Skip to main content
Log in

Aerobic Glycolytic and Aerobic Lipolytic Power Systems

A New Paradigm with Implications for Endurance and Ultraendurance Events

  • Leading Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Astrand PO, Rodahl Textbook of work physiology. New York: McGraw-Hill Book Co, 1970: 304

    Google Scholar 

  2. Gollnick PD. Metabolism of substrates: energy substrate metabolism during exercise as modified by training. Fed Proc 1985; 44: 353–7

    PubMed  CAS  Google Scholar 

  3. Gollnick PD. Energy metabolism and prolonged exercise. In: Lamb DR, Murray R, editors. Perspectives in exercise science and sports medicine. Vol. 1. Prolonged exercise. Indianopolis: Benchmark Press Inc., 1988: 1–42

    Google Scholar 

  4. Stegemann J. Exercise physiology. Physiologic bases of work and sport. Stuttgart: Georg Thieme Verlag, 1981; 44–57

    Google Scholar 

  5. Boobis LH. Metabolic aspects of fatigue during sprinting. In: Macleod D, Maughan R, Nimmo M, et al., editors. Exercise, benefits, limits and adaptations, London: E and FN Spon, 1987: 116–43

    Google Scholar 

  6. Gaitanos GC, Williams C, Boobis LH, et al. Human muscle metabolism during intermittent, maximal exercise. J Appl Physiol 1993; 75: 712–9

    PubMed  CAS  Google Scholar 

  7. Hirvonen J, Rehunen S, Rusko H, et al. Breakdown of high-energy phosphate compounds and lactate accumulation during short supramaximal exercise. Eur J Appl Physiol 1987; 56: 253–9

    CAS  Google Scholar 

  8. Linossier MT, Denis C, Dormois D, et al. Ergometric and metabolic adaptation to a 5-s sprint training programme. Eur J Appl Physiol 1993; 67: 408–14

    CAS  Google Scholar 

  9. Taylor DG, Styles P, Matthews PM, et al. Energetics of human muscle: exercise-induced ATP depletion. Magn Reson Med 1986; 3: 44–54

    PubMed  CAS  Google Scholar 

  10. Jacobs I, Bar-Or O, Karlsson J, et al. Changes in muscle metabolites in females with 30-s exhaustive exercise. Med Sci Sports Exerc 1982; 14: 457–60

    PubMed  CAS  Google Scholar 

  11. Medbø JI, Tabata I. Relative importance of aerobic and anaerobic energy release during short-lasting exhausting bicycle exercise. J Appl Physiol 1989; 67: 1881–6

    PubMed  Google Scholar 

  12. Nevili ME, Boobis LH, Brooks S, et al. Effect of training on muscle metabolism during treadmill running. J Appl Physiol 1989; 67: 2376–82

    Google Scholar 

  13. Saltin Gollnick PD, Eriksson BO, et al. Metabolic and circulatory adjustments at onset of maximal work. In: Gilbert A, Guille P, editors. Onset of exercise. Toulouse: University of Toulouse Press, 1971: 63–76

    Google Scholar 

  14. Rennie MJ, Boltell JL, Millward DA. Physical activity and protein metabolism. In: Bouchard C, editor. Exercise, fitness and health: a consensus of current knowledge. New York: Human Kinetics, 1994: 432–50

    Google Scholar 

  15. Romijn JA, Coyle EF, Sidossis LS, et al. Regulations of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol 1993; 265: E380–91

    PubMed  CAS  Google Scholar 

  16. Terjung RL, Hood DA. The role of aminoacids as a fuel for contractile activity in skeletal muscle. In: Benzi G, editor. Advances in myochemistry. London: Libbey Eurotext, 1989; 2: 252–61

    Google Scholar 

  17. Cheetham ME, Boobis LH, Brooks S, et al. Human muscle metabolism during sprint running. J Appl Physiol 1986; 61: 54–60

    PubMed  CAS  Google Scholar 

  18. Medbø JI, Mohn AC, Tabata I, et al. Anaerobic capacity determined by maximal accumulated O2 deficit. J Appl Physiol 1988; 64: 50–60

