Skip to main content
Log in

Clinical and Preclinical Modulation of Chemotherapy-Induced Toxicity in Patients with Cancer

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Anticancer treatment is generally associated with toxicity to health issues. One of the reasons for this unpleasant association is that anticancer agents have been mostly selected on the basis of an empirically established toxicity towards cancer cell lines and rapidly growing tumours in animal models, and not on the basis of a sophisticated intervention in tumour-specific biology. This strategy of drug development unavoidably produces drugs with toxicity towards normal cells and tissues which also have a high cell turnover and share many characteristics with tumour cells. Therefore it is a continuing challenge to design therapy which is both effective and also has high specificity for the biology of cancer and/or is efficiently targeted to tumour tissue.

This article describes the mechanisms of cytotoxicity of standard chemo- and radiotherapy and discussed the possibilities of currently available cytoprotective agents to reduce or prevent these toxicities. These agents should ideally be selective for normal cells versus cancer cells, be effective in reducing or preventing toxicity, have no negative impact on anticancer therapy and have minimal adverse effects. None of the agents described in this article fulfils these criteria completely and therefore we cannot recommend these agents for standard use in daily anti-cancer practice. Nevertheless, there are encouraging data concerning the beneficial effects of dexrazoxane for anthracycline-induced cardiomyopathy and amifostine for platinum- and radiotherapy-induced toxicity. These date warrant further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lowenthal RM, Eaton K. Toxicity of chemotherapy. Hematol/ Oncol Clin North Am 1996; 10: 967–90

    Article  CAS  Google Scholar 

  2. Muggia FM. Cytoprotection: concepts and challenges. Support Care Cancer 1994; 2: 377–9

    Article  PubMed  CAS  Google Scholar 

  3. Lewis C. A review of chemoprotectants in cancer chemotherapy. Drug Saf 1994; 11: 153–62

    Article  PubMed  CAS  Google Scholar 

  4. Schuchter LM, Luginbuhl WE, Meropol NJ. The current status of toxicity protectants in cancer therapy. Semin Oncol 1992; 19: 742–51

    PubMed  CAS  Google Scholar 

  5. Loprinzi CL, Foote RL, Michalak J. Alleviation of cytotoxic therapy—induced normal tissue damage. Semin Oncol 1995; 22: 95–7

    PubMed  CAS  Google Scholar 

  6. Houba PHJ, Leenders RGG, Boven E, et al. Characterization of novel anthracycline prodrugs activated by human β-glucuronidase for use in antibody-directed enzyme prodrug therapy. Biochem Pharmacol 1996; 52: 455–63

    Article  PubMed  CAS  Google Scholar 

  7. Steehl GG. Basic clinical radiobiology. London: Edward Arnold, 1993

    Google Scholar 

  8. Riley PA. Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol 1994; 65: 27–33

    Article  PubMed  CAS  Google Scholar 

  9. Szumiel I. Review: ionizing radiation—induced cell death. Int J Radiat Biol 1994; 66: 329–41

    Article  PubMed  CAS  Google Scholar 

  10. Rubin P, Johnston CJ, Williams JP, et al. A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis. Int J Radiat Oncol Biol Phys 1995; 33: 99–109

    Article  PubMed  CAS  Google Scholar 

  11. Busch DB. Radiation and chemotherapy injury: pathophysiology, diagnosis, and treatment. Crit Rev Oncol Hematol 1993; 15: 49–89

    Article  PubMed  CAS  Google Scholar 

  12. Hannun YA. Apoptosis and the dilemma of cancer chemotherapy. Blood 1997; 89: 1845–53

    PubMed  CAS  Google Scholar 

  13. Hoekman K, Vermorken JB. Incidence and prevention of non-hematological toxicity of high-dose chemotherapy. Ann Med 1996; 28: 175–82

    Article  PubMed  CAS  Google Scholar 

  14. Spangrude GJ. Biological and clinical aspects of hematopoietic stem cells. Ann Rev Med 1994; 45: 93–104

    Article  PubMed  CAS  Google Scholar 

  15. Mauch P, Costine L, Greenberger J, et al. Hematopoietic stem cell compartment: acute and late effects of radiation and chemotherapy. Int J Radiat Oncol Biol Phys 1995; 31: 1319–39

    Article  PubMed  CAS  Google Scholar 

  16. MacManus M, Lamborn K, Khan W, et al. Radiotherapy-associated neutropenia and thrombocytopenia: analysis of risk factors and development of a predictive model. Blood 1997; 89: 2303–10

    CAS  Google Scholar 

  17. Mitchell EP. Gastrointestinal toxicity of chemotherapeutic agents. Semin Oncol 1992; 19: 566–79

    PubMed  CAS  Google Scholar 

  18. Holland HK, Dix SP, Geller RB, et al. Minimal toxicity and mortality in high-risk breast cancer patients receiving high-dose cyclophosphamide, thiotepa, and carboplatin plus autologous marrow stem-cell transplantation and comprehensive supportive care. J Clin Oncol 1996; 14: 1156–64

    PubMed  CAS  Google Scholar 

  19. Wilmore DW Metabolic support of the gastrointestinal tract. Cancer 1997; 79: 1794–803

    Article  PubMed  CAS  Google Scholar 

  20. Allen A. The cardiotoxicity of chemotherapeutic drugs. Semin Oncol 1992; 19: 529–42

    PubMed  CAS  Google Scholar 

  21. Myers CE, McGuire WP, Liss RH, et al. Adriamycin: the role of lipid peroxidation in cardiac toxicity and tumor response. Science 1977; 197: 165–7

    Article  PubMed  CAS  Google Scholar 

  22. Doroshow JH. Doxorubicin-induced cardiac toxicity. N Engl J Med 1991; 324: 843–5

    Article  PubMed  CAS  Google Scholar 

  23. Billingham ME, Mason JW, Bristow MR, et al. Anthracycline cardiomyopathy monitored by morphologic changes. Cancer Treat Rep 1978; 62: 865–72

    PubMed  CAS  Google Scholar 

  24. Moreb JS, Oblon DJ. Outcome of clinical congestive heart failure by anthracycline chemotherapy. Cancer 1992; 70: 2637–41

