Skip to main content
Log in

Pharmacological Prevention of Post-Endoscopic Retrograde Cholangiopancreatography Pancreatitis

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

The incidence of clinically significant pancreatitis after endoscopic retrograde cholangiopancreatography (ERCP) ranges from 1–13.5%. It is more common after therapeutic procedures such as sphincterotomy or balloon dilatation of the sphincter, and diagnostic procedures such as biliary or pancreatic manometry. The severity of post-ERCP pancreatitis may vary from very mild to extremely severe disease with multiple organ failure and fatal outcome. Several factors including papillary oedema, injection of hyperosmolar contrast-material, introduction of previously activated enzymes during repeated cannulation, bacterial contamination and thermal injury from endoscopic sphincterotomy have been implicated as triggering factors that initiate the sequential cascade of pancreatic autodigestion and release of proinflammatory cytokines leading to acute pancreatitis. Recovery from post-ERCP pancreatitis is usually rapid when the injury is confined to the pancreas. However, systemic production of inflammatory mediators may lead to the development of more serious manifestations including multiorgan failure.

A wide range of pharmacological agents has been tested in experimental and clinical trials, but the results have been largely disappointing. Several drugs are discussed in this review, but only somatostatin and gabexate (gabexate mesilate) have consistently shown a moderate beneficial effect. In clinical trials, both gabexate and somatostatin appear equally effective in reducing the incidence of pancreatitis by two-thirds compared with controls. However, both drugs need to be given by continuous infusion for about 12 hours and this makes them less cost-effective than conventional treatment. One potential strategy is to reserve these drugs for high-risk patients undergoing ERCP. Preliminary studies have shown encouraging results with nitroglycerin, antibacterials and heparin. However, these observations need to be corroborated in a rigorous fashion in large, randomised, double-blind, controlled trials. If these drugs are found to be effective in further trials, it may become cost-effective to use them routinely for the prevention of post-ERCP pancreatitis. Despite the theoretical benefits, interleukin-10 has not shown a consistent benefit in clinical trials. It is probable that other cytokine inhibitors or modulators may become available for future trials to prevent pancreatitis or more probably, to reduce the severity of pancreatitis. Further research also should focus on developing newer molecules or the use of a combination of currently available drugs to prevent pancreatitis in high-risk patients undergoing therapeutic ERCP procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II

Similar content being viewed by others

References

  1. Guelrud M. Endoscopic retrograde cholangiopancreatography. Gastrointest Endosc Clin N Am 2001 Oct; 11(4): 585–601

    PubMed  CAS  Google Scholar 

  2. Devereaux CE, Binmoeller KF. Endoscopic retrograde cholangiopancreatography in the next millennium. Gastrointest Endosc Clin N Am 2000 Jan; 10(1): 117–33

    PubMed  CAS  Google Scholar 

  3. Aliperti G. Complications related to diagnostic and therapeutic endoscopie retrograde cholangiopancreatography. Gastrointest Endosc Clin N Am 1996 Apr; 6(2): 379–407

    PubMed  CAS  Google Scholar 

  4. Freeman ML. Procedure-specific outcomes assessment for endoscopic retrograde cholangiopancreatography. Gastrointest Endosc Clin N Am 1999 Oct; 9(4): 639–47

    PubMed  CAS  Google Scholar 

  5. Mergener K, Baillie J. Acute pancreatitis. BMJ 1998 Jan 3; 316(7124): 44–8

    Article  PubMed  CAS  Google Scholar 

  6. Steinberg W, Tenner S. Acute pancreatitis. N Engl J Med 1994 Apr 28; 330(17): 1198–210

    Article  PubMed  CAS  Google Scholar 

  7. Calleja GA, Barkin JS. Acute pancreatitis. Med Clin North Am 1993 Sep; 77(5): 1037–56

    PubMed  CAS  Google Scholar 

  8. Skude G, Wehlin L, Maruyama T, et al. Hyperamylasaemia after duodenoscopy and retrograde cholangiopancreatography. Gut 1976 Feb; 17(2): 127–32

    Article  PubMed  CAS  Google Scholar 

  9. Fjosne U, Waldum HL, Romslo I, et al. Amylase, pancreatic isoamylase and lipase in serum before and after endoscopie pancreatography. Acta Med Scand 1986; 219(3): 301–4

    Article  PubMed  CAS  Google Scholar 

  10. Freeman ML, Nelson DB, Sherman S, et al. Complications of endoscopic biliary sphincterotomy. N Engl J Med 1996; 335: 909–18

