Skip to main content
Log in

Food-Drug Interactions

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Interactions between food and drugs may inadvertently reduce or increase the drug effect. The majority of clinically relevant food-drug interactions are caused by food-induced changes in the bioavailability of the drug. Since the bioavailability and clinical effect of most drugs are correlated, the bioavailability is an important pharmacokinetic effect parameter. However, in order to evaluate the clinical relevance of a food-drug interaction, the impact of food intake on the clinical effect of the drug has to be quantified as well. As a result of quality review in healthcare systems, healthcare providers are increasingly required to develop methods for identifying and preventing adverse food-drug interactions. In this review of original literature, we have tried to provide both pharmacokinetic and clinical effect parameters of clinically relevant food-drug interactions.

The most important interactions are those associated with a high risk of treatment failure arising from a significantly reduced bioavailability in the fed state. Such interactions are frequently caused by chelation with components in food (as occurs with alendronic acid, clodronic acid, didanosine, etidronic acid, penicillamine and tetracycline) or dairy products (ciprofloxacin and norfloxacin), or by other direct interactions between the drug and certain food components (avitriptan, indinavir, itraconazole solution, levodopa, melphalan, mercaptopurine and perindopril). In addition, the physiological response to food intake, in particular gastric acid secretion, may reduce the bioavailability of certain drugs (ampicillin, azithromycin capsules, didanosine, erythromycin stearate or enteric coated, and isoniazid). For other drugs, concomitant food intake may result in an increase in drug bioavailability either because of a food-induced increase in drug solubility (albendazole, atovaquone, griseofulvin, isotretinoin, lovastatin, mefloquine, saquinavir and tacrolimus) or because of the secretion of gastric acid (itraconazole capsules) or bile (griseofulvin and halofantrine) in response to food intake. For most drugs, such an increase results in a desired increase in drug effect, but in others it may result in serious toxicity (halofantrine).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I

Similar content being viewed by others

Notes

  1. Use of tradenames is for product identification purposes only and does not imply endorsement.

References

  1. Gauthier I, Malone M. Drug-food interactions in hospitalised patients. Methods of prevention. Drug Saf 1998; 18(6): 383–93

    Article  PubMed  CAS  Google Scholar 

  2. Harbour R, Miller J, on behalf of the Scottish Intercollegiate Guidelines Network Grading Review Group. A new system for grading recommendations in evidence based guidelines. BMJ 2001; 323: 334–6

    Article  PubMed  CAS  Google Scholar 

  3. Ray K, Dorman S, Watson R. Severe hyperkalaemia due to the concomitant use of salt substitutes and ACE inhibitors in hypertension: a potentially life threatening interaction. J Hum Hypertens 1999; 13(10): 717–20

    Article  PubMed  CAS  Google Scholar 

  4. Reardon LC, Macpherson DS. Hyperkalemia in outpatients using angiotensin-converting enzyme inhibitors. How much should we worry? Arch Intern Med 1998; 158(1): 26–32

    CAS  Google Scholar 

  5. McNamara PJ, Jewell RC, Jensen BK, et al. Food increases the bioavailability of acitretin. J Clin Pharmacol 1988; 28(11): 1051–5

    PubMed  CAS  Google Scholar 

  6. Gertz BJ, Holland SD, Kline WF, et al. Studies of the oral bioavailability of alendronate. Clin Pharmacol Ther 1995; 58(3): 288–98

    Article  PubMed  CAS  Google Scholar 

  7. Awadzi K, Hero M, Opoku NO, et al. The chemotherapy of onchocerciasis XVII. A clinical evaluation of albendazole in patients with onchocerciasis; effects of food and pretreatment with ivermectin on drug response and pharmacokinetics. Trop Med Parasitol 1994; 45(3): 203–8

    PubMed  CAS  Google Scholar 

  8. Lange H, Eggers R, Bircher J. Increased systemic availability of albendazole when taken with a fatty meal. Eur J Clin Pharmacol 1988; 34(3): 315–7

    Article  PubMed  CAS  Google Scholar 

  9. Eshelman FN, Spyker DA. Pharmacokinetics of amoxicillin and ampicillin: crossover study of the effect of food. Antimicrob Agents Chemother 1978; 14(4): 539–43

    Article  PubMed  CAS  Google Scholar 

  10. Neu HC. Antimicrobial activity and human pharmacology of amoxicillin. J Infect Dis 1974; 129: S123–31

    Article  PubMed  Google Scholar 

  11. Neuvonen PJ, Elonen E, Pentikainen PJ. Comparative effect of food on absorption of ampicillin and pivampicillin. J Int Med Res 1977; 5(1): 71–6

    PubMed  CAS  Google Scholar 

  12. Welling PG, Huang H, Koch PA, et al. Bioavailability of ampicillin and amoxicillin in fasted and nonfasted subjects. J Pharm Sci 1977; 66(4): 549–52

    Article  PubMed  CAS  Google Scholar 

  13. Welling PG, Tse FL. The influence of food on the absorption of antimicrobial agents. J Antimicrob Chemother 1982; 9(1): 7–27

    Article  PubMed  CAS  Google Scholar 

  14. Dixon R, Pozniak AL, Watt HM, et al. Single-dose and steady-state pharmacokinetics of a novel microfluidized suspension of atovaquone in human immunodeficiency virus-seropositive patients. Antimicrob Agents Chemother 1996; 40(3): 556–60

    PubMed  CAS  Google Scholar 

  15. Falloon J, Sargent S, Piscitelli SC, et al. Atovaquone suspension in HIV-infected volunteers: pharmacokinetics, pharmacodynamics, and TMP-SMX interaction study. Pharmacotherapy 1999; 19(9): 1050–6

    Article  PubMed  CAS  Google Scholar 

  16. Freeman CD, Klutman NE, Lamp KC, et al. Relative bioavailability of atovaquone suspension when administered with an enteral nutrition supplement. Ann Pharmacother 1998; 32(10): 1004–7

    Article  PubMed  CAS  Google Scholar 

  17. Rolan PE, Mercer AJ, Weatherley BC, et al. Examination of some factors responsible for a food-induced increase in absorption of atovaquone. Br J Clin Pharmacol 1994; 37(1): 13–20

    Article  PubMed  CAS  Google Scholar 

  18. Hopkins S. Clinical toleration and safety of azithromycin. Am J Med 1991; 91(3A): S40–5

    Article  Google Scholar 

  19. Singhvi SM, McKinstry DN, Shaw JM, et al. Effect of food on the bioavailability of captopril in healthy subjects. J Clin Pharmacol 1982; 22(2–3): 135–40

    PubMed  CAS  Google Scholar 

  20. Mäntylä R, Männistö PT, Vuorela A, et al. Impairment of captopril bioavailability by concomitant food and antacid intake. Int J Clin Pharmacol Ther Toxicol 1984; 22(11): 626–9

    PubMed  Google Scholar 

  21. Salvetti A, Pedrinelli R, Magagna A, et al. Influence of food on acute and chronic effects of captopril in essential hypertensive patients. J Cardiovasc Pharmacol 1985; 7 Suppl. 1: S25-9

    Google Scholar 

  22. Ohman KP, Kagedal B, Larsson R, et al. Pharmacokinetics of captopril and its effects on blood pressure during acute and chronic administration and in relation to food intake. J Cardiovasc Pharmacol 1985; 7 Suppl. 1: S20-4

    Google Scholar 

  23. Levy RH, Pitlick WH, Troupin AS, et al. Pharmacokinetics of carbamazepine in normal man. Clin Pharmacol Ther 1975; 17(6): 657–68

    PubMed  CAS  Google Scholar 

  24. Finn A, Straughn A, Meyer M, et al. Effect of dose and food on the bioavailability of cefuroxime axetil. Biopharm Drug Dispos 1987; 8(6): 519–26

    Article  PubMed  CAS  Google Scholar 

  25. Ginsburg CM, McCracken Jr GH, Petruska M, et al. Pharmacokinetics and bactericidal activity of cefuroxime axetil. Antimicrob Agents Chemother 1985; 28(4): 504–7

    Article  PubMed  CAS  Google Scholar 

  26. James NC, Donn KH, Collins JJ, et al. Pharmacokinetics of cefuroxime axetil and cefaclor: relationship of concentrations in serum to MICs for common respiratory pathogens. Antimicrob Agents Chemother 1991; 35(9): 1860–3

    Article  PubMed  CAS  Google Scholar 

  27. Sommers DK, van Wyk M, Moncrieff J, et al. Influence of food and reduced gastric acidity on the bioavailability of bacampicillin and cefuroxime axetil. Br J Clin Pharmacol 1984; 18(4): 535–9