    PubMed  Google Scholar 

  19. Bosch AN, Goslin BR, Noakes TD, et al. Physiological differences between black and white runners during a treadmill marathon. Eur J Appl Physiol 1990; 61: 68–72

    CAS  Google Scholar 

  20. O’Brien MJ, Viguie CA, Mazzeo RS, et al. Carbohydrate dependence during marathon running. Med Sci Sports Exerc 1993; 25: 1009–17

    PubMed  Google Scholar 

  21. Scrimgeour AG, Noakes TD, Adams B, et al. The influence of weekly distance training on fractional utilisation of maximum aerobic capacity in marathon and ultra-marathon runners. Eur J Appl Physiol 1986; 55: 202–9

    CAS  Google Scholar 

  22. Williams C, Brewer J, Patton A. The metabolic challenge of the marathon. Br J Sports Med 1984; 18: 245–52

    Google Scholar 

  23. Fox EL, Mathews DK. The physiological basis of physical education and athletics. 3rd ed. Philadelphia: CBS College Publishing, 1981: 29

    Google Scholar 

  24. Keul J. Muscle metabolism during long lasting exercise. In: Howald H, Poortmans JR, editors. Metabolic adaptation to prolonged physical exercise. Basel: Birkhauser Verlag, 1975: 31–42

    Google Scholar 

  25. McArdle WD, Katch FI, Katch VL. Exercise physiology. Energy, nutrition, and human performance. Philadelphia: Lea and Febiger, 1991: 200

    Google Scholar 

  26. Noble BJ. Physiology of exercise and sport. St. Louis: Times Mirror/Mosby College Publishing, 1986: 58

    Google Scholar 

  27. Withers RT, Sherman WM, Clark DG, et al. Muscle metabolism during 30, 60 and 90 s of maximal cycling on an air-braked ergometer. Eur J Appl Physiol 1991; 63: 354–62

    CAS  Google Scholar 

  28. Withers RT, Van Der Ploeg G, Finn JP. Oxygen deficits incurred during 45, 60, 75 and 90-s maximal cycling on an airbraked ergometer. Eur J Appl Physiol 1993; 67: 185–91

    CAS  Google Scholar 

  29. Costill DL. Metabolic responses during distance running. J Appl Physiol 1970; 28: 251–57

    PubMed  CAS  Google Scholar 

  30. Butterfield GE. Fat as a fuel for exercise. In: Berning JR, Steen S, editors. Sports nutrition. A practical approach. New York: Aspen, 1990: 15–30

    Google Scholar 

  31. Edwards HT, Margaria R, Dill DB. Metabolic rate, blood sugar and the utilization of carbohydrate. Am J Physiol 1934; 108: 203–9

    CAS  Google Scholar 

  32. Havel RJ. Influence of varied intensity and duration of exercise on supply and use of fuels. In: Pernow B, Saltin B, editors. Muscle metabolism during exercise. Advances in experimental medicine and biology. New York: Plenum Press, 1971; 11: 315–25

    Google Scholar 

  33. Havel RJ, Naimark A, Borchgrevink CF. Turnover rate and oxidation of free fatty acids of blood plasma in man during exercise: studies during continuous infusion of palmitate-1-C14. J Clin Invest 1963; 42: 1054–9

    PubMed  CAS  Google Scholar 

  34. Havel RJ, Carlson LA, Ekelund LG, et al. Turnover rate and oxidation of different free fatty acids in man during exercise. J Appl Physiol 1964; 19: 613–8

    PubMed  CAS  Google Scholar 

  35. Stein TP, Hoyt RW, O’Toole M, et al. Protein and energy metabolism during prolonged exercise in trained athletes. Int J Sports Med 1989; 10: 311–6

    PubMed  CAS  Google Scholar 

  36. Young DR, Pelligra R, Adachi RR. Serum glucose and free fatty acids in man during prolonged exercise. J Appl Physiol 1966; 21: 1047–51