    Article  PubMed  CAS  Google Scholar 

  11. Sherman S, Ruffolo TA, Hawes RH, et al. Complications of endoscopie sphincterotomy: a prospective series with emphasis on the increased risk associated with sphincter of Oddi dysfunction and nondilated bile ducts. Gastroenterology 1991 Oct; 101(4): 1068–75

    PubMed  CAS  Google Scholar 

  12. Freeman ML, DiSario JA, Nelson DB, et al. Risk factors for post-ERCP pancreatitis: a prospective, multicenter study. Gastrointest Endosc 2001 Oct; 54(4): 425–34

    Article  PubMed  CAS  Google Scholar 

  13. Akashi R, Kiyozumi T, Tanaka T, et al. Mechanism of pancreatitis caused by ERCP. Gastrointest Endosc 2002 Jan; 55(1): 50–4

    Article  PubMed  Google Scholar 

  14. Fogel EL, Eversman D, Jamidar P, et al. Sphincter of Oddi dysfunction: pancreaticobiliary sphincterotomy with pancreatic stent placement has a lower rate of pancreatitis than biliary sphincterotomy alone. Endoscopy 2002; 34: 280–5

    Article  PubMed  CAS  Google Scholar 

  15. Lerch MM, Gorelick FS. Early trypsinogen activation in acute pancreatitis. Med Clin North Am 2000 May; 84(3): 549–63

    Article  PubMed  CAS  Google Scholar 

  16. Halangk W, Lerch MM, Brandt-Nedelev B, et al. Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis. J Clin Invest 2000 Sep; 106(6): 773–81

    Article  PubMed  CAS  Google Scholar 

  17. Gukovsky I, Gukovskaya AS, Blinman TA, et al. Early NF-kappa B activation is associated with hormone-induced pancreatitis. Am J Physiol 1998; 275: G1402–14

    PubMed  CAS  Google Scholar 

  18. Beger HG, Gansauge F, Mayer JM. The role of immunocytes in acute and chronic pancreatitis: when friends turn into enemies. Gastroenterology 2000 Mar; 118(3): 626–9

    Article  PubMed  CAS  Google Scholar 

  19. Mayer J, Rau B, Gansauge F, et al. Inflammatory mediators in human acute pancreatitis: clinical and pathophysiological implications. Gut 2000 Oct; 47(4): 546–52

    Article  PubMed  CAS  Google Scholar 

  20. Formela LJ, Galloway SW, Kingsnorth AN. Inflammatory mediators in acute pancreatitis. Br J Surg 1995 Jan; 82(1): 6–13

    Article  PubMed  CAS  Google Scholar 

  21. Giroir BP. Pancreatitis, cytokines, and SIRS: deja vu all over again? Crit Care Med 1999 Apr; 27(4): 680–1

    Article  PubMed  CAS  Google Scholar 

  22. Giroir BP. Mediators of septic shock: new approaches for interrupting the endogenous inflammatory cascade. Crit Care Med 1993 May; 21(5): 780–9

    Article  PubMed  CAS  Google Scholar 

  23. Norman J. The role of cytokines in the pathogenesis of acute pancreatitis. Am J Surg 1998 Jan; 175(1): 76–83

    Article  PubMed  CAS  Google Scholar 

  24. Denham W, Norman J. The potential role of therapeutic cytokine manipulation in acute pancreatitis. Surg Clin North Am 1999 Aug; 79(4): 767–81

    Article  PubMed  CAS  Google Scholar 

  25. Curtis LD. Lexipafant (BB-882), a potent PAF antagonist in acute pancreatitis. Adv Exp Med Biol 1996; 416: 361–3

    PubMed  CAS  Google Scholar 

  26. Kingsnorth AN, Galloway SW, Formela LJ. Randomized, double-blind phase II trial of Lexipafant, a platelet-activating factor antagonist, in human acute pancreatitis. Br J Surg 1995 Oct; 82(10): 1414–20

    Article  PubMed  CAS  Google Scholar 

  27. Frossard JL, Saluja A, Bhagat L, et al. The role of intercellular adhesion molecule 1 and neutrophils in acute pancreatitis and pancreatitis-associated lung injury. Gastroenterology 1999 Mar; 116(3): 694–701

    Article  PubMed  CAS  Google Scholar 

  28. Inoue S, Nakao A, Kishimoto W, et al. Anti-neutrophil antibody attenuates the severity of acute lung injury in rats with experimental acute pancreatitis. Arch Surg 1995 Jan; 130(1): 93–8