    Article  PubMed  CAS  Google Scholar 

  28. Williams PE, Harding SM. The absolute bioavailability of oral cefuroxime axetil in male and female volunteers after fasting and after food. J Antimicrob Chemother 1984; 13(2): 191–6

    Article  PubMed  CAS  Google Scholar 

  29. McCracken Jr GH, Ginsburg CM, Clahsen JC, et al. Pharmacologic evaluation of orally administered antibiotics in infants and children: effect of feeding on bioavailability. Pediatrics 1978; 62(5): 738–43

    PubMed  Google Scholar 

  30. Neuvonen PJ, Kivisto KT, Lehto P. Interference of dairy products with the absorption of ciprofloxacin. Clin Pharmacol Ther 1991; 50 (5 Pt 1): 498–502

    Article  PubMed  CAS  Google Scholar 

  31. Laitinen K, Patronen A, Harju P, et al. Timing of food intake has a marked effect on the bioavailability of clodronate. Bone 2000; 27(2): 293–6

    Article  PubMed  CAS  Google Scholar 

  32. Schaad-Lanyi Z, Dieterle W, Dubois JP, et al. Pharmacokinetics of clofazimine in healthy volunteers. Int J Lepr Other Mycobact Dis 1987; 55(1): 9–15

    PubMed  CAS  Google Scholar 

  33. Hartman NR, Yarchoan R, Pluda JM, et al. Pharmacokinetics of 2’,3’-dideoxyinosine in patients with severe human immunodeficiency infection. II. The effects of different oral formulations and the presence of other medications. Clin Pharmacol Ther 1991; 50(3): 278–85

    Article  PubMed  CAS  Google Scholar 

  34. Knupp CA, Milbrath R, Barbhaiya RH. Effect of time of food administration on the bioavailability of didanosine from a chewable tablet formulation. J Clin Pharmacol 1993; 33(6): 568–73

    PubMed  CAS  Google Scholar 

  35. Shyu WC, Knupp CA, Pittman A, et al. Food-induced reduction in bioavailability of didanosine. Clin Pharmacol Ther 1991; 50 (5 Pt 1): 503–7

    Article  PubMed  CAS  Google Scholar 

  36. Brown DD, Juhl RP, Warner SL. Decreased bioavailability of digoxin due to hypocholesterolemic interventions. Circulation 1978; 58(1): 164–72

    Article  PubMed  CAS  Google Scholar 

  37. Huupponen R, Seppala P, Iisalo E. Effect of guar gum, a fibre preparation, on digoxin and penicillin absorption in man. Eur J Clin Pharmacol 1984; 26(2): 279–81

    Article  PubMed  CAS  Google Scholar 

  38. Meyer FP, Specht H, Quednow B, et al. Influence of milk on the bioavailability of doxycycline: new aspects. Infection 1989; 17(4): 245–6

    Article  PubMed  CAS  Google Scholar 

  39. Welling PG, Huang H, Hewitt PF, et al. Bioavailability of erythromycin stearate: influence of food and fluid volume. J Pharm Sci 1978; 67(6): 764–6

    Article  PubMed  CAS  Google Scholar 

  40. Welling PG, Elliott RL, Pitterle ME, et al. Plasma levels following single and repeated doses of erythromycin estolate and erythromycin stearate. J Pharm Sci 1979; 68(2): 150–5

    Article  PubMed  CAS  Google Scholar 

  41. Rutland J, Berend N, Marlin GE. The influence of food on the bioavailability of new formulations of erythromycin stearate and base. Br J Clin Pharmacol 1979; 8(4): 343–7

    Article  PubMed  CAS  Google Scholar 

  42. Schreiner A, Digranes A. Absorption of erythromycin stearate and enteric-coated erythromycin base after a single oral dose immediately before breakfast. Infection 1984; 12(5): 345–8

    Article  PubMed  CAS  Google Scholar 

  43. Digranes A, Josefsson K, Schreiner A. Influence of food on the absorption of erythromycin from enteric-coated pellets and stearate tablets. Curr Ther Res Clin Exp 1984; 35(3): 313–20

    CAS  Google Scholar 

  44. Clayton D, Leslie A. The bioavailability of erythromycin stearate versus enteric-coated erythromycin base when taken immediately before and after food. J Int Med Res 1981; 9(6): 470–7

    PubMed  CAS  Google Scholar 

  45. Mäntylä R, Ailio A, Allonen H, et al. Bioavailability and effect of food on the gastrointestinal absorption of two erythromycin derivatives. Ann Clin Res 1978; 10(5): 258–62

    PubMed  Google Scholar 

  46. Tuominen RK, Männistö PT, Pohto P, et al. Absorption of erythromycin acistrate and erythromycin base in the fasting and non-fasting state. J Antimicrob Chemother 1988; 21 Suppl. D: 45–55

    Article  PubMed  CAS  Google Scholar 

  47. Malmborg AS. Effect of food on absorption of erythromycin. A study of two derivatives, the stearate and the base. J Antimicrob Chemother 1979; 5(5): 591–9

    Article  PubMed  CAS  Google Scholar 

  48. Randinitis EJ, Sedman AJ, Welling PG, et al. Effect of ahigh-fat meal on the bioavailability of a polymer-coated erythromycin particle tablet formulation. J Clin Pharmacol 1989; 29(1): 79–84

    PubMed  CAS  Google Scholar 

  49. Coyne TC, Shum S, Chun AH, et al. Bioavailability of erythromycin ethylsuccinate in pediatric patients. J Clin Pharmacol 1978; 18(4): 194–202

    PubMed  CAS  Google Scholar 

  50. Cook GJ, Blake GM, Fogelman I. The time of day that etidronate is ingested does not influence its therapeutic effect in osteoporosis. Scand J Rheumatol 2000; 29(1): 62–4

    Article  PubMed  CAS  Google Scholar 

  51. Fogelman I, Smith L, Mazess R, et al. Absorption of oral diphosphonate in normal subjects. Clin Endocrinol (Oxf) 1986; 24(1): 57–62

    Article  CAS  Google Scholar 

  52. McCrindle JL, Li Kam Wa TC, Barren W, et al. Effect of food on the absorption of frusemide and bumetanide in man. Br J Clin Pharmacol 1996; 42(6): 743–6

    Article  PubMed  CAS  Google Scholar 

  53. Paintaud G, Alvan G, Eckernas SA, et al. The influence of food intake on the effect of two controlled release formulations of furosemide. Biopharm Drug Dispos 1995; 16(3): 221–32

    Article  PubMed  CAS  Google Scholar 

  54. Beermann B, Midskov C. Reduced bioavailability and effect of furosemide given with food. Eur J Clin Pharmacol 1986; 29(6): 725–7

    Article  PubMed  CAS  Google Scholar 

  55. Hammarlund MM, Paalzow LK, Odlind B. Pharmacokinetics of furosemide in man after intravenous and oral administration. Application of moment analysis. Eur J Clin Pharmacol 1984; 26(2): 197–207

    Article  PubMed  CAS  Google Scholar 

  56. Griffy KG. Pharmacokinetics of oral ganciclovir capsules in HIV-infected persons. AIDS 1996; 10 Suppl. 4: S3-6

    Google Scholar 

  57. Lavelle J, Follansbee S, Trapnell CB, et al. Effect of food on the relative bioavailability of oral ganciclovir. J Clin Pharmacol 1996; 36(3): 238–41

    PubMed  CAS  Google Scholar 

  58. Aoyagi N, Ogata H, Kaniwa N, et al. Effect of food on the bioavailability of griseofulvin from microsize and PEG ultra-microsize (GRIS-PEG) plain tablets. J Pharmacobiodyn 1982; 5(2): 120–4

    Article  PubMed  CAS  Google Scholar 

  59. Crounse RG. Human pharmacology of griseofulvin: the effect of fat intake on gastrointestinal absorption. J Invest Dermatol 1961; 37: 529–33

    Article  PubMed  CAS  Google Scholar 

  60. Ginsburg CM, McCracken GH, Petruska M, et al. Effect of feeding on bioavailability of griseofulvin in children. J Pediatr 1983; 102(2): 309–11

    Article  PubMed  CAS  Google Scholar 

  61. Khalafalla N, Elgholmy ZA, Khalil SA. Influence of high fat diet on GI absorption of griseofulvin tablets in man. Pharmazie 1981; 36(10): 692–3

