Skip to main content
Log in

The Utility of Isokinetic Dynamometry in the Assessment of Human Muscle Function

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Summary

Isokinetic dynamometry has become a favoured method for the assessment of dynamic muscle function in both clinical research and sports environments. Several indices, such as peak torque, are used in the literature to characterise individual, group or larger population performance via these sophisticated data acquisition systems.

Research suggests that there are several competing demands on the design of the measurement protocol which may affect the measurement of isokinetic strength and subsequent suitability of data for meaningful evaluation and interpretation. There is a need to increase measurement rigour, reliability and sensitivity to a level which is commensurate with the intended application, via more elaborate multiple-trial protocols. However, this may be confounded by logistical and financial constraints or reduced individual compliance. The net effect of the interaction of such demands may be considered to be the utility of the isokinetic dynamometry protocol.

Of the factors which impinge on utility, those which relate to reliability afford the most control by the test administrator. Research data suggest that in many measurement applications, the reliability and sensitivity associated with all frequently-used indices of isokinetic leg strength which are estimated via single-trial protocols, are not sufficient to differentiate either performance change within the same individual or between individuals within a homogeneous group. While such limitations may be addressed by the use of protocols based on 3 to 4 inter-day trials for the index of peak torque, other indices which demonstrate reduced reliability, for example the composite index of the ratio of knee flexion to extension peak torque, may require many more replicates to achieve the same level of sensitivity. Here, the measurement utility of the index may not be sufficient to justify its proper deployment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Knuttgen HG, Kraemer WJ. Terminology and measurement in exercise performance. J Appl Sports Sci Res 1987; 1: 1–10

    Google Scholar 

  2. Bouchard C, Shephard RJ, Stephens T, editors. Physical activity, fitness, and health: consensus statement. Champaign (IL): Human Kinetics, 1993

    Google Scholar 

  3. Abernethy PJ, Jürimäe J, Logan PA, et al. Acute and chronic response of skeletal muscle to resistance exercise. Sports Med 1994; 17: 22–38

    Article  PubMed  CAS  Google Scholar 

  4. Cabri JMH. Isokinetic strength aspects of human joints and muscles. Crit Rev Biomed Eng 1991; 19: 231–59

    PubMed  CAS  Google Scholar 

  5. Hislop HJ, Perrine JJ. The isokinetic concept of exercise. Phys Ther 1967; 47: 114–7

    PubMed  CAS  Google Scholar 

  6. Perrine JJ. Isokinetic exercise process and apparatus (3.465 and 592). U.S. Patent Office, 1969

  7. Thistle HG, Hislop HJ, Moffroid M, et al. Isokinetic contraction: a new concept in resistive exercise. Arch Phys Med Rehab 1967; 48: 279–82

    CAS  Google Scholar 

  8. Gleeson NP, Mercer TH. Effect of a fatigue task on absolute and relativised indices of isokinetic leg strength in female collegiate soccer players. In: Reilly T, et al., editors. Science and football III. London: E & FN Spon. In press

  9. Gransberg L, Knutsson E. Determination of dynamic muscle strength in man with acceleration controlled isokinetic movements. Acta Physiol Scand 1983; 119: 317–20

    Article  PubMed  CAS  Google Scholar 

  10. Westing SH, Cresswell AG, Thorstensson A. Muscle activation during maximal voluntary eccentric and concentric knee extension. Eur J Appl Physiol 1991; 62: 104–8

    Article  CAS  Google Scholar 

  11. Perrine JJ, Edgerton VJ. Muscle force-velocity and power-velocity relationships under isokinetic loading. Med Sci Sports 1978: 10(3): 159–66

    PubMed  CAS  Google Scholar 

  12. Marshall RN, Mazur SM, Taylor NAS. Three-dimensional surfaces for human muscle kinetics. Eur J Appl Physiol 1990; 61: 263–70