    Article  PubMed  CAS  Google Scholar 

  29. Cook JW, Karakozis S, Kim D, et al. Interleukin-10 attenuates proinflammatory cytokine production and improves survival in lethal pancreatitis. Am Surg 2001 Mar; 67(3): 237–41

    PubMed  CAS  Google Scholar 

  30. Van Laethem JL, Eskinazi R, Louis H, et al. Multisystemic production of interleukin 10 limits the severity of acute pancreatitis in mice. Gut 1998 Sep; 43(3): 408–13

    Article  PubMed  Google Scholar 

  31. Bhatia M, Saluja AK, Hofbauer B, et al. Role of substance P and the neurokinin 1 receptor in acute pancreatitis and pancreatitis-associated lung injury. Proc Natl Acad sci U S A 1998 Apr 14; 95(8): 4760–5

    Article  PubMed  CAS  Google Scholar 

  32. Bhatia M, Saluja AK, Singh VP, et al. Complement factor C5a exerts an anti-inflammatory effect in acute pancreatitis and associated lung injury. Am J Physiol Gastrointest Liver Physiol 2001 May; 280(5): G974–8

    PubMed  CAS  Google Scholar 

  33. Messmann H, Vogt W, Holstege A, et al. Post-ERP pancreatitis as a model for cytokine induced acute phase response in acute pancreatitis. Gut 1997 Jan; 40(1): 80–5

    PubMed  CAS  Google Scholar 

  34. Messmann H, Vogt W, Falk W, et al. Interleukins and their antagonists but not TNF and its receptors are released in post-ERP pancreatitis. Eur J Gastroenterol Hepatol 1998 Jul; 10(7): 611–7

    Article  PubMed  CAS  Google Scholar 

  35. Haber GB. Prevention of post-ERCP pancreatitis. Gastrointest Endosc 2000 Jan; 51(1): 100–3

    Article  PubMed  CAS  Google Scholar 

  36. de Herder WW. Somatostatin and somatostatin analogues: diagnostic and therapeutic uses. Curr Opin Oncol 2002 Jan 1; 14(1): 53–7

    Article  PubMed  Google Scholar 

  37. Poon RT, Yeung C, Lo CM, et al. Prophylactic effect of somatostatin on post-ERCP pancreatitis: a randomized controlled trial. Gastrointest Endosc 1999 May 1; 49(5): 593–8

    Article  PubMed  CAS  Google Scholar 

  38. Andriulli A, Leandro G, Niro G, et al. Pharmacologic treatment can prevent pancreatic injury after ERCP: a meta-analysis. Gastrointest Endosc 2000 Jan 1; 51(1): 1–7

    Article  PubMed  CAS  Google Scholar 

  39. Andriulli A, Clemente R, Solmi L, et al. Gabexate or somatostatin administration before ERCP in patients at high risk for post-ERCP pancreatitis: a multicenter, placebo-controlled, randomized clinical trial. Gastrointest Endosc 2002; 56: 488–95

    Article  PubMed  Google Scholar 

  40. Tulassay Z, Dobronte Z, Pronai L, et al. Octreotide in the prevention of pancreatic injury associated with endoscopie cholangiopancreatography. Aliment Pharmacol Ther 1998 Nov; 12(11): 1109–12

    Article  PubMed  CAS  Google Scholar 

  41. Testoni PA, Bagnolo F, Andriulli A, et al. Octreotide 24-h prophylaxis in patients at high risk for post-ERCP pancreatitis: results of a multicenter, randomized, controlled trial. Aliment Pharmacol Ther 2001 Jul 1; 15(7): 965–72

    Article  PubMed  CAS  Google Scholar 

  42. Manolakopoulos S, Avgerinos A, Vlachogiannakos J, et al. Octreotide versus hydrocortisone versus placebo in the prevention of post-ERCP pancreatitis: a multicenter randomized controlled trial. Gastrointest Endosc 2002 Apr 1; 55(4): 470–5

    Article  PubMed  Google Scholar 

  43. Hirano T, Manabe T, Tobe T. Protection by gabexate mesilate (FOY) of the exocrine pancreas in rats with acute pancreatitis induced by a supramaximal dose of caerulein. J Gastroenterol Hepatol 1991 May–Jun; 6(3): 260–4

    Article  PubMed  CAS  Google Scholar 

  44. Ristkari SK, Ramo OJ, Kiviniemi H, et al. The effect of gabexate mesilate on the outcome of acute hemorrhagic pancreatitis in pigs. Res Exp Med (Berl) 1989; 189(1): 1–8

