed  CAS  Google Scholar 

  136. Kandarian SC, Peters DG, Taylor JA, et al. Skeletal muscle overload upregulates the sarcoplasmic reticulum slow calcium pump gene. Am J Physiol 1994; 266: 1190–7

    Google Scholar 

  137. Ikai M, Fukunaga T. Calculation of muscle strength per unit cross-sectional area of human muscle by means of ultrasonic measurement. Int Z Angew Physiol 1968; 26: 26–32

    PubMed  CAS  Google Scholar 

  138. Maughan RJ, Watson JS, Weir J. Strength and cross-sectional area of human skeletal muscle. J Physiol 1983; 338: 37–49

    PubMed  CAS  Google Scholar 

  139. Houston ME, Froese EA, Valeriote St P, et al. Muscle performance, morphology and metabolic capacity during strength training and detraining: a one leg model. Eur J Appl Physiol 1983; 51: 25–35

    Article  CAS  Google Scholar 

  140. MacDougall JD, Elder GCB, Sale DG, et al. Effects of strength training and immobilization on human muscle fibres. Eur J Appl Physiol 1980; 43: 23–34

    Article  Google Scholar 

  141. Thorstensson A, Hulten B, Von Doblem W, et al. Effect of strength training on enzyme activities and fibre characteristics in human skeletal muscle. Acta Physiol Scand 1976; 96: 392–8

    Article  PubMed  CAS  Google Scholar 

  142. Booth FW, Thomason DB. Molecular and cellular adaptation of muscle in response to exercise: perspectives of various models. Physiol Rev 1991; 71 (2): 541–85

    PubMed  CAS  Google Scholar 

  143. Goldberg AL, Etlinger JD, Goldspink DF, et al. Mechanism of work induced hypertrophy of skeletal muscle. Med Sci Sports Exerc 1975; 7 (4): 248–61

    CAS  Google Scholar 

  144. Holloszy JO, Coyle EF. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol 1984; 56 (4): 831–8

    PubMed  CAS  Google Scholar 

  145. Dudley GA, Djamil R. Incompatibility of endurance and strength training modes of exercise. J Appl Physiol 1985; 59 (5): 1445–51

    Google Scholar 

  146. Moroz DE, Houston ME. The effects of replacing endurance run training with cycling in female runners. Can J Sport Sci 1987; 12: 131–5

    Google Scholar 

  147. Ono M, Miyashita M, Asami T. Inhibitory effect of long distance running training on the vertical jump and other performances among aged males. In: Komi PV, editor. Biomechanics V-B. Baltimore: University Park Press, 1976: 94–100

    Google Scholar 

  148. Abernethy PJ, Quigley BM. Concurrent strength and endurance training of the elbow extensors. J Strength Cond Res 1993; 7 (4): 234–40

    Google Scholar 

  149. Hennessy LC, Watson AWS. The interference effects of training for strength and endurance simultaneously. J Strength Cond Res 1994; 8 (1): 12–9

    Google Scholar 

  150. McCarthy JP, Agre JC, Graf BK, et al. Compatibility of adaptive responses with combining strength and endurance training. Med Sci Sports Exerc 1995; 27 (3): 429–36

    PubMed  CAS  Google Scholar 

  151. Nelson AG, Arnall DA, Loy SF, et al. Consequences of combining strength and endurance training regimens. Phys Ther 1990; 70 (5): 287–99

    PubMed  CAS  Google Scholar 

  152. MacDougall JD, Sale DG, Elder GCB, et al. Muscle ultrastructural characteristics of elite powerlifters and bodybuilders. Eur J Appl Physiol 1982; 48: 117–26

    Article  CAS  Google Scholar 

  153. Gonyea WJ, Sale DG, Gonyea FB, et al. Exercise induced increases in muscle fibre number. Eur J Appl Physiol 1986; 55: 137–41

    Article  CAS  Google Scholar 

  154. Klausen K, Anderson LB, Pelle I. Adaptive changes in work capacity, skeletal muscle capillarization, and enzyme levels during training and detraining. Acta Physiol Scand 1981; 113: 9–16

    Article  PubMed  CAS  Google Scholar 

  155. Terrados N, Melichna J, Sylven C, et al. Decrease in skeletal muscle myoglobin with intensive training in man. Acta Physiol Scand 1986; 128: 651–2

    Article  PubMed  CAS  Google Scholar 

  156. Carolan B, Cafarelli E. Adaptations in co-activation in response to isometric training. J Appl Physiol 1992; 73: 911–7