    PubMed  CAS  Google Scholar 

  62. Ogunbona FA, Smith IF, Olawoye OS. Fat contents of meals and bioavailability of griseofulvin in man. J Pharm Pharmacol 1985; 37(4): 283–4

    Article  PubMed  CAS  Google Scholar 

  63. Milton KA, Edwards G, Ward SA, et al. Pharmacokinetics of halofantrine in man: effects of food and dose size. Br J Clin Pharmacol 1989; 28(1): 71–7

    Article  PubMed  CAS  Google Scholar 

  64. Melander A, Liedholm H, McLean A. Concomitant food intake does enhance the bioavailability and effect of hydralazine. Clin Pharmacol Ther 1985; 38(4): 475–6

    Article  PubMed  CAS  Google Scholar 

  65. Waiden RJ, Hernandez R, Witts D, et al. Effect of food on the absorption of hydralazine in man. Eur J Clin Pharmacol 1981; 20(1): 53–8

    Article  Google Scholar 

  66. Liedholm H, Wahlin-Boll E, Hanson A, et al. Influence of food on the bioavailability of ‘real’ and ‘apparent’ hydralazine from conventional and slow-release preparations. Drug Nutr Interact 1982; 1(4): 293–302

    PubMed  CAS  Google Scholar 

  67. Jackson SH, Shepherd AM, Ludden TM, et al. Effect of food on oral availability of apresoline and controlled release hydralazine in hypertensive patients. J Cardiovasc Pharmacol 1990; 16(4): 624–8

    Article  PubMed  CAS  Google Scholar 

  68. Shepherd AM, Irvine NA, Ludden TM. Effect of food on blood hydralazine levels and response in hypertension. Clin Pharmacol Ther 1984; 36(1): 14–8

    Article  PubMed  CAS  Google Scholar 

  69. Semple HA, Koo W, Tarn YK, et al. Interactions between hydralazine and oral nutrients in humans. Ther Drug Monit 1991; 13(4): 304–8

    Article  PubMed  CAS  Google Scholar 

  70. Yeh KC, Deutsch PJ, Haddix H, et al. Single-dose pharmacokinetics of indinavir and the effect of food. Antimicrob Agents Chemother 1998; 42(2): 332–8

    PubMed  CAS  Google Scholar 

  71. Joshi MV, Saraf YS, Kshirsagar NA, et al. Food reduces isoniazid bioavailability in normal volunteers. J Assoc Physicians India 1991; 39(6): 470–1

    PubMed  CAS  Google Scholar 

  72. Männistö P, Mäntylä R, Klinge E, et al. Influence of various diets on the bioavailability of isoniazid. J Antimicrob Chemother 1982; 10(5): 427–34

    Article  PubMed  Google Scholar 

  73. Melander A, Danielson K, Hanson A, et al. Reduction of isoniazid bioavailability in normal men by concomitant intake of food. Acta Med Scand 1976; 200(1–2): 93–7

    PubMed  CAS  Google Scholar 

  74. Peloquin CA, Namdar R, Dodge AA, et al. Pharmacokinetics of isoniazid under fasting conditions, with food, and with antacids. Int J Tuberc Lung Dis 1999; 3(8): 703–10

    PubMed  CAS  Google Scholar 

  75. Zent C, Smith P. Study of the effect of concomitant food on the bioavailability of rifampicin, isoniazid and pyrazinamide. Tuber Lung Dis 1995; 76(2): 109–13

    Article  PubMed  CAS  Google Scholar 

  76. Colburn WA, Gibson DM, Wiens E, et al. Food increases the bioavailability of isotretinoin. J Clin Pharmacol 1983; 23(11–12): 534–9

    PubMed  CAS  Google Scholar 

  77. Barone JA, Koh JG, Bierman RH, et al. Food interaction and steady-state pharmacokinetics of itraconazole capsules in healthy male volunteers. Antimicrob Agents Chemother 1993; 37(4): 778–84

    Article  PubMed  CAS  Google Scholar 

  78. Van Peer A, Woestenborghs R, Heykants J, et al. The effects of food and dose on the oral systemic availability of itraconazole in healthy subjects. Eur J Clin Pharmacol 1989; 36(4): 423–6

    Article  PubMed  Google Scholar 

  79. Wishart JM. The influence of food on the pharmacokinetics of itraconazole in patients with superficial fungal infection. J Am Acad Dermatol 1987; 17 (2 Pt 1): 220–3

    Article  PubMed  CAS  Google Scholar 

  80. Zimmermann T, Yeates RA, Albrecht M, et al. Influence of concomitant food intake on the gastrointestinal absorption of fluconazole and itraconazole in Japanese subjects. Int J Clin Pharmacol Res 1994; 14(3): 87–93

    PubMed  CAS  Google Scholar 

  81. Zimmermann T, Yeates RA, Laufen H, et al. Influence of concomitant food intake on the oral absorption of two triazole antifungal agents, itraconazole and fluconazole. Eur J Clin Pharmacol 1994; 46(2): 147–50

    Article  PubMed  CAS  Google Scholar 

  82. Barone JA, Moskovitz BL, Guarnieri J, et al. Food interaction and steady-state pharmacokinetics of itraconazole oral solution in healthy volunteers. Pharmacotherapy 1998; 18(2): 295–301

    PubMed  CAS  Google Scholar 

  83. Van de Velde V, Van Peer AP, Heykants JJ, et al. Effect of food on the pharmacokinetics of a new hydroxypropyl-beta-cyclodextrin formulation of itraconazole. Pharmacotherapy 1996; 16(3): 424–8

    PubMed  Google Scholar 

  84. Astarloa R, Mena MA, Sanchez V, et al. Clinical and pharmacokinetic effects of a diet rich in insoluble fiber on Parkinson disease. Clin Neuropharmacol 1992; 15(5): 375–80

    Article  PubMed  CAS  Google Scholar 

  85. Baruzzi A, Contin M, Riva R, et al. Influence of meal ingestion time on pharmacokinetics of orally administered levodopa in parkinsonian patients. Clin Neuropharmacol 1987; 10(6): 527–37

    Article  PubMed  CAS  Google Scholar 

  86. Contin M, Riva R, Martinelli P, et al. Effect of meal timing on the kinetic-dynamic profile of levodopa/carbidopa controlled release in parkinsonian patients. Eur J Clin Pharmacol 1998; 54(4): 303–8

    Article  PubMed  CAS  Google Scholar 

  87. Nutt JG, Woodward WR, Hammerstad JP, et al. The ‘on-off’ phenomenon in Parkinson’s disease. Relation to levodopa absorption and transport. N Engl J Med 1984; 310(8): 483–8

    Article  PubMed  CAS  Google Scholar 

  88. Malcolm SL, Allen JG, Bird H, et al. Single-dose pharmacokinetics of Madopar HBS in patients and effect of food and antacid on the absorption of Madopar HBS in volunteers. Eur Neurol 1987; 27 Suppl. 1: 28–35

    Article  PubMed  Google Scholar 

  89. Richter WO, Jacob BG, Schwandt P. Interaction between fibre and lovastatin [letter]. Lancet 1991; 338(8768): 706

    Article  PubMed  CAS  Google Scholar 

  90. Dobrinska MR, Stubbs RJ, Gregg H, et al. Effects of dose and food on HMG-CoA reductase inhibitor profiles after lovastatin (mevacor) [abstract]. Pharm Res 1988; 5: S182

    Google Scholar 

  91. McCabe BJ. Dietary tyramine and other pressor amines in MAOI regimens: a review. J Am Diet Assoc 1986; 86(8): 1059–64

    PubMed  CAS  Google Scholar 

  92. Blackwell B, Marley E, Price J, et al. Hypertensive interactions between monoamine oxidase inhibitors and foodstuffs. Br J Psychiatry 1967; 113(497): 349–65

    Article  PubMed  CAS  Google Scholar 

  93. Crevoisier C, Handschin J, Barre J, et al. Food increases the bioavailability of mefloquine. Eur J Clin Pharmacol 1997; 53(2): 135–9

    Article  PubMed  CAS  Google Scholar 

  94. Bosanquet AG, Gilby ED. Comparison of the fed and fasting states on the absorption of melphalan in multiple myeloma. Cancer Chemother Pharmacol 1984; 12(3): 183–6

    Article  PubMed  CAS  Google Scholar 

  95. Reece PA, Kotasek D, Morris RG, et al. The effect of food on oral melphalan absorption. Cancer Chemother Pharmacol 1986; 16(2): 194–7