    Article  PubMed  CAS  Google Scholar 

  25. Schwartz RG, McKenzie WD, Alexander J, et al. Congestive heart failure and left ventricular dysfunction complicating doxorubicin therapy: seven-year experience using serial radionuclide angiocardiography. Am J Med 1987; 82: 1109–18

    Article  PubMed  CAS  Google Scholar 

  26. Gianni L, Munzone E, Capri G, et al. Paclitaxel by 3-hour infusion in combination with bolus doxorubicin in women with untreated metastatic breast cancer: high antitumor efficacy and cardiac effects in a dose-finding and sequence-finding study. J Clin Oncol 1996; 13: 2688–99

    Google Scholar 

  27. Hellman K. Anthracycline cardiotoxicity prevention by dexrazoxane: break-through of a barrier — sharpens antitumor profile and therapeutic index. J Clin Oncol 1996; 14: 332–3

    Google Scholar 

  28. Rowinsky EK, McGuire WP, Guarnieri T, et al. Cardiac disturbances during the administration of taxol. J Clin Oncol 1991; 9: 1704–12

    PubMed  CAS  Google Scholar 

  29. Rubin P, Petros W, Vredenbirgh J, et al. Cyclophosphamide-induced cardio-myopathy following high-dose chemotherapy. Proc Am Soc Clin Oncol 1995; 14: 326

    Google Scholar 

  30. Postma TJ, Benard BA, Huijgens PC, et al. Long term effects of vincristine on the peripheral nervous system. J Neurooncol 1993; 15: 23–7

    Article  PubMed  CAS  Google Scholar 

  31. Postma TJ, Heimans JJ. Chemotherapy-induced neuropathy. In: Vinken PJ, Bruyn GW, editors. Handbook of clinical neurology. Neuro-Oncology, Pt TJ. Vol. 25. Elsevier: Amsterdam, 1997: 1–21

    Google Scholar 

  32. Boer HH, Moorer-van Felft CM, Müller LJ, et al. Ultrastructural neuropathologic effects of taxol on neurons of the freshwater snail Lymnaea stagnalis. J Neurooncol 1995; 25: 49–57

    Article  PubMed  CAS  Google Scholar 

  33. Lipton RB, Apfel SC, Dutcher JP, et al. Taxol produces a predominantly sensory neuropathy. Neurology 1989; 39: 368–73

    Article  PubMed  CAS  Google Scholar 

  34. Jerian SM, Sarosy GA, Link CJ, et al. Incapacitating autonomic neuropathy precipitated by taxol. Gynecol Oncol 1993; 51: 277–80

    Article  PubMed  CAS  Google Scholar 

  35. Schiller JH, Storer B, Tutsch K, et al. Phase I trial of 3-hour infusion of paclitaxel with or without granulocyte colonystimulating factor in patients with advanced cancer. J Clin Oncol 1994; 12: 241–8

    PubMed  CAS  Google Scholar 

  36. Lesser GJ, Grossman SA, Eller S, et al. Distribution of 3H-taxol in the nervous system and organs of rats. Proc Am Soc Clin Oncol 1993; 11: 160

    Google Scholar 

  37. Hamers FPT, Gispen WH, Neijt JP. Neurotoxic side-effects of cisplatin. Eur J Cancer 1991; 27: 372–6

    Article  CAS  Google Scholar 

  38. Boogerd W. Neurological complications of chemotherapy. In: Vinken PJ, Bruyn GW, editors. Handbook of clinical neurology. Vol. 21 (65). Elsevier: Amsterdam, 1995: 527–46

    Google Scholar 

  39. Warner E. Neurotoxicity of cisplatin and taxol. Int J Gynecol Cancer 1995; 5: 161–9

    Article  PubMed  Google Scholar 

  40. Alberts DS, Noel JK. Cisplatin-associated neurotoxicity: can it be prevented? Anticancer Drugs 1995; 6: 369–83

    Article  PubMed  CAS  Google Scholar 

  41. Thompson SW, David LE, Kornfeld M, et al. Cisplatin neurotoxicity: clinical, electrophysiologic, morphologic and toxicologic studies. Cancer 1984; 54: 1269–75

    Article  PubMed  CAS  Google Scholar 

  42. Cavaletti G, Bogliun G, Marzorati L, et al. Long-term peripheral neurotoxicity of cisplatin in patients with successfully treated epithelial ovarian cancer. Anticancer Res 1994; 14: 1287–92

    PubMed  CAS  Google Scholar 

  43. Watkin SW, Husband DJ, Green JA, et al. Ifosfamide encephalopathy: a reappraisal. Eur J Cancer Clin Oncol 1989; 25: 1303–10

    Article  PubMed  CAS  Google Scholar 

  44. Cerny T, Küpfer A. The enigma of ifosfamide encephalopathy. Ann Oncol 1992; 3: 679–81

    PubMed  CAS  Google Scholar 

  45. Schweitzer VG. Ototoxicity of chemotherapeutic agents. Otolaryngol Clin North Am 1993; 26: 759–89

    PubMed  CAS  Google Scholar 

  46. Rybak LP. Ototoxicity. Curr Opin Otolaryngol Head Neck Surg 1996; 4: 302–7

    Article  Google Scholar 

  47. Vermorken JB, Kapteijn TS, Hart AAM, et al. Ototoxicity of cis-diamminedichloroplatinum (II): influence of dose, schedule and mode of administration. Eur J Cancer Clin Oncol 1983; 19: 53–8

    Article  PubMed  CAS  Google Scholar 

  48. Weatherly RA, Owens JJ, Catlin FI, et al. Cis-platin ototoxicity in children. Laryngoscope 1991; 101: 917–24

    Article  PubMed  CAS  Google Scholar 

  49. Hinojosa R, Riggs LC, Strauss M, et al. Temporal bone histopathology of cisplatin ototoxicity. Am J Otol 1995; 16: 731–40

    PubMed  CAS  Google Scholar 

  50. Ravi R, Somani S, Rybak LP. Mechanism of cisplatin ototoxicity: antioxidant system. Pharmacol Toxicol 1995; 76: 386–94

    Article  PubMed  CAS  Google Scholar 

  51. Neuwelt EA, Brummett RE, Muldoon LL, et al. Sodium thiosulfate as a protectant against carboplatin-induced ototoxicity in the treatment of patients with malignant brain tumors. Proc Am Soc Clin Oncol 1997; 16: 393