    PubMed  CAS  Google Scholar 

  37. Callow M, Morton A, Guppy M. Marathon fatigue: the role of plasma fatty acids, muscle glycogen and blood glucose. Eur J Appl Physiol 1986; 55: 654–661

    CAS  Google Scholar 

  38. Davies CTM, Thompson MW. Aerobic performance of female marathon and male ultramarathon athletes. Eur J Appl Physiol 1979; 41: 233–245

    CAS  Google Scholar 

  39. Hagberg JM, Nagle FJ, Carlson JL. Transient O2 uptake response at the onset of exercise. J Appl Physiol 1978; 44: 90–2

    PubMed  CAS  Google Scholar 

  40. Brooks GA, Mercier M. The balance of carbohydrate and lipid utilization during exercise: the ‘cross-over’ concept. J Appl Physiol 1994; 76: 2253–61

    PubMed  CAS  Google Scholar 

  41. Hall SEH, Bratten JT, Bulton T, et al. Substrate utilization during normal and loading diet treadmill marathons. In: Knuttgen HG, Vogel JA, Poortmans J, editors. Biochemistry of exercise. Champaign: Human Kinetics, 1983: 536–42

    Google Scholar 

  42. Jones NL, Heigenhausser GJF, Kuksis A, et al. Fat metabolism in heavy exercise. Clin Sci 1980; 59: 469–78

    PubMed  CAS  Google Scholar 

  43. Karlsson J, Saltin Muscle glycogen utilization during work of different intensities. In: Pernow B, Saltin B, editors. Muscle metabolism during exercise. New York: Plenum Press, 1971: 288–99

    Google Scholar 

  44. Coggan AR, Habash DL, Mendenhall LA, et al. Isotopic estimation of CO2 production during exercise before and after endurance training. J Appl Physiol 1993; 75: 70–5

    PubMed  CAS  Google Scholar 

  45. Gollnick PD, Piehl K, Saltin Selective glycogen depletion pattern in human muscle fibers after exercise of varying intensity and at varying pedalling rates. J Physiol (Lond) 1974; 241: 45–57

    CAS  Google Scholar 

  46. Gollnick PD, Saltin Significance of skeletal muscle oxidative enzyme enhancement with endurance training. Clin Physiol 1982; 2: 1–12

    PubMed  CAS  Google Scholar 

  47. Sahlin K, Katz A, Broberg S. Tricarboxylic acid cycle intermediates in human muscle during prolonged exercise. Am J Physiol 1993; 259: C834–41

    Google Scholar 

  48. Spencer MK, Katz A. Role of glycogen in control of glycolysis and IMP formation in human muscle during exercise. Am J Physiol 1991; 260: E859–64

    PubMed  CAS  Google Scholar 

  49. Essen B. Intramuscular substrate utilization during prolonged exercise. Ann NY Acad Sci 1977; 301: 30–44

    PubMed  CAS  Google Scholar 

  50. Gollnick PD, Armstrong RB, Saubert CW, et al. Glycogen depletion patterns in human skeletal muscle fibres during prolonged work. Pflugers Arch 1973; 344: 1–12

    PubMed  CAS  Google Scholar 

  51. Gollnick PD, Piehl K, Saltin B. Selective glycogen depletion in skeletal muscle fibres of man following sustained contractions. J Physiol (Lond) 1974; 241: 59–67

    CAS  Google Scholar 

  52. Galbo H, Richter EA, Hilsted J. Hormonal regulation during prolonged exercise. Ann NY Acad Sci 1977; 301: 72–80

    PubMed  CAS  Google Scholar 

  53. Galbo H, Holst JJ, Christensen NJ. Glucagon and plasma catecholamine responses to graded and prolonged exercise in man. J Appl Physiol 1975; 38: 70–6

    PubMed  CAS  Google Scholar 

  54. Galbo H, Christensen NJ, Holst JJ. The role of the autonomie innervation in the control of glucagon and insulin responses to prolonged exercise in man. Acta Physiol Scand Suppl. 440; 1976; 175

    Google Scholar 

  55. Bloom SR, Johnson RH, Park DM, et al. Differences in the metabolic and hormonal response to exercise between racing cyclists and untrained individuals. J Physiol (Lond) 1976; 258: 1–18