    Article  CAS  Google Scholar 

  45. Pederzoli P, Cavallini G, Falconi M, et al. Gabexate mesilate vs aprotinin in human acute pancreatitis (GA.ME.P.A.): a prospective, randomized, double-blind multicenter study. Int J Pancreatol 1993 Oct; 14(2): 117–24

    PubMed  CAS  Google Scholar 

  46. Di Francesco V, Mariani A, Angelini G, et al. Effects of gabexate mesilate, a protease inhibitor, on human sphincter of Oddi motility. Dig Dis sci 2002 Apr; 47(4): 741–5

    Article  PubMed  Google Scholar 

  47. Cavallini G, Tittobello A, Frulloni L, et al. Gabexate for the prevention of pancreatic damage related to endoscopic retrograde cholangiopancreatography. Gabexate in digestive endoscopy: Italian Group. N Engl J Med 1996 Sep 26; 335(13): 919–23

    CAS  Google Scholar 

  48. Ziebert JJ, Bjorkman DJ. Protease inhibitors for prevention of ERCP pancreatitis: can we afford the price of success? Am J Gastroenterol 1997 Jun 1; 92(6): 1067–8

    PubMed  CAS  Google Scholar 

  49. Deviere J, Le Moine O, Van Laethem JL, et al. Interleukin 10 reduces the incidence of pancreatitis after therapeutic endoscopic retrograde cholangiopancreatography. Gastroenterology 2001 Feb; 120(2): 498–505

    Article  PubMed  CAS  Google Scholar 

  50. Dumot JA, Conwell DL, Zuccaro Jr G, et al. A randomized, double blind study of interleukin 10 for the prevention of ERCP-induced pancreatitis. Am J Gastroenterol 2001 Jul; 96(7): 2098–102

    Article  PubMed  CAS  Google Scholar 

  51. Staritz M, Poralla T, Ewe K, et al. Effect of glyceryl trinitrate on the sphincter of Oddi motility and baseline pressure. Gut 1985 Feb; 26(2): 194–7

    Article  PubMed  CAS  Google Scholar 

  52. Luman W, Pryde A, Heading RC, et al. Topical glyceryl trinitrate relaxes the sphincter of Oddi. Gut 1997 Apr; 40(4): 541–3

    PubMed  CAS  Google Scholar 

  53. Sudhindran S, Bromwich E, Edwards PR. Prospective randomized double-blind placebo-controlled trial of glyceryl trinitrate in endoscopie retrograde cholangiopancreatography-induced pancreatitis. Br J Surg 2001 Sep; 88(9): 1178–82

    Article  PubMed  CAS  Google Scholar 

  54. Imahori SC, Studley JG, Schenk Jr WG. Experimental acute pancreatitis in dogs and effects of steroids: a light and electron microscopic study with reference to pathogenesis. Pathol Res Pract 1984 May; 178(5): 483–90

    Article  PubMed  CAS  Google Scholar 

  55. Studley JG, Schenk Jr WG. Pathophysiology of acute pancreatitis: evaluation of the effect and mode of action of steroids in experimental pancreatitis in dogs. Am J Surg 1982 Jun; 143(6): 761–4

    Article  PubMed  CAS  Google Scholar 

  56. Lium B, Ruud TE, Pillgram-Larsen J, et al. Sodium taurocholate-induced acute pancreatitis in pigs: pathomorphological studies of the pancreas in untreated animals and animals pretreated with high doses of corticosteroids or protease inhibitors. Acta Pathol Microbiol Immunol Scand [A] 1987 Nov; 95(6): 377–82

    CAS  Google Scholar 

  57. Weiner GR, Geenen JE, Hogan WJ, et al. Use of corticosteroids in the prevention of post-ERCP pancreatitis. Gastrointest Endosc 1995 Dec; 42(6): 579–83

    Article  PubMed  CAS  Google Scholar 

  58. De Palma GD, Catanzano C. Use of corticosteriods in the prevention of post-ERCP pancreatitis: results of a controlled prospective study. Am J Gastroenterol 1999 Apr; 94(4): 982–5

    Article  PubMed  Google Scholar 

  59. Schmid SW, Uhl W, Friess H, et al. The role of infection in acute pancreatitis. Gut 1999 Aug; 45(2): 311–6

    Article  PubMed  CAS  Google Scholar 

  60. Hayashi J, Kawarada Y, Isaji S, et al. Therapeutic effects of continuous intraarterial antibiotic infusion in preventing pancreatic infection in experimental acute necrotizing pancreatitis. Pancreas 1996 Aug; 13(2): 184–92