    Article  PubMed  CAS  Google Scholar 

  96. Dupuis LL, Koren G, Silverman ED, et al. Influence of food on the bioavailability of oral methotrexate in children. J Rheumatol 1995; 22(8): 1570–3

    PubMed  CAS  Google Scholar 

  97. Madanat F, Awidi A, Shaheen O, et al. Effects of food and gender on the pharmacokinetics of methotrexate in children. Res Commun Chem Pathol Pharmacol 1987; 55(2): 279–82

    PubMed  CAS  Google Scholar 

  98. Pinkerton CR, Welshman SG, Glasgow JF, et al. Can food influence the absorption of methotrexate in children with acute lymphoblastic leukaemia? Lancet 1980; 2(8201): 944–6

    Article  PubMed  CAS  Google Scholar 

  99. Burton NK, Barnett MJ, Aherne GW, et al. The effect of food on the oral administration of 6-mercaptopurine. Cancer Chemother Pharmacol 1986; 18(1): 90–1

    Article  PubMed  CAS  Google Scholar 

  100. Lonnerholm G, Kreuger A, Lindstrom B, et al. Oral mercaptopurine in childhood leukemia: influence of food intake on bioavailability. Pediatr Hematol Oncol 1989; 6(2): 105–12

    Article  PubMed  CAS  Google Scholar 

  101. Riccardi R, Balis FM, Ferrara P, et al. Influence of food intake on bioavailability of oral 6-mercaptopurine in children with acute lymphoblastic leukemia. Pediatr Hematol Oncol 1986; 3(4): 319–24

    Article  PubMed  CAS  Google Scholar 

  102. Karim A, Rozek LF, Smith ME, et al. Effects of food and antacid on oral absorption of misoprostol, a synthetic prostaglandin E1 analog. J Clin Pharmacol 1989; 29(5): 439–43

    PubMed  CAS  Google Scholar 

  103. Rutgeerts P, Vantrappen G, Hiele M. Postprandial administration of prostaglandin (misoprostol) produces less adverse effects on intestinal transit than its preprandial administration [abstract]. Gastroenterology 1988; 94 (5 Pt 2): A391

    Google Scholar 

  104. Challenor VF, Waller DG, Gruchy BS, et al. Food and nifedipine pharmacokinetics. Br J Clin Pharmacol 1987; 23(2): 248–9

    Article  PubMed  CAS  Google Scholar 

  105. Hirasawa K, Shen WF, Kelly DT, et al. Effect of food ingestion on nifedipine absorption and haemodynamic response. Eur J Clin Pharmacol 1985; 28(1): 105–7

    Article  PubMed  CAS  Google Scholar 

  106. Reitberg DP, Love SJ, Quercia T, et al. Effect of food on nifedipine pharmacokinetics. Clin Pharmacol Ther 1987; 42(1): 2–5

    Article  Google Scholar 

  107. Ochs HR, Ramsch KD, Verburg-Ochs B, et al. Nifedipine: kinetics and dynamics after single oral doses. Klin Wochenschr 1984; 62(9): 427–9

    Article  PubMed  CAS  Google Scholar 

  108. Ueno K, Kawashima S, Uemoto K, et al. Effect of food on nifedipine sustained-release preparation. DICP 1989; 23(9): 662–5

    PubMed  CAS  Google Scholar 

  109. Balogh Nemes K, Horvath V, Grezal G, et al. Food interaction pharmacokinetic study of cordaflex 20 mg retard filmtablet in healthy volunteers. Int J Clin Pharmacol Ther 1998; 36(5): 263–9

    PubMed  CAS  Google Scholar 

  110. Abrahamsson B, Alpsten M, Bake B, et al. Drug absorption from nifedipine hydrophilic matrix extended-release (ER) tablet-comparison with an osmotic pump tablet and effect of food. J Control Release 1998; 52(3): 301–10

    Article  PubMed  CAS  Google Scholar 

  111. Minami R, Inotsume N, Nakano M, et al. Effect of milk on absorption of norfloxacin in healthy volunteers. J Clin Pharmacol 1993; 33(12): 1238–40

    PubMed  CAS  Google Scholar 

  112. Wise R. Norfloxacin —a review of pharmacology and tissue penetration. J Antimicrob Chemother 1984; 13 Suppl. B: 59–64

    Article  PubMed  CAS  Google Scholar 

  113. Bozigian HP, Pritchard JF, Gooding AE, et al. Ondansetron absorption in adults: effect of dosage form, food, and antacids. J Pharm Sci 1994; 83(7): 1011–3

    Article  PubMed  CAS  Google Scholar 

  114. Bergstrom RF, Kay DR, Harkcom TM, et al. Penicillamine kinetics in normal subjects. Clin Pharmacol Ther 1981; 30(3): 404–13

    Article  PubMed  CAS  Google Scholar 

  115. Osman MA, Patel RB, Schuna A, et al. Reduction in oral penicillamine absorption by food, antacid, and ferrous sulfate. Clin Pharmacol Ther 1983; 33(4): 465–70

    Article  PubMed  CAS  Google Scholar 

  116. Schuna A, Osman MA, Patel RB, et al. Influence of food on the bioavailability of penicillamine. J Rheumatol 1983; 10(1): 95–7

    PubMed  CAS  Google Scholar 

  117. Berlin H, Brante G. Studies on oral utilization of penicillin V. Antibiotics Annu 1958–1959: 149–57

  118. Finkel Y, Bolme P, Eriksson M. The effect of food on the oral absorption of penicillin V preparations in children. Acta Pharmacol Toxicol 1981; 49(4): 301–4

    Article  CAS  Google Scholar 

  119. McCarthy CG, Finland M. Absorption and excretion of four penicillins; penicillin G, penicillin V, phenethicillin and phenylmercaptomethyl penicillin. N Engl J Med 1960; 263: 315–26

    Article  Google Scholar 

  120. Lecocq B, Funck-Brentano C, Lecocq V, et al. Influence of food on the pharmacokinetics of perindopril and the time course of angiotensin-converting enzyme inhibition in serum. Clin Pharmacol Ther 1990; 47(3): 397–402

    Article  PubMed  CAS  Google Scholar 

  121. Bauer LA. Interference of oral phenytoin absorption by continuous nasogastric feedings. Neurology 1982; 32(5): 570–2

    Article  PubMed  CAS  Google Scholar 

  122. Hatton RC. Dietary interaction with phenytoin. Clin Pharm 1984; 3(2): 110–1

    PubMed  CAS  Google Scholar 

  123. Rodman DP, Stevenson TL, Ray TR. Phenytoin malabsorption after jejunostomy tube delivery. Pharmacotherapy 1995; 15(6): 801–5

    PubMed  CAS  Google Scholar 

  124. Worden Jr JP, Wood Jr CA, Workman CH. Phenytoin and nasogastric feedings [letter]. Neurology 1984; 34(1): 132

    Article  PubMed  Google Scholar 

  125. Pan HY, DeVault AR, Brescia D, et al. Effect of food on pravastatin pharmacokinetics and pharmacodynamics. Int J Clin Pharmacol Ther Toxicol 1993; 31(6): 291–4

    PubMed  CAS  Google Scholar 

  126. Woo E, Greenblatt DJ. Effect of food on enteral absorption of quinidine. Clin Pharmacol Ther 1980; 27(2): 188–93

    Article  PubMed  CAS  Google Scholar 

  127. Buniva G, Pagani V, Carozzi A. Bioavailability of rifampicin capsules. Int J Clin Pharmacol Ther Toxicol 1983; 21(8): 404–9

    PubMed  CAS  Google Scholar 

  128. Polasa K, Krishnaswamy K. Effect of food on bioavailability of rifampicin. J Clin Pharmacol 1983; 23(10): 433–7

    PubMed  CAS  Google Scholar 

  129. Siegler DI, Bryant M, Burley DM, et al. Effect of meals on rifampicin absorption. Lancet 1974; 2(7874): 197–8

    Article  PubMed  CAS  Google Scholar 

  130. Peloquin CA, Namdar R, Singleton MD, et al. Pharmacokinetics of rifampin under fasting conditions, with food, and with antacids. Chest 1999; 115(1): 12–8

    Article  PubMed  CAS  Google Scholar 

  131. Verbist L, Gyselen A. Antituberculous activity of rifampin in vitro and in vivo and the concentrations attained in human blood. Am Rev Respir Dis 1968; 98(6): 923–32