    Google Scholar 

  52. Patterson WP, Reams GP. Renal toxicities of chemotherapy. Semin Oncol 1992; 19: 521–8

    PubMed  CAS  Google Scholar 

  53. Daugaard G, Abildgaard U. Cisplatin nephrotoxicity: a review. Cancer Chemother Pharmacol 1989; 25: 1–9

    Article  PubMed  CAS  Google Scholar 

  54. Reece PA, Stafford I, Russel J, et al. Reduced ability to clear ultrafiltrable platinum with repeated courses of cisplatin. J Clin Oncol 1986; 4: 1392–8

    PubMed  CAS  Google Scholar 

  55. Beyer J, Rick O, Weinknecht S, et al. Nephrotoxicity after high-dose carboplatin, etoposide and ifosfamide in germ-cell tumors: incidence and implications for hematologic recovery and clinical outcome. Bone Marrow Transplant 1997; 20: 813–9

    Article  PubMed  CAS  Google Scholar 

  56. Rossi R, Gödde A, Kleinebrand A, et al. Unilateral nephrectomy and cisplatin as risk factors of ifosfamide-induced nephrotoxicity: analysis of 120 patients. J Clin Oncol 1994; 12: 159–65

    PubMed  CAS  Google Scholar 

  57. Sleijfer S, Vujaskovic Z, Limburg PC, et al. Induction of tumor necrosis-alpha as a cause of bleomycin-related toxicity. Cancer 1998; 82: 970–4

    Article  PubMed  CAS  Google Scholar 

  58. Jules-Elysee K, White DA. Bleomycin-induced pulmonary toxicity. Clin Chest Med 1990; 11: 1–20

    PubMed  CAS  Google Scholar 

  59. Lazo JS, Dale GH. The molecular basis of interstitial pulmonary fibrosis caused by antineoplastic agents. Cancer Treat Rev 1990; 17: 165–7

    Article  PubMed  CAS  Google Scholar 

  60. Jones RB, Matthes S, Shpall EJ, et al. Acute lung injury following treatment with high-dose cyclophophamide, cisplatin, and carmustine: pharmacodynamic evaluation of carmustine. J Natl Cancer Inst 1993; 85: 640–7

    Article  PubMed  CAS  Google Scholar 

  61. Schmitz N, Diehl V Carmustine and the lungs. Lancet 1997; 349: 1712–3

    Article  PubMed  CAS  Google Scholar 

  62. Okuno SH, Frytak S. Mitomycin lung toxicity — acute and chronic phases. Am J Clin Oncol 1997; 20: 282–4

    Article  PubMed  CAS  Google Scholar 

  63. Wilczynski SW, Erasmus JJ, Petros WP, et al. Delayed pulmonary toxicity syndrome following high-dose chemotherapy and bone marrow transplantation for breast cancer. Am J Resp Crit Care Med 1998; 157: 565–73

    PubMed  CAS  Google Scholar 

  64. Anscher MS, Peters WP, Reisenbichler H, et al. Transforming growth factor β as a predictor of liver and lung fibrosis after autologous bone marrow transplantation for advanced breast cancer. N Engl J Med 1993; 328: 1592–8

    Article  PubMed  CAS  Google Scholar 

  65. Pavlakis N, Bell DR, Millward MJ, et al. Fatal pulmonary toxicity resulting from treatment with gemcitabine. Cancer 1997; 80: 286–91

    Article  PubMed  CAS  Google Scholar 

  66. Rizzi V, Cioschi B, Cartei G, et al. Liver function tests and lidocaine metabolism (MEGX test) during iv CMF therapy in breast cancer. Anticancer Drugs 1996; 7: 846–50

    Article  PubMed  CAS  Google Scholar 

  67. Bearman SI, Anderson GL, Mori M, et al. Veno-occlusive disease of the liver: development of a model for predicting fatal outcome after marrow transplantation. J Clin Oncol 1993; 11: 1729–36

    PubMed  CAS  Google Scholar 

  68. Barton C, Waxman J. Effects of chemotherapy on fertility. Blood Rev 1990; 4: 187–95

    Article  PubMed  CAS  Google Scholar 

  69. Reichman BS, Green KB. Breast cancer in young women: effect of chemotherapy on ovarian function, fertility, and birth defects. J Natl Cancer Inst 1994; 16: 125–9

    Google Scholar 

  70. Meistrich ML. Effects of chemotherapy and radiotherapy on spermatogenesis. Eur Urol 993; 23: 136–42

  71. Stephenson WT, Poirier SM, Rubin L, et al. Evaluation of reproductive capacity in germ cell tumor patients following treatment with cisplatin, etoposide, and bleomycin. J Clin Oncol 1995; 13: 2278–80

    PubMed  CAS  Google Scholar 

  72. Lampe H, Horwich A, Norman A, et al. Fertility after chemotherapy for testicular germ cell cancers. J Clin Oncol 1998; 15: 239–45

    Google Scholar 

  73. Spencer CM, Goa KL. Amifostine: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential as a radioprotector and cytotoxic chemoprotector. Drugs 1995; 50: 1001–31

    Article  PubMed  CAS  Google Scholar 

  74. Onishi ST, Onishi T, Click JH, et al. In vitro study on the anti-oxidant activities of amifostine (WR-2721). Proc Am Assoc Cancer Res 1992; 33: 419

    Google Scholar 

  75. Treskes M, Nijtmans LGJ, Fichtinger-Schepman AMJ, et al. Effects of the modulating agent WR2721 and its main metabolites on the formation and stability of cisplatin-DNA adducts in vitroin comparison to the effects of thiosulphate and diethylthiocarbamate. Biochem Pharmacol 1992; 43: 1013–9

    Article  PubMed  CAS  Google Scholar 

  76. Grdina DJ, Shigematsu N, Dale P, et al. Thiol and disulfide metabolites of the radiation protector and potential chemopreventive agent WR-2721 are linked to both its anticytotoxic and antimutagenic mechanisms of action. J Carcinogenesis 1995; 16: 767–74

    Article  CAS  Google Scholar 

  77. Kataoka Y, Perrin J, Hunter N, et al. Antimutagenic effects of amifostine: clinical implications. Semin Oncol 1996; 23 Suppl. 8: 53–7