    Article  CAS  Google Scholar 

  13. Coyle EF, Costill DL, Lesmes GR. Leg extension power and muscle fiber composition. Med Sci Sports 1979; 11 1: 12–15

    PubMed  CAS  Google Scholar 

  14. Thorstensson A, Grimby G, Karlsson J. Force-velocity relations and fiber composition in human knee extensor muscles. J Appl Physiol 1976; 40: 12–16

    PubMed  CAS  Google Scholar 

  15. Kanehisa H, Miyashita M. Specificity of velocity in strength training. Eur J Appl Physiol 1983; 52: 104–6

    Article  CAS  Google Scholar 

  16. Farrar M, Thorland W. Relationship between isokinetic strength and sprint times in college-age men. J Sports Med Phys Fitness 1987; 27 3: 368–72

    PubMed  CAS  Google Scholar 

  17. Narici MV, Roi GS, Landoni L, et al. Changes in force, cross-sectional area and neural activation during strength training and detraining of the human quadriceps. European J Appl Physiol 1989; 59: 310–9

    Article  CAS  Google Scholar 

  18. Caiozzo VJ, Perrine JJ, Edgerton VR. Training-induced alterations of the in vivo force-velocity relationship of human muscle. J Appl Physiol 1981; 51 3: 750–4

    PubMed  CAS  Google Scholar 

  19. Gregor RJ, Edgerton VR, Perrine JJ, et al. Torque-velocity relationships and muscle fiber composition in elite female athletes. J Appl Physiol 1979; 2: 388–92

    Google Scholar 

  20. Imwold CH, Rider RA, Haymes EM, et al. Isokinetic torque differences between college female varsity basketball and track athletes. J Sports Med 1983; 23: 67–73

    CAS  Google Scholar 

  21. Barnes W. Selected physiological characteristics of elite male sprint athletes. J Sports Med 1981; 21: 49–54

    CAS  Google Scholar 

  22. Gleeson NP, Mercer TH. Reproducibility and sensitivity of indices of isokinetic leg strength in male sprinters and distance runners. J Sports Sci 1992; 10 5: 594–5

    Google Scholar 

  23. McGorry R. Active dynamometry in quantitative evaluation and rehabilitation of musculoskeletal dysfunction. Assist Technol 1989; 1: 91–9

    Article  Google Scholar 

  24. Schmidtbleicher D. Training for power events. In: Komi PV, editor. Strength and power in sport. Oxford (UK): Blackwell Scientific: 1992, 381–95

    Google Scholar 

  25. Osternig LR. Isokinetic dynamometry: implications for muscle testing and rehabilitation. Exerc Sport Sci Rev 1986; 14: 45–80

    Article  PubMed  CAS  Google Scholar 

  26. Baltzopoulos V, Brodie DA. Isokinetic dynamometry: applications and limitations. Sports Med 1989; 8: 101–16

    Article  PubMed  CAS  Google Scholar 

  27. Kannus P. Ratio of hamstring to quadriceps femoris muscles’ strength in anterior cruciate ligament in sufficiency knee. Relationship to long term recovery. Phys Ther 1988a; 68, 6: 961–5

    CAS  Google Scholar 

  28. Kannus P. Peak torque and total work relationship in the thigh muscles after anterior cruciate ligament injury. J Orthop Sports Phys Ther 1988b; 10: 97–101

    PubMed  CAS  Google Scholar 

  29. Davies GJ, Ross DE, Gould JA, et al. Computerised Cybex testing of ACL reconstruction assessing quadriceps peak torque, TAE, total world, and average power. Med Sci Sports Exerc 1984; 16: 204

    Google Scholar 

  30. Gould JA, Davies GJ, Ross DE, et al. Computerised Cybex testing of ACL reconstruction assessing hamstring peak torque, TAE, total work, and average power. Med Sci Sports Exerc 1984; 16: 204

    Google Scholar 

  31. Kannus P. Isokinetic peak torque and work relationship in the laterally unstable knee. Can J Sport Sci 1989; 14: 17–20

    PubMed  CAS  Google Scholar 

  32. Morrissey MC. The relationship between peak torque and work of the quadriceps and hamstrings after meniscectomy. J Orthop Sports Phys Ther 1987; 8 8: 405–8