    PubMed  CAS  Google Scholar 

  132. Gill GV. Rifampicin and breakfast [letter]. Lancet 1976; 2(7995): 1135

    Article  PubMed  CAS  Google Scholar 

  133. Kenyon CJ, Brown F, McClelland GR, et al. The use of pharmacoscintigraphy to elucidate food effects observed with a novel protease inhibitor (saquinavir). Pharm Res 1998; 15(3): 417–22

    Article  PubMed  CAS  Google Scholar 

  134. Muirhead GJ, Shaw T, Williams EO, et al. Pharmacokinetics of the HIV-protease inhibitor, Ro 318959, after single and multiple oral doses in healthy volunteers. Br J Clin Pharmacol 1992; 34: P170–1

    Google Scholar 

  135. Morgan TO. Clinical use of potassium supplements and potassium sparing diuretics. Drugs 1973; 6(3): 222–9

    Article  PubMed  CAS  Google Scholar 

  136. Yap V, Patel A, Thomsen J. Hyperkalemia with cardiac arrhythmia. Induction by salt substitutes, spironolactone, and azotemia. JAMA 1976; 236(24): 2775–6

    Article  PubMed  CAS  Google Scholar 

  137. Welty DF, Siedlik PH, Posvar EL, et al. The temporal effect of food on tacrine bioavailability. J Clin Pharmacol 1994; 34(10): 985–8

    PubMed  CAS  Google Scholar 

  138. Bekersky I, Dressier D, Mekki QA. Effect of low-and high-fat meals on tacrolimus absorption following 5 mg single oral doses to healthy human subjects. J Clin Pharmacol 2001; 41(2): 176–82

    Article  PubMed  CAS  Google Scholar 

  139. Jung H, Peregrina AA, Rodriguez JM, et al. The influence of coffee with milk and tea with milk on the bioavailability of tetracycline. Biopharm Drug Dispos 1997; 18(5): 459–63

    Article  PubMed  CAS  Google Scholar 

  140. Leyden JJ. Absorption of minocycline hydrochloride and tetracycline hydrochloride. Effect of food, milk, and iron. J Am Acad Dermatol 1985; 12 (2 Pt 1): 308–12

    Article  PubMed  CAS  Google Scholar 

  141. Neuvonen PJ. Interactions with the absorption of tetracyclines. Drugs 1976; 11(1): 45–54

    Article  PubMed  CAS  Google Scholar 

  142. Welling PG, Koch PA, Lau CC, et al. Bioavailability of tetracycline and doxycycline in fasted and nonfasted subjects. Antimicrob Agents Chemother 1977; 11(3): 462–9

    Article  PubMed  CAS  Google Scholar 

  143. Hendeles L, Weinberger M, Milavetz G, et al. Food-induced ‘dose-dumping’ from a once-a-day theophylline product as a cause of theophylline toxicity. Chest 1985; 87(6): 758–65

    Article  PubMed  CAS  Google Scholar 

  144. Karim A, Burns T, Wearley L, et al. Food-induced changes in theophylline absorption from controlled-release formulations. Part I. Substantial increased and decreased absorption with Uniphyl tablets and Theo-Dur Sprinkle. Clin Pharmacol Ther 1985; 38(1): 77–83

    Article  PubMed  CAS  Google Scholar 

  145. Steffensen G, Pedersen S. Food induced changes in theophylline absorption from a once-a-day theophylline product. Br J Clin Pharmacol 1986; 22(5): 571–7

    Article  PubMed  CAS  Google Scholar 

  146. Young MA, Lettis S, Eastmond R. Improvement in the gastrointestinal absorption of troglitazone when taken with, or shortly after, food. Br J Clin Pharmacol 1998; 45(1): 31–5

    Article  PubMed  CAS  Google Scholar 

  147. Karlson B, Leijd B, Hellstrom K. On the influence of vitamin K-rich vegetables and wine on the effectiveness of warfarin treatment. Acta Med Scand 1986; 220(4): 347–50

    Article  PubMed  CAS  Google Scholar 

  148. Kudo T. Warfarin antagonism of natto and increase in serum vitamin K by intake of natto. Artery 1990; 17(4): 189–201

    PubMed  CAS  Google Scholar 

  149. Parr MD, Record KE, Griffith GL, et al. Effect of enteral nutrition on warfarin therapy. Clin Pharm 1982; 1(3): 274–6

    PubMed  CAS  Google Scholar 

  150. Qureshi GD, Reinders TP, Swint JJ, et al. Acquired warfarin resistance and weight-reducing diet. Arch Intern Med 1981; 141(4): 507–9

    Article  PubMed  CAS  Google Scholar 

  151. Nazareno LA, Holazo AA, Limjuco R, et al. The effect of food on pharmacokinetics of zalcitabine in HIV-positive patients. Pharm Res 1995; 12(10): 1462–5

    Article  PubMed  CAS  Google Scholar 

  152. Hamelin BA, Allard S, Laplante L, et al. The effect of timing of a standard meal on the pharmacokinetics and pharmacodynamics of the novel atypical antipsychotic agent ziprasidone. Pharmacotherapy 1998; 18(1): 9–15

    PubMed  CAS  Google Scholar 

  153. Miceli JJ, Hunt T, Cole MJ, et al. Pharmacokinetics of Cp-88,059 (CP) in healthy male volunteers following oral (PO) and intravenous (IV) administration [abstract]. Clin Pharmacol Ther 1994; 55(2): 142

    Google Scholar 

  154. Aaes-Jorgensen T, Liedholm H, Melander A. Influence of food intake on the bioavailability of zuclopenthixol. Drug Nutr Interact 1987; 5(3): 157–60

    PubMed  CAS  Google Scholar 

  155. Singh BN. Effects of food on clinical pharmacokinetics. Clin Pharmacokinet 1999; 37(3): 213–55

    Article  PubMed  CAS  Google Scholar 

  156. Charman WN, Porter CJ, Mithani S, et al. Physiochemical and physiological mechanisms for the effects of food on drug absorption: the role of lipids and pH. J Pharm Sci 1997; 86(3): 269–82

    Article  PubMed  CAS  Google Scholar 

  157. Kane GC, Lipsky JJ. Drug-grapefruit juice interactions. Mayo Clin Proc 2000; 75(9): 933–42

    Article  PubMed  CAS  Google Scholar 

  158. Musa MN, Lyons LL. Absorption and disposition of warfarin: effect of food and liquids. Curr Ther Res 1976; 20: 630–3

    CAS  Google Scholar 

  159. Blickstein D, Shaklai M, Inbal A. Warfarin antagonism by avocado. Lancet 1991; 337(8746): 914–5

    Article  PubMed  CAS  Google Scholar 

  160. Greenblatt DJ, Duhme DW, Koch-Weser J, et al. Bioavailability of digoxin tablets and elixir in the fasting and postprandial states. Clin Pharmacol Ther 1974; 16(3): 444–8

    PubMed  CAS  Google Scholar 

  161. Johnson BF, O’Grady J, Sabey GA, et al. Effect of a standard breakfast on digoxin absorption in normal subjects. Clin Pharmacol Ther 1978; 23(3): 315–9

    PubMed  CAS  Google Scholar 

  162. White RJ, Chamberlain DA, Howard M, et al. Plasma concentrations of digoxin after oral administration in the fasting and postprandial state. BMJ 1971; 1(745): 380–1

    Article  PubMed  CAS  Google Scholar 

  163. Rodin SM, Johnson BF. Pharmacokinetic interactions with digoxin. Clin Pharmacokinet 1988; 15(4): 227–44

    Article  PubMed  CAS  Google Scholar 

  164. Spenard J, Sirois G, Gagnon MA. Influence of food on the comparative bioavailability of a fast-and slow-release dosage form of quinidine gluconate. Int J Clin Pharmacol Ther Toxicol 1983; 21(1): 1–9

    PubMed  CAS  Google Scholar 

  165. Martinez MN, Pelsor FR, Shah VP, et al. Effect of dietary fat content on the bioavailability of a sustained release quinidine gluconate tablet. Biopharm Drug Dispos 1990; 11(1): 17–29

    Article  PubMed  CAS  Google Scholar 

  166. Ace LN, Jaffe JM, Kunka RL. Effect of food and an antacid on quinidine bioavailability. Biopharm Drug Dispos 1983; 4(2): 183–90

    Article  PubMed  CAS  Google Scholar 

  167. Melander A, Danielson K, Hanson A, et al. Enhancement of hydralazine bioavailability by food. Clin Pharmacol Ther 1977; 22(1): 104–7