    Google Scholar 

  78. Treskes M, Boven E, Holwerda U, et al. Time dependence of the selective modulation of cisplatin-induced nephrotoxicity by WR-2721 in the mouse. Cancer Res 1992; 52: 2257–60

    PubMed  CAS  Google Scholar 

  79. Treskes M, Boven E, van de Loosdrecht AA, et al. Effects of the modulating agent WR-2721 on myelotoxicity and anti-tumour activity in carboplatin-treated mice. Eur J Cancer 1994; 30A: 183–7

    Article  PubMed  CAS  Google Scholar 

  80. Romanuel FCA, Bannister RG. Localized areas of high alkaline phosphatase activity in endothelium of arteries. Nature 1962; 195: 611–2

    Article  Google Scholar 

  81. Walker EM, Gale GR. Methods of reduction of cisplatin nephrotoxicity. Ann Clin Lab Sci 1981; 11: 397–410

    PubMed  CAS  Google Scholar 

  82. Yuhas JM. Active versus passive absorption kinetics as the basis for selective protection of normal tissues by S-2-(3-aminopropylamino)ethyl-phosphorothioic acid. Cancer Res 1980; 40: 1519–24

    PubMed  CAS  Google Scholar 

  83. Newton GL, Aguilera JA, Kim T, et al. Transport of aminothiol radioprotectors into mammalian cells: passive diffusion versus mediated uptake. Radiat Res 1996; 146: 206–15

    Article  PubMed  CAS  Google Scholar 

  84. Treskes M, Holwerda U, Klein I, et al. The chemical reactivity of the modulating agent WR2721 (ethiofos) and its main metabolites with the antitumor agents cisplatin and carboplatin. Biochem Pharmacol 1991; 42: 2125–30

    Article  PubMed  CAS  Google Scholar 

  85. Korst AEC, Boven E, van der Sterre MLT, et al. Influence of single and multiple doses of amifostine on the efficacy and the pharmacokinetic s of carboplatin in mice. Br J Cancer 1997; 75: 1439–46

    Article  PubMed  CAS  Google Scholar 

  86. Korst AEC, van der Sterre MLT, Eeltink CM, et al. Pharmacokinetics of carboplatin with and without amifostine in patients with solid tumors. Clin Cancer Res 1997; 3: 697–703

    PubMed  CAS  Google Scholar 

  87. Korst AEC, van der Sterre MLT, Gall HE, et al. Influence of amifostine on the pharmacokinetics of cisplatin in cancer patients. Clin Cancer Res 1997; 4: 331–6

    Google Scholar 

  88. Hasinoff BB. The interaction of the cardioprotective agent ICRF-187 ((+)-1,2-bis (3,5-dioxopiperazinyl-1-yl) propane); its hydrolysis product (ICRF-198); and other chelating agents with the Fe (III) and Cu (II) complexes of adriamycin. Agents Actions 1990; 29: 374–81

    Article  PubMed  CAS  Google Scholar 

  89. Herman EH, Witiak DT, Hellman K, et al. Biological properties of ICR-159 and related bis(dioxopiperazine) compounds. Adv Pharmacol Chemother 1982; 19: 249–90

    Article  PubMed  CAS  Google Scholar 

  90. Tanabe K, Ikegami Y, Ishida R, et al. Inhibition of topoisomerase II by antitumor agent bis-(2,6-dioxopiperazine) derivatives. Cancer Res 1991; 51: 4903–8

    PubMed  CAS  Google Scholar 

  91. Woodman RJ. Enhancement of antitumor effectiveness of ICRF-159 against early L1210 leukemia by combination with cis diamminodichloroplatinum or daunomycin. Cancer Chemother Rep 2 1974; 4: 45–52

    PubMed  CAS  Google Scholar 

  92. Sehested M, Jensen PB, Sorensen BS, et al. Antagonistic effect of the cardioprotector(+)-1,2-bis(3,5-dioxopiperazinyl-1-yl)-propane (ICRF-187) on DNA breaks and cytotoxicity induced by the topoisomerase II directed drugs daunorubicin and etoposide (VP-16). Biochem Pharmacol 1993; 46: 389–93

    Article  PubMed  CAS  Google Scholar 

  93. Sorensen B, Bastholt L, Mirza MR, et al. The cardioprotector ADR-529 and high-dose epirubicin given in combination with cyclophosphamide, 5-fluorouracil, and tamoxifen: a phase I study in metastatic breast cancer. Cancer Chemother Pharmacol 1994; 34: 439–43

    Article  PubMed  CAS  Google Scholar 

  94. Reedijk J. Improved understanding in platinum and in tumor chemistry. Chem Comm 1996; 801–6

  95. Ishikawa T, Ali-Osman F. Glutathione associated cis-diamminedichloroplatinum (II) metabolism and ATP-dependent efflux from leukemia cells: molecular characterization of glutathi-one-platinum complex and its biological significance. J Biol Chem 1993; 268: 20116–25

    PubMed  CAS  Google Scholar 

  96. Leone R, Fracasso ME, Soresi E, et al. Influence of glutathione administration on the disposition of free and total platinum in patients after administration of cisplatin. Cancer Chemother Pharmacol 1992; 29: 385–90

    Article  PubMed  CAS  Google Scholar 

  97. Cascinu S, Cordelia L, del Ferro E, et al. Neuro-protective effect of reduced glutathione on cisplatin-based chemotherapy in advanced gastric cancer: a randomized double-blind placebo-controlled trial. J Clin Oncol 1995; 13: 26–32

    PubMed  CAS  Google Scholar 

  98. Lauterberg BH, Nguyen T, Hartmann B, et al. Depletion of total cysteine, glutathione, and homocysteine in plasma by ifosfamide/mesna therapy. Cancer Chemother Pharmacol 1994; 35: 132–6

    Article  Google Scholar 

  99. Hahn R, Wendel A, Flohé L. The fate of extracellular glutathione in the rat. Biochem Biophys Acta 1978; 539: 324–37

    Article  PubMed  CAS  Google Scholar 

  100. Blair SL, Heerdt P, Sachar S, et al. Glutathione metabolism in patients with non-small cell lung cancers. Cancer Res 1997; 57: 152–5

    PubMed  CAS  Google Scholar 

  101. Bai F, Nakanishi M, Kawasaki M, et al. Immunohistochemical expression of glutathione S-transferase-p can predict chemotherapy response in patients with non-small cell lung cancer. Cancer 1996; 78: 416–22