    PubMed  CAS  Google Scholar 

  33. Rothstein JM, Delitto A, Sinacore DR, et al. Electromyographic, peak torque, and power relationships during isokinetic movement. Phys Ther 1983; 63: 926–33

    PubMed  CAS  Google Scholar 

  34. Rothstein JM, Lamb RL, Mayhew TP. Bilateral isokinetic peak torque, torque acceleration energy, power, and work relationship in athletes and nonathletes. Clinical uses of isokinetic measurements. Critical issues. Phys Ther 1987; 67: 1840–4

    CAS  Google Scholar 

  35. Burnie J, Brodie DA. Isokinetic measurement in preadolescent males. Int J Sports Med 1986; 7: 205–9

    Article  PubMed  CAS  Google Scholar 

  36. Perrine DH, Robertson RJ, Ray RL. Bilateral isokinetic peak torque, torque acceleration energy, power, and work relationships in athletes and nonathletes. J Orthop Sports Phys Ther 1987; 9: 184–9

    Google Scholar 

  37. Kannus P, Jarvinen M. Prediction of torque acceleration energy and power of thigh muscles from peak torque. Med Sci Sports Exerc 1989; 21: 304–7

    PubMed  CAS  Google Scholar 

  38. Gleeson NP, Mercer TH. Reproducibility of isokinetic leg strength and endurance characteristics of adult men and women. Eur J Appl Physiol 1992; 65: 221–8

    Article  CAS  Google Scholar 

  39. Kannus P, Jarvinen M, Lehto M. Maximal peak torque as a predictor of angle-specific torques of hamstring and quadriceps muscles in man. Eur J Appl Physiol 1991; 63: 112–8

    Article  CAS  Google Scholar 

  40. Gleeson NP, Mercer TH. Reliability of relativised angle torque and angle-specific torque indices of isokinetic leg strength in women. Med Sci Sports Exerc 1995; 27(5): S209

    Google Scholar 

  41. Thomas JR, Nelson JK. Introduction to research in health, physical education, recreation and dance. 2nd ed. Champaign (IL): Human Kinetics, 1990

    Google Scholar 

  42. Verducci FM. Measurement concepts in physical education. St. Louis: C.V. Mosby, 1980

    Google Scholar 

  43. Kirkendall DR, Gruber JJ, Johnson RE. Measurement and evaluation for physical educators. 2nd ed. Champaign (IL): Human Kinetics, 1987

    Google Scholar 

  44. Sale DG. Testing strength and power. In: MacDougall JD, Wenger HA, Green HJ, editors. Physiological testing of the high performance athlete. 2nd ed. Champaign (IL): Human Kinetics, 1991: 21–106

    Google Scholar 

  45. Wyse J, Mercer TH, Gleeson NP. Intra-day variability of isokinetic leg strength indices. J Sports Sci 1992; 10 5: 572–3

    Google Scholar 

  46. Wyse J, Mercer TH, Gleeson NP. Time-of-day dependence of isokinetic leg strength and associated variability. Br J Sports Med 1994; 28: 167–70

    Article  PubMed  CAS  Google Scholar 

  47. Gleeson NP, Mercer TH. Intra-subject variability in isokinetic knee extension and flexion strength characteristics of adult males: a comparative examination of gravity corrected and uncorrected data. J Sports Sci 1991; 4 9: 415–6

    Google Scholar 

  48. Sokal R, Rohlf F. Biometry. 2nd ed. Oxford (UK): W.H. Freeman, 1981

    Google Scholar 

  49. Winer BJ. Statistical principles in experimental design. 2nd ed. New York: McGraw Hill, 1981

    Google Scholar 

  50. Feldt LS. The sampling theory for the intraclass reliability coefficient. Appl Measurement Educ 1990; 3 4: 361–7

    Article  Google Scholar 

  51. Beunen G, Borms J. Kinanthropometry: roots, developments and future. J Sports Sci 1989; 8: 1–15

    Article  Google Scholar 

  52. Murray DA, Harrison E. Constant velocity dynamometer: an appraisal using mechanical loading. Med Sci Sports Exerc 1986; 18 6: 612–24