    PubMed  CAS  Google Scholar 

  168. Armstrong J, Challenor VF, Macklin BS, et al. The influence of two types of meal on the pharmacokinetics of a modified-release formulation of nifedipine (Adalat Retard). Eur J Clin Pharmacol 1997; 53(2): 141–3

    Article  PubMed  CAS  Google Scholar 

  169. Chung M, Reitberg DP, Gaffney M, et al. Clinical pharmacokinetics of nifedipine gastrointestinal therapeutic system. A controlled-release formulation of nifedipine. Am J Med 1987; 83(6B): 10–4

    Article  PubMed  CAS  Google Scholar 

  170. Bailey DG, Spence JD, Munoz C, et al. Interaction of citrus juices with felodipine and nifedipine. Lancet 1991; 337(8736): 268–9

    Article  PubMed  CAS  Google Scholar 

  171. Sigusch H, Henschel L, Kraul H, et al. Lack of effect of grapefruit juice on diltiazem bioavailability in normal subjects. Pharmazie 1994; 49(9): 675–9

    PubMed  CAS  Google Scholar 

  172. Zaidenstein R, Dishi V, Gips M, et al. The effect of grapefruit juice on the pharmacokinetics of orally administered verapamil. Eur J Clin Pharmacol 1998; 54(4): 337–40

    Article  PubMed  CAS  Google Scholar 

  173. Massarella JW, DeFeo TM, Brown AN, et al. The influence of food on the pharmacokinetics and ACE inhibition of cilazapril. Br J Clin Pharmacol 1989; 27 Suppl. 2: S205-9

    Google Scholar 

  174. Swanson BN, Vlasses PH, Ferguson RK, et al. Influence of food on the bioavailability of enalapril. J Pharm Sci 1984; 73(11): 1655–7

    Article  PubMed  CAS  Google Scholar 

  175. Mojaverian P, Rocci Jr ML, Vlasses PH, et al. Effect of food on the bioavailability of lisinopril, a nonsulfhydryl angiotensin-converting enzyme inhibitor. J Pharm Sci 1986; 75(4): 395–7

    Article  PubMed  CAS  Google Scholar 

  176. Radulovic LL, Cilla DD, Posvar EL, et al. Effect of food on the bioavailability of atorvastatin, an HMG-CoA reductase inhibitor. J Clin Pharmacol 1995; 35(10): 990–4

    PubMed  CAS  Google Scholar 

  177. Whitfield LR, Stern RH, Sedman AJ, et al. Effect of food on the pharmacodynamics and pharmacokinetics of atorvastatin, an inhibitor of HMG-CoA reductase. Eur J Drug Metab Pharmacokinet 2000; 25(2): 97–101

    Article  PubMed  CAS  Google Scholar 

  178. Dujovne CA, Davidson MH. Fluvastatin administration at bedtime versus with the evening meal: a multicenter comparison of bioavailability, safety, and efficacy. Am J Med 1994; 96(6A): S37–40

    Article  Google Scholar 

  179. Kantola T, Kivisto KT, Neuvonen PJ. Grapefruit juice greatly increases serum concentrations of lovastatin and lovastatin acid. Clin Pharmacol Ther 1998; 63(4): 397–402

    Article  PubMed  CAS  Google Scholar 

  180. Lilja JJ, Kivisto KT, Neuvonen PJ. Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin. Clin Pharmacol Ther 1999; 66(2): 118–27

    PubMed  CAS  Google Scholar 

  181. Lilja JJ, Kivisto KT, Neuvonen PJ. Grapefruit juice-simvastatin interaction: effect on serum concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors. Clin Pharmacol Ther 1998; 64(5): 477–83

    Article  PubMed  CAS  Google Scholar 

  182. Ginsburg CM, McCracken Jr GH, Thomas ML, et al. Comparative pharmacokinetics of amoxicillin and ampicillin in infants and children. Pediatrics 1979; 64(5): 627–31

    PubMed  CAS  Google Scholar 

  183. Lutz M, Espinoza J, Arancibia A, et al. Effect of structured dietary fiber on bioavailability of amoxicillin. Clin Pharmacol Ther 1987; 42(2): 220–4

    Article  PubMed  CAS  Google Scholar 

  184. Munkholm P, Olsen J, Hovgaard C, et al. Absorption of pivampicillin as related to dose, and tolerability of a 700 mg tablet. Infection 1993; 21(1): 30–3

    Article  PubMed  CAS  Google Scholar 

  185. Tetzlaff TR, McCracken GH, Jr., Thomas ML. Bioavailability of cephalexin in children: relationship to drug formulations and meals. J Pediatr 1978; 92(2): 292–4

    Article  PubMed  CAS  Google Scholar 

  186. Gower PE, Dash CH. Cephalexin: human studies of absorption and excretion of a new cephalosporin antibiotic. Br J Pharmacol 1969; 37(3): 738–47

    Article  PubMed  CAS  Google Scholar 

  187. Segre G, Bianchi E, Zanolo G. Influence of food on the bioavailability of roxithromycin versus erythromycin stearate. Br J Clin Pract 1998; Suppl. 55: 55–7

    Google Scholar 

  188. Thompson PJ, Burgess KR, Marlin GE. Influence of food on absorption of erythromycin ethyl succinate. Antimicrob Agents Chemother 1980; 18(5): 829–31

    Article  PubMed  CAS  Google Scholar 

  189. Järvinen A, Nykänen S, Mattila J, et al. Effect of food on absorption and hydrolysis of erythromycin acistrate. Arzneimittelforschung 1992; 42(1): 73–6

    PubMed  Google Scholar 

  190. Hovi T, Heikinheimo M. Effect of concomitant food intake on absorption kinetics of erythromycin in healthy volunteers. Eur J Clin Pharmacol 1985; 28(2): 231–3

    Article  PubMed  CAS  Google Scholar 

  191. Simicevic VN, Erceg D, Dohoczky C, et al. Lack of effect of food on the bioavailability of oral azithromycin tablets. Clin Drug Invest 1998; 16(5): 405–10

    Article  CAS  Google Scholar 

  192. Foulds G, Luke DR, Teng R, et al. The absence of an effect of food on the bioavailability of azithromycin administered as tablets, sachet or suspension. J Antimicrob Chemother 1996; 37 Suppl. C: 37–44

    Article  PubMed  CAS  Google Scholar 

  193. Chu S, Park Y, Locke C, et al. Drug-food interaction potential of clarithromycin, anew macrolide antimicrobial. J Clin Pharmacol 1992; 32(1): 32–6

    PubMed  CAS  Google Scholar 

  194. Puri SK, Lassman HB. Roxithromycin: a pharmacokinetic review of a macrolide. J Antimicrob Chemother 1987; 20 Suppl B: 89–100

    Article  PubMed  CAS  Google Scholar 

  195. Kanazawa S, Ohkubo T, Sugawara K. The effects of grapefruit juice on the pharmacokinetics of erythromycin. Eur J Clin Pharmacol 2001; 56(11): 799–803

    Article  PubMed  CAS  Google Scholar 

  196. Cheng KL, Nafziger AN, Peloquin CA, et al. Effect of grapefruit juice on clarithromycin pharmacokinetics. Antimicrob Agents Chemother 1998; 42(4): 927–9

    PubMed  CAS  Google Scholar 

  197. Ledergerber B, Bettex JD, Joos B, et al. Effect of standard breakfast on drug absorption and multiple-dose pharmacokinetics of ciprofloxacin. Antimicrob Agents Chemother 1985; 27(3): 350–2

    Article  PubMed  CAS  Google Scholar 

  198. Frost RW, Carlson JD, Dietz Jr AJ, et al. Ciprofloxacin pharmacokinetics after a standard or high-fat/high-calcium breakfast. J Clin Pharmacol 1989; 29(10): 953–5

    PubMed  CAS  Google Scholar 

  199. Höffken G, Lode H, Wiley R, et al. Pharmacokinetics and bioavailability of ciproxin and ofloxacin: effect of food and antacid intake. Rev Infect Dis 1988; 10 Suppl. 1: S138-9

    Google Scholar 

  200. Leroy A, Borsa F, Humbert G, et al. The pharmacokinetics of ofloxacin in healthy adult male volunteers. Eur J Clin Pharmacol 1987; 31(5): 629–30

    Article  PubMed  CAS  Google Scholar 

  201. Verho M, Malerczyk V, Dagrosa E, et al. The effect of food on the pharmacokinetics of ofloxacin. Curr Med Res Opin 1986; 10(3): 166–71