    PubMed  CAS  Google Scholar 

  157. Baratta R, Solomonow M, Zhou B, et al. Muscular coactivation: the role of the antagonist musculature in maintaining knee stability. Am J Sports Med 1988; 16 (2): 113–22

    Article  PubMed  CAS  Google Scholar 

  158. Osternig L, Hamill J, Lander J, et al. Co-activation of sprinter and distance runner muscles in isokinetic exercise. Med Sci Sports Exerc 1986; 18 (4): 431–5

    PubMed  CAS  Google Scholar 

  159. Osternig LR, Robertson RN, Troxel RK, et al. Differential responses to proprioceptive neuromuscular facilitation (PNF) stretch techniques. Med Sci Sports Exerc 1990; 22 (1): 106–11

    PubMed  CAS  Google Scholar 

  160. Urbancova H, Hnik P, Vejsada R. Bone fracture induces reflex muscle atrophy which is sex dependent. Physiol Res 1993; 42 (1): 35–40

    PubMed  CAS  Google Scholar 

  161. Berg HE, Dudley GA, Haggmark T, et al. Effects of lower limb unloading on skeletal muscle mass and function in humans. J Appl Physiol 1991; 70 (4): 1882–5

    PubMed  CAS  Google Scholar 

  162. Veldhuizen JW, Verstappen FT, Vroemen JP, et al. Functional and morphological adaptations following four weeks of knee immobilization. Int J Sports Med 1993; 14 (5): 283–7

    Article  PubMed  CAS  Google Scholar 

  163. White MJ, Davies CTM, Brooksby P. The effects of short-term voluntary immobilization on the contractile properties of the human triceps surae. J Gen Physiol 1984; 69: 685–91

    CAS  Google Scholar 

  164. Yue GH, Bilodeau M, Hardy PA, et al. Task dependent effect of limb immobilization on the fatigability of the elbow flexor muscles in humans. Exp Physiol 1997; 82: 567–92

    PubMed  CAS  Google Scholar 

  165. Ingemmann-Hansen T, Halkjaer-Kristensen J. Progressive resistance exercise training of the hypotrophic quadriceps muscle in man: the effects of morphology, size and function as well as the influence of the duration of effort. Scand J Rehabil Med 1983; 15: 29–35

    Google Scholar 

  166. Halkjaer-Kristensen J, Ingemann-Hansen T. Wasting of the human quadriceps muscle af ter knee ligament injuries. IV: dynamic and static muscle function. Scand J Rehabil Med 1985; 13 Suppl.: 29–37

    Google Scholar 

  167. Duchateau J, Hainaut K. Electrical and mechanical changes in immobilized human muscle. J Appl Physiol 1987; 62: 2168–73

    PubMed  CAS  Google Scholar 

  168. Behm DG, St-Pierre DMM. Fatigue characteristics following ankle fractures. Med Sci Sports Exerc 1997; 29 (9): 1115–23

    Article  PubMed  CAS  Google Scholar 

  169. Gardiner PF, Favron M, Corriveau P. Histochemical and contractile responses of rat medial gastrocnemius to 2 weeks of complete disuse. Can J Physiol 1991; 70: 1075–81

    Article  Google Scholar 

  170. St-Pierre D, Gardiner PF. Effect of disuse on mammalian fasttwitch muscle: joint fixation compared with neurally applied tetrodotoxin. Exp Neurol 1985; 90: 635–51

    Article  PubMed  CAS  Google Scholar 

  171. Jokl P, Konstadt S. The effect of limb immobilization on muscle function and protein composition. Clin Orthop Res 1983; 174: 222–9

    CAS  Google Scholar 

  172. Witzmann FA, Kim DH, Fitts RH. Effect of hindlimb immobilization on the fatiguability of skeletal muscle. J Appl Physiol 1983; 54 (5): 1242–8

    PubMed  CAS  Google Scholar 

  173. Robinson GA, Enoka RM, Stuart DG. Immobilization-induced changes in motor unit force and fatiguability in the cat. Muscle Nerve 1991; 14: 563–73

    Article  PubMed  CAS  Google Scholar 

  174. Fell RD, Gladden LB, Steffen JM, et al. Fatigue and contraction of slow and fast muscles in hypokinetic/hypodynamic rats. J Appl Physiol 1985; 58 (1): 65–9

    Article  PubMed  CAS  Google Scholar 

  175. Hurley MV, Jones DW, Newham DJ. Arthrogenic quadriceps inhibition and rehabilitation of patients with extensive traumatic knee injuries. Clin Sci 1994; 86: 305–10