    Article  PubMed  CAS  Google Scholar 

  102. Hamers FPT, Brakkee JH, Cavalletti E, et al. Reduced glutathione protects against cisplatin-induced neurotoxicity in rats. Cancer Res 1993; 53: 544–9

    PubMed  CAS  Google Scholar 

  103. Elferink F, van der Vijgh WJF, Klein I, et al. Interaction of cisplatin and carboplatin with sodium thiosulfate: reaction rates and protein binding. Clin Chem 1988; 32: 641–5

    Google Scholar 

  104. Goel R, Creary SM, Horton C, et al. Effect of sodium thiosulfate on the pharmacokinetics and toxicity of cisplatin. J Natl Cancer Inst 1989; 81: 1552–60

    Article  PubMed  CAS  Google Scholar 

  105. van Rijswijk REN, Hoekman K, Burger CW, et al. Experience with intraperitoneal cisplatin and etoposide and i.V. thiosulphate protection in ovarian cancer patients with either pathologically complete response or minimal residual disease. Ann Oncol 1997; 8: 1235–41

    Article  PubMed  Google Scholar 

  106. Pfeifle CE, Howell SB, Felthouse RD, et al. High-dose cisplatin with sodium thiosulfate protection. J Clin Oncol 1985; 3: 237–44

    PubMed  CAS  Google Scholar 

  107. Bryant BM, Jarman M, Ford HT, et al. Prevention of ifosfamide-induced urothelial toxicity with 2-mercaptoethane sulphonate sodium (mesnum) in patients with advanced carcinoma. Lancet 1980; II: 657–9

    Article  Google Scholar 

  108. Li GC, Brock N, Li JQ, et al. Treatment of advanced malignancies with ifosfamide under protection with mesna. Int J Clin Pharmacol Res 1988; 8: 55–67

    PubMed  CAS  Google Scholar 

  109. Goodman TL, McKenna LM, Li JT, et al. Clinical pharmacology and efficacy of mesna given po to outpatients treated with ifosfamide for solid tumours. Proc Am Soc Clin Oncol 1992; 11: 113

    Google Scholar 

  110. Bodenner DL, Dedon PC, Keng PC, et al. Selective protection against cis-diamminedichloroplatinum (II)-induced toxicity in kidney, gut, and bone marrow by diethyldithiocarbamate (DDTC). Cancer Res 1986; 46: 2751–5

    PubMed  CAS  Google Scholar 

  111. Berry JM, Jacobs C, Sikic B, et al. Modification of cisplatin toxicity with diethyldithiocarbamate. J Clin Oncol 1990; 9: 1585–90

    Google Scholar 

  112. Francis P, Markman M, Hakes T, et al. Diethyldithiocarbamate chemo-protection of carboplatin-induced hematological toxicity. J Cancer Res Clin Oncol 1993; 119: 360–2

    Article  PubMed  CAS  Google Scholar 

  113. Gandara DR, Nahhas WA, Adelson MD, et al. Randomized placebo-controlled multicenter evaluation of diethyldithiocarbamate for chemoprotection against cisplatin-induced toxicity. J Clin Oncol 1995; 13: 490–6

    PubMed  CAS  Google Scholar 

  114. van Acker SABE, Voest EE, Beems RB, et al. Cardioprotective properties of O-(b-hydroxyethyl)-rutosides in doxorubicinpretreated BALB/c mice. Cancer Res 1993; 53: 4603–7

    PubMed  Google Scholar 

  115. Hüsken BCP, de Jong J, Beekman B, et al. Modulation of the in vitro cardiotoxicity of doxorubicin by flavonoids. Cancer Chemother Pharmacol 1995; 37: 55–62

    Article  PubMed  Google Scholar 

  116. van Acker SABE, Tromp MNJL, Haenen GRMM, et al. Flavonoids as scavengers of nitric oxide radicals. BiochemBiophys Res Commun 1995; 214: 755–9

    Article  Google Scholar 

  117. van Acker SABE, Boven E, Kuiper K, et al. Monohydroxyethylrutoside, a dose-dependent cardioprotective agent, does not affect the anti-tumor activity of doxorubicin. Clin Cancer Res 1997; 3: 1747–54

    PubMed  Google Scholar 

  118. De Koning P, Neijt JP, Jennekens FGI, et al. ORG 2766 protects from cisplatin-induced neurotoxicity in rats. Exp Neurol 1987; 97: 746–50

    Article  PubMed  Google Scholar 

  119. Windebank AJ, Smith AG, Russell JW. The effect of nerve growth factor, ciliary neurotrophic factor, and ACTH analogs on cisplatin neurotoxicity in vitro. Neurology 1994; 44: 488–94

    Article  PubMed  CAS  Google Scholar 

  120. Gerritsen van der Hoop R, Vecht CJ, van der Burg MEL, et al. Prevention of cisplatin neurotoxicity with an ACTH (4–9) analogue in patients with ovarian cancer. N Engl J Med 1990; 322: 89–94

    Article  Google Scholar 

  121. van Gerven JMA, Hovestadt A, Moll JWB, et al. The effects of an ACTH (4–9) analogue on development of cisplatin neuropathy in testicular cancer: a randomized trial. J Neurol 1994; 241: 432–5

    Article  PubMed  Google Scholar 

  122. Hovestadt A, van der Burg MEL, Verbiest HBC, et al. The course of neuropathy after cessation of cisplatin treatment, combined with ORG 2766 or placebo. J Neurol 1992; 239: 143–6

    Article  PubMed  CAS  Google Scholar 

  123. Heimans JJ, van Kooten B, van Diemen HAM, et al. The influence of an ACTH (4–9) analogue on vinca alkaloid-induced neuropathy. Neurology 1992; 42: 369

    Google Scholar 

  124. Hamers FP, Pette C, Neijt JP, et al. The ACTH-(4-9) analog ORG-2766 prevents taxol-induced neuropathy in rats. Eur J Pharmacol 1993; 233: 177–8

    Article  PubMed  CAS  Google Scholar 

  125. Hochster H, Wasserheit C, Speyer J. Cardiotoxicity and cardioprotection during chemotherapy. Curr Opin Oncol 1995; 7: 304–9