    Article  PubMed  CAS  Google Scholar 

  61. Mithofer K, Fernandez-del Castillo C, et al. Antibiotic treatment improves survival in experimental acute necrotizing pancreatitis. Gastroenterology 1996 Jan; 110(1): 232–40

    Article  PubMed  CAS  Google Scholar 

  62. Raty S, Sand F, Pulkkinen M, et al. Post-ERCP pancreatitis: reduction by routine antibiotics. J Gastrointest Surg 2001 Jul–Aug; 5(4): 339–45

    Article  PubMed  CAS  Google Scholar 

  63. Gabryelewicz A, Kosidlo S, Prokopowicz J, et al. Does heparin modify protease-antiprotease balance in acute experimental pancreatitis in rats. Hepatogastroenterology 1986 Apr; 33(2): 79–82

    PubMed  CAS  Google Scholar 

  64. Dobosz M, Wajda Z, Hac S, et al. Nitric oxide, heparin and procaine treatment in experimental ceruleine-induced acute pancreatitis in rats. Arch Immunol Ther Exp (Warsz) 1999; 47(3): 155–60

    CAS  Google Scholar 

  65. Rabenstein T, Roggenbuck S, Framke B, et al. Complications of endoscopic sphincterotomy: can heparin prevent acute pancreatitis after ERCP? Gastrointest Endosc 2002 Apr; 55(4): 476–83

    Article  PubMed  Google Scholar 

  66. Guelrud M, Mendoza S, Rossiter G, et al. Effect of nifedipine on sphincter of Oddi motor activity: studies in healthy volunteers and patients with biliary dyskinesia. Gastroenterology 1988 Oct; 95(4): 1050–5

    PubMed  CAS  Google Scholar 

  67. Khuroo MS, Zargar SA, Yattoo GN. Efficacy of nifedipine therapy in patients with sphincter of Oddi dysfunction: a prospective, double-blind, randomized, placebo-controlled, cross over trial. Br J Clin Pharmacol 1992 May; 33(5): 477–85

    Article  PubMed  CAS  Google Scholar 

  68. Sand J, Nordback I. Prospective randomized trial of the effect of nifedipine on pancreatic irritation after endoscopic retrograde cholangiopancreatography. Digestion 1993; 54(2): 105–11

    Article  PubMed  CAS  Google Scholar 

  69. Odes HS, Novis BN, Barbezat GO, et al. Effect of calcitonin on the serum amylase levels after endoscopic retrograde cholangiopancreatography. Digestion 1977; 16(1–2): 180–4

    Article  PubMed  CAS  Google Scholar 

  70. Silvis SE, Vennes JA. The role of glucagon in endoscopic cholangiopancreatography. Gastrointest Endosc 1975 May; 21(4): 162–3

    Article  PubMed  CAS  Google Scholar 

  71. Budzynska A, Marek T, Nowak A, et al. A prospective, randomized, placebo-controlled trial of prednisone and allopurinol in the prevention of ERCP-induced pancreatitis. Endoscopy 2001 Sep; 33(9): 766–72

    Article  PubMed  CAS  Google Scholar 

  72. Satake K, Kimura K, Saito T. Therapeutic effects of loxiglumide on experimental acute pancreatitis using various models. Digestion 1999; 60 Suppl. 1: 64–8

    Article  PubMed  CAS  Google Scholar 

  73. Shiratori K, Takeuchi T, Satake K, et al. Clinical evaluation of oral administration of a cholecystokinin-a-receptor antagonist (loxiglumide) to patients with acute, painful attacks of chronic pancreatitis: a multicenter dose-response study in Japan. Pancreas 2002 Jul; 25(1): E1–5

    Article  PubMed  Google Scholar 

  74. Ochi K, Harada H, Satake K. Clinical evaluation of cholecystokinin-a-receptor antagonist (loxiglumide) for the treatment of acute pancreatitis: a preliminary clinical trial. Study Group of loxiglumide in Japan. Digestion 1999; 60 Suppl. 1: 81–5

    CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this manuscript. The authors have no conflicts of interest that are directly relevant to the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Thuluvath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pande, H., Thuluvath, P.J. Pharmacological Prevention of Post-Endoscopic Retrograde Cholangiopancreatography Pancreatitis. Drugs 63, 1799–1812 (2003). https://doi.org/10.2165/00003495-200363170-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200363170-00003

Keywords

Navigation