    PubMed  CAS  Google Scholar 

  176. Duchateau J, Hainaut K. Effects of immobilization on contractile properties, recruitment and firing rates of human motor units. J Physiol Lond 1990; 422: 55–65

    PubMed  CAS  Google Scholar 

  177. Fudema JJ, Fizzell JA, Nelson EM. Electromyography of experimentally immobilized skeletal muscle in cats. Am J Physiol 1961; 200: 963–7

    PubMed  CAS  Google Scholar 

  178. Marsden CD, Obeso JA, Rothwell JC. The function of the antagonist muscle during fast limb movements in man. J Physiol Lond 1983; 335: 1–13

    PubMed  CAS  Google Scholar 

  179. Woods JJ, Furbush F, Bigland-Ritchie B. Evidence for a fatigue induced reflex inhibition of motoneuron firing rates. J Neurophys 1987; 58 (1): 125–37

    CAS  Google Scholar 

  180. Edgerton VR, Barnard RJ, Peter JB, et al. Properties of immobilized hindlimb muscles of the galago senegalensis. Exp Neurol 1975; 46: 115–31

    Article  PubMed  CAS  Google Scholar 

  181. Fishback GD, Robbins N. Changes in contractile properties of disused soleus muscles. J Physiol Lond 1969; 201: 305–20

    Google Scholar 

  182. Hnik P, Vejsada R, Goldspink DF, et al. Quantitative evaluation of electromyogram activity in rat extensor and flexor muscles immobilized at different lengths. Exp Neurol 1985; 88: 515–28

    Article  PubMed  CAS  Google Scholar 

  183. Fuglsang-Frederiksen A, Scheel V. Transient decrease in number of motor units after immobilization in man. J Neurol Neurosurg Psychiatry 1978; 41: 924–9

    Article  PubMed  CAS  Google Scholar 

  184. Santavirta S. Integrated electromyography of the vastus medialis muscle after meniscectomy. Am J Sports Med 1979; 7: 40–2

    Article  PubMed  CAS  Google Scholar 

  185. deLuca CJ. Physiol and mathematics of myoelectric signals. Trans Biomed Eng 1979; 26 (6): 313–25

    Article  CAS  Google Scholar 

  186. de Vries HA. Efficiency of electrical activity as a physiological measure of the functional state of muscle tissue. Am J Phys Med 1968; 47 (1): 10–22

    Google Scholar 

  187. Perry J, Bekey GA. EMG-Force relationships in skeletal muscle. CRC Crit Rev Biomed Eng 1981; 24: 1–21

    Google Scholar 

  188. Reiser PJ, Stokes BT, Walters PJ. Effects of immobilization on the isometric contractile properties of embryonic avian skeletal muscle. Exp Neurol 1988; 99: 59–72

    Article  PubMed  CAS  Google Scholar 

  189. Fitts RH, Brimmer CJ. Recovery in skeletal muscle contractile function after prolonged hindlimb immobilization. J Appl Physiol 1985; 59: 916–23

    PubMed  CAS  Google Scholar 

  190. Simard CP, Spector SA, Edgerton VR. Contractile properties of rat hindlimb muscles immobilized at different lengths. Exp Neurol 1982; 77: 467–82

    Article  PubMed  CAS  Google Scholar 

  191. Witzmann FA, Kim DH, Fitts RH. Hindlimb immobilization: length-tension and contractile properties of skeletal muscle. J Appl Physiol 1982; 53 (2): 335–45

    PubMed  CAS  Google Scholar 

  192. Witzmann FA, Kim DH, Fitts RH. Recovery time course in contractile function of fast and slow skeletal muscle after hindlimb immobilization. J Appl Physiol 1982; 52: 677–82

    PubMed  CAS  Google Scholar 

  193. Davies CTM, Rutherford IC, Thomas DO. Electrically evoked contractions of the triceps surae during and following 21 days of voluntary leg immobilization. Eur J Appl Physiol 1987; 56: 306–12

    Article  CAS  Google Scholar 

  194. Kim DH, Witzmann FA, Fitts RH. Effect of disuse on the sarcoplasmic reticulum in fast and slow skeletal muscle. Am J Physiol 1982; 243: C156–60

    PubMed  CAS  Google Scholar 

  195. Schulte LM, Navarro J, Kandarian SC. Regulation of sarcoplasmic reticulum calcium pump gene expression by hindlimb unweighting. Am J Physiol 1993; 33: C1308–15