    Article  PubMed  CAS  Google Scholar 

  126. Berry G, Billingham M, Alderman E, et al. Reduced cardiotoxicity of doxil (pegylated liposomal doxorubicin) in Aids Kaposi’s sarcoma patients compared to a matched control group of cancer patients given doxorubicin. Proc Am Soc Clin Oncol 1996; 15: 303

    Google Scholar 

  127. Jablonowski H, Boden D, Häussinger D. Long term use of DOX-SL™ (Stealth® liposomal doxorubicin HCI) in the treatment of moderate to severe Aids-related Kaposi’s sarcoma. Proc Am Soc Clin Oncol 1996; 15: 303

    Google Scholar 

  128. Speyer JL, Green MD, Zeleniuch-Jacquotte A, et al. ICRF-187 permits longer treatment with doxorubicin in women with breast cancer. J Clin Oncol 1992; 10: 117–27

    PubMed  CAS  Google Scholar 

  129. Rosenfeld C, Weisberg S, York RM, et al. Prevention of adriamycin® cardiomyopathy with dexrazoxane (ADR-529, ICRF-187). Proc Am Soc Clin Oncol 1992; 11: 62

    Google Scholar 

  130. Weisberg SR, Rosenfeld CS, York RM, et al. Dexrazoxane (ADR-529, ICRF-187, Zinecard®) protects against doxorubicin-induced chronic cardiotoxicity. Proc Am Soc Clin Oncol 1992; 11: 91

    Google Scholar 

  131. Maillard JA, Speyer JL, Hanson K, et al. Prevention of chronic adriamycin® cardiotoxicity with the bisdioxopiperazine dexrazoxane (ICRF-187, ADR-529, Zinecard®) in patients with advanced metastatic breast cancer. Proc Am Soc Clin Oncol 1992; 11: 91

    Google Scholar 

  132. Swain SM, Whaley FS, Gerber MC, et al. Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. J Clin Oncol 1997; 15: 1318–32

    PubMed  CAS  Google Scholar 

  133. Venturini M, Michelotti A, Del Mastro L, et al. Multicenter randomized controlled clinical trial to evaluate cardioprotection of dexrazoxane versus no cardioprotection in women receiving epirubicin chemotherapy for advanced breast cancer. J Clin Oncol 1996; 14: 3112–20

    PubMed  CAS  Google Scholar 

  134. Wexler LH, Andrich MP, Venzon D, et al. Randomized trial of the cardioprotective agent, ICRF-187, in pediatric sarcoma patients treated with doxorubicin. J Clin Oncol 1996; 14: 362–72

    PubMed  CAS  Google Scholar 

  135. Swain SM, Whaley FS, Gerber MC, et al. Delayed administration of dexrazoxane provides cardioprotection for patients with advanced breast cancer treated with doxorubicin-containing therapy. J Clin Oncol 1997; 15: 1333–40

    PubMed  CAS  Google Scholar 

  136. Lipshultz SE, Colan SD, Gelber RD, et al. Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N Engl J Med 1991; 324: 808–15

    Article  PubMed  CAS  Google Scholar 

  137. Lipshultz SE, Lipsitz SR, Mone SM, et al. Female sex and higher drug dose as risk factors for late cardiotoxic effects of doxorubicin therapy for childhood cancer. N Engl J Med 1995; 332: 1738–43

    Article  PubMed  CAS  Google Scholar 

  138. Schüller J, Czejka M, Pietrzak C, et al. Doxorubicin pharmacokinetics is altered differently by the cytoprotective agents amifostine or cardioxane (ICRF 187) [abstract]. Ann Oncol 1996; 7 Suppl. 5: 124

    Google Scholar 

  139. Basser RL, Sobol MM, Duggan G, et al. Comparative study of the pharmacokinetics and toxicity of high-dose epirubicin with or without dexrazoxane in patients with advanced malignancy. J Clin Oncol 1994; 12: 1659–66

    PubMed  CAS  Google Scholar 

  140. de Graaf H, van der Graaf WTA, Dolsma WV, et al. Evaluation of cardiotoxicity and pulmonary toxicity after high-dose chemotherapy with ABMT or PSCT and radiotherapy in breast cancer patients. Proc Am Soc Clin Oncol 1996; 15: 334

    Google Scholar 

  141. Rasey JS, Krohn KA, Menard TW, et al. Comparative bio-distribution and radioprotection studies with three radioprotective drugs in mouse tumors. Int J Radiat Oncol Biol Phys 1986; 12: 1487–90

    Article  PubMed  CAS  Google Scholar 

  142. Dorr RT, Lagel K, McLean S. Cardioprotection of rat heart myocytes with amifostine (Ethyol®) and its free thiol, WR-1065, in vitro. Eur J Cancer 1996; 32A: S21–5

    Article  PubMed  CAS  Google Scholar 

  143. Bhanumathi P, Saleesh EB, Vasudevan DM. Creatinine phosphokinase and cardiotoxicity in adriamycin chemotherapy and its modification by WR-1065. Biochem Arch 1992; 8: 335–8

    CAS  Google Scholar 

  144. van Acker SABE, Kramer K, Grimbergen JA, et al. Monohydroxyethylrutoside as protector against chronic doxorubicin-induced cardiotoxicity. Br J Pharm 1995; 115: 1260–4

    Article  Google Scholar 

  145. van Acker SABE, Kramer K, Voest EE, et al. Doxorubicin-induced cardiotoxicity monitored by ECG in freely moving mice: a new model to test potential protectors. Cancer Chemother Pharmacol 1996; 38: 95–101

    Article  PubMed  Google Scholar 

  146. Chraibi Y, Fernandez A, Drozl JP, et al. A randomized double-blind, placebo controlled study of ORG 2766, an ACTH (4–9) analogue, for the prevention of neuropathy induced by cisplatin with or without vinca-alkaloids combination chemotherapy. Eur J Cancer 1993; 29A: 206

    Article  Google Scholar 

  147. Neijt J, van der Burg M, Vecht C, et al. A double-blind randomised study with ORG-2766, an ACTH (4–9) analog, to prevent cisplatin neuropathy. Proc Am Soc Clin Oncol 1994; 13: 261

    Google Scholar 

  148. Bogliun G, Marzorati L, Marzola M, et al. Neurotoxicity of cisplatin ± reduced glutathione in the first-line treatment of advanced ovarian cancer. Int J Gynecol Cancer 1996; 6: 415–9