    PubMed  CAS  Google Scholar 

  53. Hinson M, Rosentsweig J. Comparative electromyographic values of isometric, isotonic, and isokinetic contraction. Res Q 1973; 44 1: 71–8

    PubMed  CAS  Google Scholar 

  54. Kannus P. The relationship between peak torque and work of the quadriceps and hamstrings after knee injury. J Sports Med Phys Fitness 1990; 30 2: 185–9

    PubMed  CAS  Google Scholar 

  55. Herzog W. The relation between the resultant moments at a joint and the moments measured by an isokinetic dynamometer. J Biomech 1988; 21: 5–12

    Article  PubMed  CAS  Google Scholar 

  56. Nelson SG, Duncan PW. Correction of isokinetic and isometric torque recordings for the effects of gravity. Phys Ther 1983: 63(5): 674–6

    PubMed  CAS  Google Scholar 

  57. Winter DA, Wells RP, Orr GW. Errors in the use of isokinetic dynamometers. Eur J Appl Physiol 1981; 46: 397–408

    Article  CAS  Google Scholar 

  58. Westing SH, Seger JY. Eccentric and concentric torque-velocity characteristics, torque output comparisons, and gravity effect torque corrections for the quadriceps and hamstring muscles in females. Int J Sports Med 1989; 10: 175–18

    Article  PubMed  CAS  Google Scholar 

  59. Fillyaw M, Bevins T, Fernandez L. Importance of correcting isokinetic peak torque for the effect of gravity when calculating knee flexor to extensor muscle ratios. Phys Ther 1986; 66: 23–31

    PubMed  CAS  Google Scholar 

  60. Grace TG, Sweetser ER, Nelson MA, et al. Isokinetic muscle imbalance and kneejoint injuries. J Bone Joint Surg 1984: 66A: 734–40

    Google Scholar 

  61. Hemba GD. Hamstring parity. NSCA Journal 1985; 7 3: 30–1

    Google Scholar 

  62. Campbell D, Glenn W. Rehabilitation of knee flexor and knee extensor muscle strength in patients with meniscectomies, ligamentous repair and chondromalacia. Phys Ther 1982; 62: 10–15

    PubMed  CAS  Google Scholar 

  63. Taylor NAS, Sanders RH, Howick EI, et al. Static and dynamic assessment of the Biodex dynamometer. Eur J Appl Physiol 1991; 62: 180–8

    Article  CAS  Google Scholar 

  64. Narici MV, Sirtori MD, Mastore S, et al. The effect of range of motion and isometric reactivation on isokinetic torques. Eur J Appl Physiol 1991; 62: 216–20

    Article  CAS  Google Scholar 

  65. Sapega AA, Nicholas JA, Sokolow D, et al. The nature of torque ‘overshoot’ in Cybex isokinetic dynamometry. Med Sci Sports Exerc 1982; 14 5: 368–75

    PubMed  CAS  Google Scholar 

  66. Osternig LR, Sawhill JA, Bates BT, et al. A method for rapid collection and processing of isokinetic data. Res Q Exerc Sport 1982; 53 3: 252–6

    Google Scholar 

  67. Farrell M, Richards JG. Analysis of the reliability and validity of the Kinetic communicator exercise device. Med Sci Sports Exerc 1986 18: 44–49

    PubMed  CAS  Google Scholar 

  68. Moffroid M, Whipple R, Hofkosh J, et al. A study of isokinetic exercise. Phys Ther 1969; 49 7: 735–47

    PubMed  CAS  Google Scholar 

  69. Seger JY, Westing SH, Hanson M, et al. A new dynamometer measuring concentric and eccentric muscle strength in accelerated, decelerated, or isokinetic movements. Eur J Appl Physiol 1988: 57(5): 526–303