    CAS  Google Scholar 

  56. Hartley LH, Mason JW, Hogan RP, et al. Multiple hormonal responses to graded exercise in relation to physical training. J Appl Physiol 1972: 33: 602–6

    PubMed  CAS  Google Scholar 

  57. Hartley LH, Mason JW, Hogan RP, et al. Multiple hormonal responses to prolonged exercise in relation to physical training. J Appl Physiol 1972; 33: 607–10

    PubMed  CAS  Google Scholar 

  58. MacDougall JD, Elder GCB, Sale DG, et al. Effects of strength training and immobilization on human muscle fibres. Eur J Appl Physiol 1980; 43: 25–34

    CAS  Google Scholar 

  59. Medbø JI, Burgers S. Effect of training on the anaerobic capacity. Med Sci Sports Exerc 1990; 22: 501–7

    PubMed  Google Scholar 

  60. Nielsen JB, Pedersen PK, Madsen K. Training specificity in relation to intermittent exercise performance [abstract]. Clin Sci 1994; 87 Suppl.: 18

    Google Scholar 

  61. Costill DL. The relationship between selected physiological variables and distance running performance. J Sports Med Phys Fitness 1967; 7: 61–6

    PubMed  CAS  Google Scholar 

  62. Hickson RC. Interference of strength development by simultaneously training for strength and endurance. Eur J Appl Physiol 1980; 45: 255–63

    CAS  Google Scholar 

  63. Moroz DE, Houston ME. The effects of replacing endurance running training with cycling in female runners. Can J Sport Sci 1987; 12: 131–5

    Google Scholar 

  64. Ono M, Miyashita M, Asami T. Inhibitory effect of long distance running training on the vertical jump and other performances among aged males. In: Komi PV, editor. Biomechanics V. Maryland: University Park Press, 1976: 94–100

    Google Scholar 

  65. Pedersen PK, Franch J, Madsen K. Reductions in ventilation contribute significantly to improved running economy following training [abstract]. Clin Sci 1994; 87 Suppl.: 45

    Google Scholar 

  66. Jenkins DG, Brooks S, Williams C. Improvements in multiple sprint ability with three weeks of training. NZ J Sports Med 1994; 22: 2–5

    Google Scholar 

  67. Buick FJ, Gledhill N, Froese AB, et al. Effect of induced erythrocythemia on aerobic work capacity. J Appl Physiol 1980; 48: 636–42

    PubMed  CAS  Google Scholar 

  68. Robertson RJ, Gilcher KF, Metz KF, et al. Effect of induced erythrocythemia on hypoxia tolerance during physical exercise. J Appl Physiol 1982; 53: 490–5

    PubMed  CAS  Google Scholar 

  69. Thomson JM, Stone JA, Ginsburg AD, et al. O2 transport during exercise following blood reinfusion. J Appl Physiol 1982; 53: 1213–9

    PubMed  CAS  Google Scholar 

  70. Welch HG. Hyperoxia and human performance: a brief review. Med Sci Sports Exerc 1982; 14: 253–62

    PubMed  CAS  Google Scholar 

  71. Snyder RC, Kleiner DM. The effects of acute hyperoxia on heart rate, muscular strength and muscular endurance [abstract]. Med Sci Sports Exerc 1994; 26 Suppl.: S31

    Google Scholar 

  72. Balsom PD, Gaitanos G, Ekblom B, et al. Repeated bouts of short duration high intensity exercise: effect of oxygen availability [abstract]. Med Sci Sports Exerc 1994; 26 Suppl.: S87

    Google Scholar 

  73. Shephard RJ. Physiology and biochemistry of exercise. New York: Praeger, 1982: 64

    Google Scholar 

  74. Jones NL, Sutton JR, Taylor R, et al. Effect of pH on cardiorespiratory and metabolic responses to exercise. J Appl Physiol 1977; 43: 959–64