    Article  PubMed  CAS  Google Scholar 

  202. Dudley MN, Marchbanks CR, Flor SC, et al. The effect of food or milk on the absorption kinetics of ofloxacin. Eur J Clin Pharmacol 1991; 41(6): 569–71

    Article  PubMed  CAS  Google Scholar 

  203. Neuvonen PJ, Kivisto KT. Milk and yoghurt do not impair the absorption of ofloxacin. Br J Clin Pharmacol 1992; 33(3): 346–8

    Article  PubMed  CAS  Google Scholar 

  204. Mueller BA, Brierton DG, Abel SR, et al. Effect of enteral feeding with ensure on oral bioavailabilities of ofloxacin and ciprofloxacin. Antimicrob Agents Chemother 1994; 38(9): 2101–5

    Article  PubMed  CAS  Google Scholar 

  205. Daneshmend TK, Warnock DW, Ene MD, et al. Influence of food on the pharmacokinetics of ketoconazole. Antimicrob Agents Chemother 1984; 25(1): 1–3

    Article  PubMed  CAS  Google Scholar 

  206. Brass C, Galgiani JN, Blaschke TF, et al. Disposition of ketoconazole, an oral antifungal, in humans. Antimicrob Agents Chemother 1982; 21(1): 151–8

    Article  PubMed  CAS  Google Scholar 

  207. Männistö PT, Mäntylä R, Nykänen S, et al. Impairing effect of food on ketoconazole absorption. Antimicrob Agents Chemother 1982; 21(5): 730–3

    Article  PubMed  Google Scholar 

  208. Lelawongs P, Barone JA, Colaizzi JL, et al. Effect of food and gastric acidity on absorption of orally administered ketoconazole. Clin Pharm 1988; 7(3): 228–35

    PubMed  CAS  Google Scholar 

  209. Lange D, Pavao JH, Jacqmin P. The effect of coadministration of a cola beverage on the bioavailability of itraconazole in patients with aquired immunodeficiency syndrome. Curr Ther Res Clin Exp 1997; 58(3): 202–12

    Article  CAS  Google Scholar 

  210. Jaruratanasirikul S, Kleepkaew A. Influence of an acidic beverage (Coca-Cola) on the absorption of itraconazole. Eur J Clin Pharmacol 1997; 52(3): 235–7

    Article  PubMed  CAS  Google Scholar 

  211. Chin TW, Loeb M, Fong IW. Effects of an acidic beverage (Coca-Cola) on absorption of ketoconazole. Antimicrob Agents Chemother 1995; 39(8): 1671–5

    Article  PubMed  CAS  Google Scholar 

  212. Kawakami M, Suzuki K, Ishizuka T, et al. Effect of grapefruit juice on pharmacokinetics of itraconazole in healthy subjects. Int J Clin Pharmacol Ther 1998; 36(6): 306–8

    PubMed  CAS  Google Scholar 

  213. Penzak SR, Gubbins PO, Gurley BJ, et al. Grapefruit juice decreases the systemic availability of itraconazole capsules in healthy volunteers. Ther Drug Monit 1999; 21(3): 304–9

    Article  PubMed  CAS  Google Scholar 

  214. Lejonc JL, Gusmini D, Brochard P. Isoniazid and reaction to cheese. Ann Intern Med 1979; 91: 793

    PubMed  CAS  Google Scholar 

  215. Baciewicz AM, Self TH. Isoniazid interactions. South Med J 1985; 78(6): 714–8

    Article  PubMed  CAS  Google Scholar 

  216. Ameer B, Polk RE, Kline BJ, et al. Effect of food on ethambutol absorption. Clin Pharm 1982; 1(2): 156–8

    PubMed  CAS  Google Scholar 

  217. Peloquin CA, Bulpitt AE, Jaresko GS, et al. Pharmacokinetics of ethambutol under fasting conditions, with food, and with antacids. Antimicrob Agents Chemother 1999; 43(3): 568–72

    PubMed  CAS  Google Scholar 

  218. Stevens RC, Rodman JH, Yong FH, et al. Effect of food and pharmacokinetic variability on didanosine systemic exposure in HIV-infected children. AIDS Res Hum Retroviruses 2000; 16(5): 415–21

    Article  PubMed  CAS  Google Scholar 

  219. Shelton MJ, Portmore A, Blum MR, et al. Prolonged, but not diminished, zidovudine absorption induced by a high-fat breakfast. Pharmacotherapy 1994; 14(6): 671–7

    PubMed  CAS  Google Scholar 

  220. Unadkat JD, Collier AC, Crosby SS, et al. Pharmacokinetics of oral zidovudine (azidothymidine) in patients with AIDS when administered with and without a high-fat meal. AIDS 1990; 4(3): 229–32

    Article  PubMed  CAS  Google Scholar 

  221. Angel JB, Hussey EK, Hall ST, et al. Pharmacokinetics of 3TC (GR109714X) administered with and without food to HIV-infected patients. Drug Invest 1993; 6(2): 70–4

    Article  Google Scholar 

  222. Moore KH, Shaw S, Laurent AL, et al. Lamivudine/zidovudine as a combined formulation tablet: bioequivalence compared with lamivudine and zidovudine administered concurrently and the effect of food on absorption. J Clin Pharmacol 1999; 39(6): 593–605

    Article  PubMed  CAS  Google Scholar 

  223. Yuen GJ, Lou Y, Thompson NF, et al. Abacavir/lamivudine/zidovudine as a combined formulation tablet: bioequivalence compared with each component administered concurrently and the effect of food on absorption. J Clin Pharmacol 2001; 41(3): 277–88

    Article  PubMed  CAS  Google Scholar 

  224. Adair CG, Bridges JM, Desai ZR. Can food affect the bioavailability of chlorambucil in patients with haematological malignancies? Cancer Chemother Pharmacol 1986; 17(1): 99–102

    Article  PubMed  CAS  Google Scholar 

  225. Ehrsson H, Wallin I, Simonsson B, et al. Effect of food on pharmacokinetics of chlorambucil and its main metabolite, phenylacetic acid mustard. Eur J Clin Pharmacol 1984; 27(1): 111–4

    PubMed  CAS  Google Scholar 

  226. Hamilton RA, Kremer JM. The effects of food on methotrexate absorption. J Rheumatol 1995; 22(4): 630–2

    PubMed  CAS  Google Scholar 

  227. Kozloski GD, De Vito JM, Kisicki JC, et al. The effect of food on the absorption of methotrexate sodium tablets in healthy volunteers. Arthritis Rheum 1992; 35(7): 761–4

    Article  PubMed  CAS  Google Scholar 

  228. Oguey D, Kolliker F, Gerber NJ, et al. Effect of food on the bioavailability of low-dose methotrexate in patients with rheumatoid arthritis. Arthritis Rheum 1992; 35(6): 611–4

    Article  PubMed  CAS  Google Scholar 

  229. Kahan BD, Dunn J, Fitts C, et al. Reduced inter-and intrasubject variability in cyclosporine pharmacokinetics in renal transplant recipients treated with a microemulsion formulation in conjunction with fasting, low-fat meals, or high-fat meals. Transplantation 1995; 59(4): 505–11

    PubMed  CAS  Google Scholar 

  230. Barone G, Chang CT, Choc Jr MG, et al. The pharmacokinetics of a microemulsion formulation of cyclosporine in primary renal allograft recipients. Transplantation 1996; 61(6): 875–80

    Article  PubMed  CAS  Google Scholar 

  231. Tan KK, Trull AK, Uttridge JA, et al. Effect of dietary fat on the pharmacokinetics and pharmacodynamics of cyclosporine in kidney transplant recipients. Clin Pharmacol Ther 1995; 57(4): 425–33

    Article  PubMed  CAS  Google Scholar 

  232. Gupta SK, Manfro RC, Tomlanovich SJ, et al. Effect of food on the pharmacokinetics of cyclosporine in healthy subjects following oral and intravenous administration. J Clin Pharmacol 1990; 30(7): 643–53

    PubMed  CAS  Google Scholar 

  233. Mueller EA, Kovarik JM, Kutz K. Minor influence of a fat-rich meal on the pharmacokinetics of a new oral formulation of cyclosporine. Transplant Proc 1994; 26(5): 2957–8

    PubMed  CAS  Google Scholar 

  234. Ku YM, Min DI, Flanigan M. Effect of grapefruit juice on the pharmacokinetics of microemulsion cyclosporine and its metabolite in healthy volunteers: does the formulation difference matter? J Clin Pharmacol 1998; 38(10): 959–65