    Article  CAS  Google Scholar 

  70. Mawsdley RH, Knapik JJ. Comparison of isokinetic movements with test repetitions. Phys Ther 1982; 62: 169–72

    Google Scholar 

  71. Johnson J, Siegel D. Reliability of an isokinetic movement of the knee extensors. Res Q 1978; 49 1: 88–90

    PubMed  CAS  Google Scholar 

  72. Gleeson NP, Mercer TH. Reproducibility of peak torque, angle-specific torque and total work indices of isokinetic strength in adult females. J Sports Sci 1992a; 10(5): 595–6

    Google Scholar 

  73. Montgomery LC, Douglas LW, Deuster PA. Reliability of an isokinetic test of muscle strength and endurance. J Orthop Sports Phys Ther 1989; 10 8: 315–22

    PubMed  CAS  Google Scholar 

  74. Sawhill JA, Bates BT, Osternig LR, et al. Variability of isokinetic measures. Med Sci Sports Exerc 1982; 14(2): 177

    Google Scholar 

  75. Bohannon RW, Smith MB. Intrasession reliability of angle specific knee extension torque measurements with gravity corrections. J Orthop Sports Phys Ther 1989; 11 4: 155–7

    PubMed  CAS  Google Scholar 

  76. Feiring DC, Ellenbecker TS, Derscheid GL. Test-retest reliability of the Biodex isokinetic dynamometer. J Orthop Sports Phys Ther 1990; 11 7: 298–300

    PubMed  CAS  Google Scholar 

  77. Stratford PW, Bruulsema A, Maxwell B, et al. The effect of inter-trial rest interval on the assessment of isokinetic thigh muscle torque. J Orthop Sports Phys Ther 1990: 11(8): 362–6

    PubMed  CAS  Google Scholar 

  78. Gleeson NP, Mercer TH. Reproducibility and sensitivity of isokinetic leg strength assessment in adult males. Eur J Appl Physiol 1994; 69: 59

    Google Scholar 

  79. Gleeson NP, Mercer TH. An examination of the reproducibility and utility of isokinetic leg strength assessment in women. In: Bell FI, Van Gyn GH, editors. Access to active living. Victoria (BC): University of Victoria 1994a: 323–7

    Google Scholar 

  80. Gleeson NP, Parry A, Mercer TH. The effect of contraction mode on isokinetic leg strength and associated day-to-day reproducibility in adult males. J Sports Sci 1994; 12: 137–8

    Article  Google Scholar 

  81. Rochcongar P, Morvan R, Dassonville JJ, et al. Isokinetic investigation of knee extensors and knee flexors in young French soccer players. Int J Sports Med 1988; 9: 448–50

    Article  PubMed  CAS  Google Scholar 

  82. Burdett RG, van Swearingen J. Reliability of isokinetic muscle endurance tests. Orthop Sports Phys Ther 1987; 8 10: 485–9

    Google Scholar 

  83. Enoka RM. Neuromechanical Basis of Kinesiology. Champaign (IL): Human Kinetics, 1988: 155–60

    Google Scholar 

  84. Milner-Brown HS, Stein RB, Lee RG. Synchronisation of human motor units: Possible roles of exercise and supra-spinal reflexes. Electroencephalogr Clin Neurophysiol 1975; 38: 245–54

    Article  PubMed  CAS  Google Scholar 

  85. Rees D. ACL reconstructions: possible modes of failure. Proceedings of the Football Association — Royal College of Surgeons (Edinburgh). 6th Joint Conference on Sport Injury, Lilleshall Hall National Sports Centre, Telford, Shropshire, UK; 1994 July 2–3

    Google Scholar 

  86. Currier DP. Elements of research in physical therapy. 2nd ed. Baltimore: Williams and Wilkins, 1984

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gleeson, N.P., Mercer, T.H. The Utility of Isokinetic Dynamometry in the Assessment of Human Muscle Function. Sports Med. 21, 18–34 (1996). https://doi.org/10.2165/00007256-199621010-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199621010-00003

Keywords

Navigation