    Google Scholar 

  196. Booth FW, Linderman JK, Kirby CR. Molecular mechanisms of muscle disuse atrophy (and strategies of prevention). In: Sate et al. editors. Integration of medical and sport sciences. Basel: Karger 1992: 142–9

    Google Scholar 

  197. Dubois DC, Almon RR. Disuse atrophy of skeletal muscle is associated with an increased number of glucocorticoid receptors. Endocrinology 1982; 107: 1732–6

    Google Scholar 

  198. Max SR, Mayer RF, Vogelsang L. Lysosomes and disuse atrophy of skeletal muscle. Arch Biochem Biophys 1971; 146: 227–32

    Article  PubMed  CAS  Google Scholar 

  199. Witzmann FA, Troup JP, Fitts RH. Acid phosphatase and protease activities in immobilized rat skeletal muscles. Can J Physiol Pharmacol 1982; 60: 1732–6

    Article  PubMed  CAS  Google Scholar 

  200. Thomason DB, Morrison PR, Oganov V, et al. Altered actin and myosin expression in muscle during exposure to microgravity. J Appl Physiol 1992; 73 (2): 90–3S

    Google Scholar 

  201. Gardiner PF, Lapointe MA. Daily in-vivo neuromuscular stimulation effects on immobilized rat hindlimb muscles. J Appl Physiol 1982; 53: 960–6

    PubMed  CAS  Google Scholar 

  202. Summers TB, Hines HM. Effect of immobilization in various positions upon the weight and strength of skeletal muscle. Arch Phys Med 1951; 32: 142–5

    PubMed  CAS  Google Scholar 

  203. Maier A, Eldred E, Edgerton VR. The effects on spindles of muscle atrophy and hypertrophy. Exp Neurology 1972; 37: 100–23

    Article  CAS  Google Scholar 

  204. Baker JH, Matsumoto DE. Adaptation of skeletal muscle to immobilization in a shortened position. Muscle Nerve 1988; 11: 231–44

    Article  PubMed  CAS  Google Scholar 

  205. Booth FW. Time course of muscular atrophy during immobilization of hindlimbs in rats. J Appl Physiol 1977; 43 (4): 656–61

    PubMed  CAS  Google Scholar 

  206. Haggmark T, Jansson E, Eriksson E. Fibre type area and metabolic potential of the thigh muscle in man after knee surgery and immobilization. Int J Sports Med 1981; 2: 12–7

    Article  PubMed  CAS  Google Scholar 

  207. Rifenberick DH, Max SR. Substrate utilization by disused rat skeletal muscles. Am J Physiol 1974; 226 (2): 295–7

    PubMed  CAS  Google Scholar 

  208. Stump CS, Overton JM, Tipton CM. Influence of single hindlimb support during simulated weightlessness in the rat. J Appl Physiol 1990; 68 (2): 627–34

    Article  PubMed  CAS  Google Scholar 

  209. Graham SC, Roy RR, Hauschka EO, et al. Effects of periodic weight support on medial gastrocnemius fibres of suspended rats. J Appl Physiol 1989; 67 (3): 945–53

    PubMed  CAS  Google Scholar 

  210. Musacchia XJ, Steffen JM, Fell RD, et al. Skeletal muscle atrophy in response to 14 days of weightlessness: vastus medialis. J Appl Physiol 1992; 73 (2): 44–50S

    Google Scholar 

  211. Ohira Y, Jiang B, Roy RR, et al. Rat soleus muscle fibre response to 14 days of spaceflight and hindlimb suspension. J Appl Physiol 1992; 73 (2): 51–7S

    Google Scholar 

  212. Virtanen P, Vaananen HK, Pasanen L, et al. Effect of immobilization on carbonic anhydrase III and myoglobin content in human leg muscle. Acta Physiol Scand 1991; 142: 303–6

    Article  PubMed  CAS  Google Scholar 

  213. Krieger DA, Tate CA, McMillan-Wood J, et al. Populations of rat skeletal muscle mitochondria after exercise and immobilization. J Appl Physiol 1980; 48 (1): 23–8

    PubMed  CAS  Google Scholar 

  214. Chi MMY, Choksi R, Nemeth P, et al. Effects of microgravity and tail suspension on enzymes of individual soleus and tibialis anterior fibres. J Appl Physiol 1992; 73 (2): 66–73S

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behm, D.G., St-Pierre, D.M.M. The Effects of Strength Training and Disuse on the Mechanisms of Fatigue. Sports Med. 25, 173–189 (1998). https://doi.org/10.2165/00007256-199825030-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199825030-00004

Keywords

Navigation