    PubMed  CAS  Google Scholar 

  235. Ducharme MP, Warbasse LH, Edwards DJ. Disposition of intravenous and oral cyclosporine after administration with grapefruit juice. Clin Pharmacol Ther 1995; 57(5): 485–91

    Article  PubMed  CAS  Google Scholar 

  236. Welling PG, Tse FL. Food interactions affecting the absorption of analgesic and anti-inflammatory agents. Drug Nutr Interact 1983; 2(3): 153–68

    PubMed  CAS  Google Scholar 

  237. Kennedy MC, Wade DN. The effect of food on the absorption of phenytoin. Aust N Z J Med 1982; 12: 258–61

    Article  PubMed  CAS  Google Scholar 

  238. Melander A, Brante G, Johansson O, et al. Influence of food on the absorption of phenytoin in man. Eur J Clin Pharmacol 1979; 15(4): 269–74

    Article  PubMed  CAS  Google Scholar 

  239. Dotson R, Dickinson L, Kang H, et al. Effect of simultaneously ingested milk on phenytoin bioavailability. Neurology 1985; 35(10): 1526–7

    Article  PubMed  CAS  Google Scholar 

  240. Retzow A, Schurer M, Schulz HU. Influence of food on the bioavailability of a carbamazepine slow-release formulation. Int J Clin Pharmacol Ther 1997; 35(12): 557–60

    PubMed  CAS  Google Scholar 

  241. McLean A, Browne S, Zhang Y, et al. The influence of food on the bioavailability of a twice-daily controlled release carbamazepine formulation. J Clin Pharmacol 2001; 41(2): 183–6

    Article  PubMed  CAS  Google Scholar 

  242. Garg SK, Kumar N, Bhargava VK, et al. Effect of grapefruit juice on carbamazepine bioavailability in patients with epilepsy. Clin Pharmacol Ther 1998; 64(3): 286–8

    Article  PubMed  CAS  Google Scholar 

  243. Degen PH, Flesch G, Cardot JM, et al. The influence of food on the disposition of the antiepileptic oxcarbazepine and its major metabolites in healthy volunteers. Biopharm Drug Dispos 1994; 15(6): 519–26

    Article  PubMed  CAS  Google Scholar 

  244. Robertson DR, Higginson I, Macklin BS, et al. The influence of protein containing meals on the pharmacokinetics of levo-dopa in healthy volunteers. Br J Clin Pharmacol 1991; 31(4): 413–7

    Article  PubMed  CAS  Google Scholar 

  245. Mena I, Cotzias GC. Protein intake and treatment of Parkinson’s disease with levodopa. N Engl J Med 1975; 292(4): 181–4

    Article  PubMed  CAS  Google Scholar 

  246. Eriksson T, Granerus AK, Linde A, et al. ‘On-off’ phenomenon in Parkinson’s disease: relationship between dopa and other large neutral amino acids in plasma. Neurology 1988; 38(8): 1245–8

    Article  PubMed  CAS  Google Scholar 

  247. Juncos JL, Fabbrini G, Mouradian MM, et al. Dietary influences on the antiparkinsonian response to levodopa. Arch Neurol 1987; 44(10): 1003–5

    Article  PubMed  CAS  Google Scholar 

  248. Nutt JG, Woodward WR, Carter JH, et al. Influence of fluctuations of plasma large neutral amino acids with normal diets on the clinical response to levodopa. J Neurol Neurosurg Psychiatry 1989; 52(4): 481–7

    Article  PubMed  CAS  Google Scholar 

  249. Zisook S. Side effects of isocarboxazid. J Clin Psychiatry 1984; 45 (7 Pt 2): 53–8

    PubMed  CAS  Google Scholar 

  250. Bekhti A. Serum concentrations of mebendazole in patients with hydatid disease. Int J Clin Pharmacol Ther Toxicol 1985; 23(12): 633–41

    PubMed  CAS  Google Scholar 

  251. Welling PG, Lyons LL, Craig WA, et al. Influence of diet and fluid on bioavailability of theophylline. Clin Pharmacol Ther 1975; 17(4): 475–80

    PubMed  CAS  Google Scholar 

  252. Kann J, Levitt MJ, Horodniak JW, et al. Food effects on the nighttime pharmacokinetics of Theo-Dur tablets. Ann Allergy 1989; 63(4): 282–6

    PubMed  CAS  Google Scholar 

  253. Thebault JJ, Aiache JM, Mazoyer F, et al. The influence of food on the bioavailability of a slow release theophylline preparation. Clin Pharmacokinet 1987; 13(4): 267–72

    Article  PubMed  CAS  Google Scholar 

  254. Leeds NH, Gal P, Purohit AA, et al. Effect of food on the bioavailability and pattern of release of a sustained-release theophylline tablet. J Clin Pharmacol 1982; 22(4): 196–200

    PubMed  CAS  Google Scholar 

  255. Pedersen S, Moeller-Petersen J. Influence of food on the absorption rate and bioavailability of a sustained release theophylline preparation. Allergy 1982; 37(7): 531–4

    Article  PubMed  CAS  Google Scholar 

  256. Delhotal-Landes B, Flouvat B, Boutin MS, et al. Influence of food on the absorption of theophylline administered in the form of sustained release tablet and microgranules. Biopharm Drug Dispos 1988; 9(1): 19–29

    Article  PubMed  CAS  Google Scholar 

  257. Pabst G, Weber W, Muller M, et al. Study on the influence of food on the absorption of theophylline from a controlled-release preparation. Arzneimittelforschung 1994; 44(3): 333–7

    PubMed  CAS  Google Scholar 

  258. Ürmös I, Grezal G, Balogh Nemes K, et al. Food interaction study of a new theophylline (Egifilin) 200 and 400 mg retard tablet in healthy volunteers. Int J Clin Pharmacol Ther 1997; 35(2): 65–70

    PubMed  Google Scholar 

  259. Fagan TC, Walle T, Oexmann MJ, et al. Increased clearance of propranolol and theophylline by high-protein compared with high-carbohydrate diet. Clin Pharmacol Ther 1987; 41(4): 402–6

    Article  PubMed  CAS  Google Scholar 

  260. Jonkman JH. Food interactions with sustained-release theophylline preparations. A review. Clin Pharmacokinet 1989; 16(3): 162–79

    Article  PubMed  CAS  Google Scholar 

  261. Jonkman JH, Grasmeijer G, Holland A. Theophylline disposition after single-dose ingestion of a once-a-day preparation (Dilatrane A. P. 400 mg) with and without breakfast. Int J Clin Pharmacol Ther Toxicol 1987; 25(11): 633–7

    PubMed  CAS  Google Scholar 

  262. Gonzalez MA, Straughan AB. Effect of meals and dosage-form modification on theophylline bioavailability from a 24-hour sustained-release delivery system. Clin Ther 1994; 16(5): 804–14

    PubMed  CAS  Google Scholar 

  263. Harrison LI, Mitra AK, Kehe CR, et al. Kinetics of absorption of a new once-a-day formulation of theophylline in the presence and absence of food. J Pharm Sci 1993; 82(6): 644–8

    Article  PubMed  CAS  Google Scholar 

  264. Rau SE, Bend JR, Arnold MO, et al. Grapefruit juice-terfenadine single-dose interaction: magnitude, mechanism, and relevance. Clin Pharmacol Ther 1997; 61(4): 401–9

    Article  PubMed  CAS  Google Scholar 

  265. Honig PK, Wortham DC, Lazarev A, et al. Grapefruit juice alters the systemic bioavailability and cardiac repolarization of terfenadine in poor metabolizers of terfenadine. J Clin Pharmacol 1996; 36(4): 345–51

    PubMed  CAS  Google Scholar 

  266. Benton RE, Honig PK, Zamani K, et al. Grapefruit juice alters terfenadine pharmacokinetics, resulting in prolongation of repolarization on the electrocardiogram. Clin Pharmacol Ther 1996; 59(4): 383–8

    Article  PubMed  CAS  Google Scholar 

  267. Spence JD. Drug interactions with grapefruit: whose responsibility is it to warn the public? Clin Pharmacol Ther 1997; 61(4): 395–400

    Article  PubMed  CAS  Google Scholar 

  268. Bailey DG, Malcolm J, Arnold O, et al. Grapefruit juice-drug interactions. Br J Clin Pharmacol 1998; 46(2): 101–10

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding or conflicts of interest are relevant to the contents of this manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, L.E., Dalhoff, K. Food-Drug Interactions. Drugs 62, 1481–1502 (2002). https://doi.org/10.2165/00003495-200262100-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200262100-00005

Keywords

Navigation