    Article  Google Scholar 

  149. Colombo N, Bini S, Miceli D, et al. Weekly cisplatin ± glutathione in relapsed ovarian carcinoma. Int J Gynecol Cancer 1995; 5: 81–6

    Article  PubMed  Google Scholar 

  150. Müller LJ, Moorer-van Delft CM, Treskes M, et al. Properties of WR2721 (Ethiofos) as modulator of cisplatin-induced neurotoxicity studied at the ultrastructural level in the pond snail Lymnaea stagnalis. Int J Oncol 1993; 2: 701–10

    PubMed  Google Scholar 

  151. Mollman JE. Protection against cisplatin-neurotoxicity in cultured dorsal root ganglion cells by WR 2721. 7th Conference on Chemical Modifiers of Cancer Treatment; 1991 Feb 2–5; Clearwater (FL): 328–9

  152. Kemp G, Rose P, Lurain J, et al. Amifostine pretreatment for protection against cyclophosphamide-induced and cisplatin-induced toxicities: results of a randomized control trial in patients with advanced ovarian cancer. J Clin Oncol 1996; 14: 2101–12

    PubMed  CAS  Google Scholar 

  153. Planting AST, Vermorken JB, Catimel G, et al. Randomized phase II study of weekly cisplatin with or without amifostine in patients with advanced head and neck cancer. Eur J Cancer 1995; 31A: S5

    Google Scholar 

  154. Schuchter L, DiPaola R, Greenberg R, et al. A phase I study of amifostine and escalating doses of taxol in patients with advanced cancer. Eur J Cancer 1995; 31A Suppl.: S199

    Article  Google Scholar 

  155. Hayakawa K, Sobue G, Itoh T, et al. Nerve growth factor prevents neurotoxic effects of cisplatin, vincristine and taxol on adult rat sympathetic ganglion expiants in vitro. Life Sci 1994; 55: 519–25

    Article  PubMed  CAS  Google Scholar 

  156. Apfel SC, Lipton RB, Arezzo JC, et al. Nerve growth factor prevents toxic neuropathy in mice. Ann Neurol 1991; 29: 87–90

    Article  PubMed  CAS  Google Scholar 

  157. Küpfer A, Aeschlimann C, Wermuth B, et al. Prophylaxis and reversal of ifosfamide encephalopathy with methylene-blue. Lancet 1994; 343: 763–4

    Article  PubMed  Google Scholar 

  158. Neuwelt EA, Brummett RE, Remsen LG, et al. In vitro and animal studies of sodium thiosulfate as a potential chemoprotectant against carboplatin-induced ototoxicity. Cancer Res 1996; 56: 706–9

    PubMed  CAS  Google Scholar 

  159. Yuhas JM, Culo F Selective inhibition of the nephrotoxicity of cisdichloro-diammineplatinum(II) by WR-2721 without altering its antitumor properties. Cancer Treat Rep 1980; 64: 57–64

    PubMed  CAS  Google Scholar 

  160. Glover D, Grabelsky S, Fox K, et al. Clinical trials of WR-2721 and cis-platinum. Int J Radiat Oncol Biol Phys 1989; 16: 1201–4

    Article  PubMed  CAS  Google Scholar 

  161. Millar JL, McElwain TJ, Clutterbuck RD, et al. The modification of melphalan toxicity in tumor bearing mice by S-2-(3-aminopropylamino)-ethyl-phosphorothioic acid (WR-2721). Am J Clin Oncol 1982; 5: 321–8

    Article  PubMed  CAS  Google Scholar 

  162. Valeriote F, Tolen S. Protection and potentiation of nitrogen mustard cytotoxicity by WR-2721. Cancer Res 1982; 42: 4330–1

    PubMed  CAS  Google Scholar 

  163. Wasserman TH, Phillips TL, Ross G, et al. Differential protection against cytotoxic chemotherapeutic effects on bone marrow CFUs by WR-2721. Cancer Clin Trials 1981; 4: 3–6

    PubMed  CAS  Google Scholar 

  164. List AF, Heaton R, Glinsman-Gibson B, et al. Amifostine protects primitive hematopoietic progenitors against chemotherapy cytotoxicity. Semin Oncol 1996; 23 Suppl. 8: 58–63

    Google Scholar 

  165. Shpall EJ, Stemmer SM, Hami L, et al. Amifostine (WR-2721) shortens the engraftment period of 4-hydroperoxycyclophosphamide-purged bone marrow in breast cancer patients receiving high-dose chemotherapy with autologous bone marrow support. Blood 1994; 83: 3132–7

    PubMed  CAS  Google Scholar 

  166. Cagnoni PJ, Jones RB, Bearman SI, et al. Use of amifostine in bone marrow purging. Semin Oncol 1996; 23 Suppl. 8: 44–8

    Google Scholar 

  167. van der Wilt CL, van Laar JAM, Gyergyay F, et al. Biochemical modification of the toxicity and the anti-tumour effect of 5-fluorouracil and cisplatinum by WR-2721 in mice. Eur J Cancer 1992; 28A: 2017–24

    Article  PubMed  Google Scholar 

  168. van Laar JAM, van der Wilt CL, Treskes M, et al. Effect of WR-2721 on the toxicity and antitumor activity of the combination of carboplatin and 5-fluorouracil. Cancer Chemother Pharmacol 1992; 31: 97–102

    Article  PubMed  Google Scholar 

  169. Mazur L, Czyzewska A. Inhibition of the clastogenic effect of cyclophosphamide by WR-2721 in the bone marrow of mice. Mutat Res 1994; 309: 219–23

    Article  PubMed  CAS  Google Scholar 

  170. Budd GT. Amifostine and chemotherapy-related thrombopenia. Semin Oncol 1996; 23 Suppl. 8: 49–52

    Google Scholar 

  171. Glover DJ, Glick JH, Weiler C, et al. WR-2721 protects against the hematologic toxicity of cyclophosphamide: a controlled phase II trial. J Clin Oncol 1986; 4: 584–8

    PubMed  CAS  Google Scholar 

  172. Poplin EA, Lorusso P, Lokich JJ, et al. Randomized clinical trial of mitomycin-C with or without pretreatment with WR-2721 in patients with advanced colorectal cancer. Cancer Chemother Pharmacol 1994; 33: 415–9