    PubMed  CAS  Google Scholar 

  75. Sutton JR, Jones NL, Toews CJ. Effect of pH on muscle glycolysis during exercise. Clin Sci 1982; 61: 331–8

    Google Scholar 

  76. Wilkes D, Gledhill N, Smyth R. Effect of acute induced metabolic acidosis on 800-m racing time. Med Sci Sports Exerc 1983; 15: 277–80

    PubMed  CAS  Google Scholar 

  77. Heigenhauser GJF, Jones NL. Bicarbonate Loading. In: Lamb DR, Williams MH, editors. Perspectives in exercise science and sports medicine. Vol. 4. Ergogenics. Enhancement of performance in exercise and sport. Ann Arbor, MI: Brown & Benchmark, 1991: 183–212

    Google Scholar 

  78. Costill DL, Coyle EF, Dalsky G, et al. Effects of elevated plasma FFA and insulin on muscle glycogen usage during exercise. J Appl Physiol 1977; 43: 695–99

    PubMed  CAS  Google Scholar 

  79. Dodd SL, Herb RA, Powers SK. Caffeine and exercise performance: an update. Sports Med 1993; 15: 14–23

    PubMed  CAS  Google Scholar 

  80. Ivy JL, Costill DL, Fink WJ, et al. Influence of caffeine and carbohydrate feedings on endurance performance. Med Sci Sports 1979; 11: 6–11

    PubMed  CAS  Google Scholar 

  81. Vukovich MD, Costill DL, Hickey MS, et al. Effect of fat emulsion infusion and fat feeding on muscle glycogen utilization during cycle exercise. J Appl Physiol 1993; 75: 1513–8

    PubMed  CAS  Google Scholar 

  82. Bergstrom J, Hultman E, Jorfeldt L, et al. Effect of nicotinic acid on physical working capacity and on metabolism of muscle glycogen in man. J Appl Physiol 1969; 26: 170–6

    PubMed  CAS  Google Scholar 

  83. Carlson L, Havel R, Ekelund LG, et al. Effect of nicotinic acid on the turnover rate and oxidation of free fatty acids of plasma in man during exercise. Metabolism 1963; 12: 837–45

    PubMed  CAS  Google Scholar 

  84. Gautier JF, Pirnay F, Jandrain B, et al. Availability of glucose ingested during muscle exercise performed under acipimox-induced lipolysis blockade. Eur J Appl Physiol 1994; 68: 406–12

    CAS  Google Scholar 

  85. Pernow B, Saltin Availability of substrates and capacity for prolonged heavy exercise in man. J Appl Physiol 1971; 31: 416–22

    PubMed  CAS  Google Scholar 

  86. Lambert EV, Speechly DP, Dennis SC, et al. Enhanced endurance in trained cyclists during moderate intensity exercise following 2 weeks adaptation to a high-fat diet. Eur J Appl Physiol 1994; 69: 287–293

    CAS  Google Scholar 

  87. Phinney SD, Bistrian BR, Evans WF, et al. The human metabolic response to chronic ketosis without caloric restriction: preservation of submaximal exercise capacity with reduced carbohydrate oxidation. Metabolism 1983; 32: 769–76

    PubMed  CAS  Google Scholar 

  88. Muoio DM, Leddy JL, Horvath PJ, et al. Effect of dietary fat on metabolic adjustments to maximal V̇O2 and endurance in runners. Med Sci Sports Exerc 1994; 26: 81–8

    PubMed  CAS  Google Scholar 

  89. Pruet EDR. Glucose and insulin during prolonged work stress in men living on different diets. J Appl Physiol 1970; 28: 199–208

    Google Scholar 

  90. Putman CT, Spriet LL, Hultman E, et al. Substrate utilization during heavy exercise after different diets [abstract]. Clin Sci 1994; 87 Suppl.: 55

    Google Scholar 

  91. Ahlborg Bergstrom J, Ekelund LG, et al. Muscle glycogen and muscle electrolytes during prolonged physical exercise. Acta Physiol Scand 1967; 70: 129–42

    Google Scholar 

  92. Bergstrom J, Hermanssen J, Hultman E, et al. Diet, muscle glycogen and physical performance. Acta Physiol Scand 1967; 71: 140–50

    PubMed  CAS  Google Scholar 

  93. Karlsson J, Saltin Diet, muscle glycogen and performance. J Appl Physiol 1971; 31: 203–6

    PubMed  CAS  Google Scholar 

  94. Sherman WM, Costill DL, Fink WJ, et al. Effect of exercise-diet manipulation on muscle glycogen and its subsequent utilization during performance. Int J Sports Med 1981; 2: 114–8

    PubMed  CAS  Google Scholar 

  95. Widrick JJ, Costill DL, Fink WJ, et al. Carbohydrate feedings and exercise performance: effect of initial muscle glycogen concentration. J Appl Physiol 1993; 74: 2998–3005

    PubMed  CAS  Google Scholar 

  96. Van Zyl C, Murphy K, Lambert EV, et al. Effects of a low carbohydrate, high fat diet prior to carbohydrate loading on endurance cycling performance [abstract]. Clin Sci 1994; 87 Suppl.: 32–3

    Google Scholar 

  97. Conlee RK. Muscle glycogen and exercise endurance: a twenty-year perspective. Exerc Sports Sci Rev 1987; 15: 1–28

    CAS  Google Scholar 

  98. Kavouras SA, Berning JR, Ratliff K, et al. Effect of a high carbohydrate and high fat diet prior to 45 minutes of intense cycling exercise [abstract]. Med Sci Sports Exerc 1994; 26 Suppl.: S9

    Google Scholar 

  99. Van Zyl C, Lambert EV, Noakes TD, et al. Effects of medium-chain triglyceride ingestion on carbohydrate metabolism and cycling performance [abstract]. Clin Sci 1994; 87 Suppl.: 30

    Google Scholar 

  100. Wilmore JH, Costill DL. Physiology of sport and exercise. Champaign: Human Kinetics, 1994: 16

    Google Scholar 

  101. Sarna S, Kaprio J. Life expectancy of former elite athletes. Sports Med 1994; 17: 149–51

    PubMed  CAS  Google Scholar 

  102. Sternfeld B. Cancer and the protective effect of physical activity: the epidemiological evidence. Med Sci Sports Exerc 1992; 24: 1195–209

    PubMed  CAS  Google Scholar 

  103. Burke EJ, Franks DE. Changes in V̇O2max resulting from bicycle training at different intensities holding mechanical work constant. Res Quart 1975; 46: 31–7

    CAS  Google Scholar 

  104. Gaesser GA, Rich RG. Effects of high and low intensity training on aerobic capacity and blood lipids. Med Sci Sports Exerc 1984; 16: 269–74

    PubMed  CAS  Google Scholar 

  105. Hodgetts V, Coppack SW, Frayn KN, et al. Factors controlling fat mobilization from human subcutaneous adipose tissue during exercise. J Appl Physiol 1991; 71: 445–51

    PubMed  CAS  Google Scholar 

  106. Bulow J. Regulation of lipid mobilization in exercise. Can J Sports Sci 1987; 12 Suppl. 1: S117–9

    Google Scholar 

  107. Romijn JA, Coyle EF, Zhang XJ, et al. Muscle fat metabolism is impaired in high intensity exercise [abstract]. Med Sci Sports Exerc 1994; 26 Suppl.: S71

    Google Scholar 

  108. Hickson RC, Bomze HA, Holloszy JO. Linear increase in aerobic power induced by a strenuous program of endurance exercise. J Appl Physiol 1977; 42: 372–6

    PubMed  CAS  Google Scholar 

  109. Hurley BF, Nemeth PM, Martin WH, et al. Muscle triglyceride utilization during exercise: effect of training. J Appl Physiol 1986; 60: 562–7

    PubMed  CAS  Google Scholar 

  110. Martin WH, Dalsky GP, Hurley BF, et al. Effect of endurance training on plasma free fatty acid turnover and oxidation during exercise. Am J Physiol 1993; 265: E708–14

    PubMed  CAS  Google Scholar 

  111. Karlsson J, Nordesjo LO, Saltin B. Muscle glycogen utilization during exercise after physical training. Acta Physiol Scand 1974; 90: 210–17

    PubMed  CAS  Google Scholar 

  112. Saltin Nazar Costill DL, et al. The nature of the training response: peripheral and central adaptations to one-legged exercise. Acta Physiol Scand 1978; 96: 289–305

    Google Scholar 

  113. Gollnick PD, Riedy M, Quintinskie JJ, et al. Differences in metabolic potential of skeletal muscle fibers and their significance for metabolic control. J Exp Biol 1985; 115: 191–9

    PubMed  CAS  Google Scholar 

  114. Ingjer F. Effects of endurance training on muscle fibre ATPase activity, capillary supply, and mitochondrial content in man. J Physiol (Lond) 1979; 294: 419–22

    CAS  Google Scholar 

  115. Holloszy JO, Booth F. Biochemical adaptation to endurance exercise in muscle. Ann Rev Physiol 1976; 38: 273–91

    CAS  Google Scholar 

  116. Jansson E, Kaijser L. Substrate utilization and enzymes in skeletal muscle of extremely endurance-trained men. J Appl Physiol 1987; 62: 999–1005

    PubMed  CAS  Google Scholar 

  117. Kiens Metabolisme i Skeletmusklen under Arbejde hos Mennesket: Effekten af Traening [PhD Thesis]. Copenhagen: August Krogh Institute, University of Copenhagen, 1984

  118. Turcotte LP, Richter EA, Kiens Increased plasma FFA uptake and oxidation during prolonged exercise in trained vs. un-trained humans. J Appl Physiol 1992; 25: E791–9

    Google Scholar 

  119. Bach A, Debry G, Metais P. Hepatic metabolism of medium chain triglycerides. Bibi Nutr Dieta 1977; 25: 24–35

    CAS  Google Scholar 

  120. Decombaz J, Arnoud MJ, Milon H, et al. Energy metabolism of medium-chain triglycerides versus carbohydrate during exercise. Eur J Appl Physiol 1983; 52: 9–14

    CAS  Google Scholar 

  121. Jeukendrup AE, Saris WHM, van Diesen RAJ, et al. Exogenous MCT oxidation from carbohydrate-medium chain triglyceride supplements during moderate intensity exercise [abstract]. Clin Sci 1994; 87 Suppl.: 33

    Google Scholar 

  122. Satabin P, Portero P, Defer G, et al. Metabolic and hormonal responses to lipid and carbohydrate diets during exercise in man. Med Sci Sports Exerc 1987; 19: 218–23

    PubMed  CAS  Google Scholar 

  123. Fröberg SO, Mossfeldt F. Effect of prolonged strenuous exercise on the concentration of triglycerides, phospholipids and glycogen in muscle of man. Acta Physiol Scand 1971; 82: 167–71

    PubMed  Google Scholar 

  124. Havel RJ, Pernow B, Jones NL. Uptake and release of free fatty acids and other metabolites in the legs of exercising man. J Appl Physiol 1967; 23: 90–6

    PubMed  CAS  Google Scholar 

  125. Spencer MK, Yan Z, Katz A. Effect of low glycogen on carbohydrate and energy metabolism in human muscle during exercise. Am J Physiol 1992; 262: C975–9

    PubMed  CAS  Google Scholar 

  126. Coyle EF, Hagberg JM, Hurley BF, et al. Carbohydrate feeding during prolonged strenuous exercise can delay fatigue. J Appl Physiol 1983; 55: 230–5

    PubMed  CAS  Google Scholar 

  127. Brouns F, Saris WHM, Stroeken J, et al. Eating, drinking, and cycling. A controlled Tour de France simulation study, part II. Effect of diet manipulation. Int J Sports Med 1989; 10 Suppl. 1: S41–8

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Will G. Hopkins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hawley, J.A., Hopkins, W.G. Aerobic Glycolytic and Aerobic Lipolytic Power Systems. Sports Med. 19, 240–250 (1995). https://doi.org/10.2165/00007256-199519040-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199519040-00002

Keywords

Navigation