    Article  PubMed  CAS  Google Scholar 

  173. Budd GT, Ganapathi R, Adelstein DJ, et al. Randomized trial of carboplatin plus amifostine versus carboplatin alone in patients with advanced solid tumors. Cancer 1997; 80: 1134–40

    Article  PubMed  CAS  Google Scholar 

  174. Patchen ML, MacVittie TJ, Souza LM. Postirradiation treatment with granulocyte colony-stimulating factor and preirradiation WR-2721 administration synergize to enhance hemopoietic reconstitution and increase survival. Int J Radiat Oncol Biol Phys 1992; 22: 773–9

    Article  PubMed  CAS  Google Scholar 

  175. Patchen ML, MacVittie TJ. Granulocyte colony-stimulating factor and amifostine (ethyol) synergize to enhance hemopoietic reconstitution and increase survival in irradiated animals. Semin Oncol 1994; 21: 26–32

    PubMed  CAS  Google Scholar 

  176. Patchen ML. Amifostine plus granulocyte colony-stimulating factor therapy enhances recovery from supralethal radiation exposures: preclinical experience in animal models. Eur J Cancer 1995; 31A Suppl.: S17–21

    Article  PubMed  CAS  Google Scholar 

  177. Symonds RP. Treatment-induced mucositis: an old problem with new remedies. Br J Cancer 1998; 77: 1689–95

    Article  PubMed  CAS  Google Scholar 

  178. Giedler NM, McGurk M, Aqual S, et al. The effect of epidermal growth factor mouthwash on cytotoxic-induced oral ulceration. Am J Clin Oncol 1995; 18: 403–6

    Article  Google Scholar 

  179. Wadleigh RG, Redman RS, Graham ML, et al. Vitamin E in the treatment of chemotherapy-induced mucositis. Am J Med 1992; 92: 481–4

    Article  PubMed  CAS  Google Scholar 

  180. Mahood DJ, Dose AM, Loprinzi CL, et al. Inhibition of fluouracil-induced stomatitis by oral cryotherapy. J Clin Oncol 1991; 9: 449–52

    PubMed  CAS  Google Scholar 

  181. Sartori S, Trevisani L, Noelsen I, et al. Misoprostol and omeprazole in the prevention of chemotherapy-induced acute gastroduodenal mucosal injury. Cancer 1996; 78: 1477–82

    Article  PubMed  CAS  Google Scholar 

  182. Keith JC, Albert L, Sonis ST, et al. IL-11, a pleiotrophic cytokine: exciting new effects of IL-11 on gastro-intestinal mucosal biology. In: Murphy MJ, editor. Polyfunctionality of hematopoietic regulators. Dayton (OH): AlphaMed Press, 1994: 79–90

    Google Scholar 

  183. Orazi A, Du X, Yang Z, et al. Interleukin-11 prevents apoptosis and accelerates recovery of small intestinal mucosa in mice treated with combined chemotherapy and radiation. Lab Invest 1996; 75: 33–42

    PubMed  CAS  Google Scholar 

  184. Klimberg VS, Souba WW, Dolson DJ, et al. Prophylactic glutamine protects the intestinal mucosa from radiation injury. Cancer 1990; 66: 62–8

    Article  PubMed  CAS  Google Scholar 

  185. Skubitz KM, Anderson PM. Oral glutamine to prevent chemotherapy induced stomatitis. J Lab Clin Med 1996; 127: 223–8

    Article  PubMed  CAS  Google Scholar 

  186. Ziegler TR, Young LS, Benfell K, et al. Clinical and metabolic efficacy of glutamine-supplemented parenteral nutrition after bone marrow transplantation: a randomized, double-blind, controlled trial. Ann Intern Med 1992; 116: 821–8

    PubMed  CAS  Google Scholar 

  187. Capizzi RL. The preclinical basis for broad spectrum selective cytoprotection of normal tissues from cytotoxic therapies by amifostine (Ethyol®). Eur J Cancer 1996; 32A Suppl. 4: S5–16

    Article  PubMed  CAS  Google Scholar 

  188. Nakamura J, Shaw LM, Brown DQ. Hydrolysis of WR-2721 by mouse liver cell fractions. Radiat Res 1987; 109: 143–52

    Article  PubMed  CAS  Google Scholar 

  189. Fiorentini G, Cariello A, Giovanis P, et al. Amifostine as modulator of hepatic (HT) and biliary toxicity (BT) from intra-arterial hepatic chemoembolization (IAHC): results of a phase I study. Ann Oncol 1998; 9 Suppl. 2: 55

    Google Scholar 

  190. Herman EH, Hasinoff BB, Zhang J, et al. Morphologic and morphogenetic evaluation of the effect of ICRF-187 on bleomycin-induced pulmonary toxicity. Toxicology 1995; 98: 163–75

    Article  PubMed  CAS  Google Scholar 

  191. Allalunis-TurnerMJ, Siemann DW. Modification of cyclophosphamide-induced pulmonary toxicity in normal mice. NCI Monogr 1988; 51–3

  192. Wang LM, Wang QW, Fernandes DJ, et al. Amifostine protects MRC-5 human lung fibroblasts from taxol toxicity without reducing its cytotoxic effect against human non-small cell lung cancer cells. Proc Am Assoc Cancer Res 1995; 36: 288

    Google Scholar 

  193. Sugahara K, Iyama K, Sakanashi Y, et al. Keratinocyte growth factor (KGF) prevents bleomycin-induced lung fibrosis in rats. Mol Biol Cell1995; 6 Suppl.: 203a

    Google Scholar 

  194. Chap L, Shpiner R, Levine M, et al. Pulmonary toxicity of high-dose chemotherapy for breast cancer — a non-invasive approach to diagnosis and treatment. Bone Marrow Transplant 1997; 20: 1063–7

    Article  PubMed  CAS  Google Scholar 

  195. Manabe F, Takeshima H, Akaza H. Protecting spermatogenesis from damage induced by doxorubicin using the luteinizing hormone-releasing hormone agonist leuprorelin. Cancer 1997; 79: 1014–21

    Article  PubMed  CAS  Google Scholar 

  196. Milas LD, Murray AW, Brock WA, et al. Radioprotectors in tumor radiotherapy: factors and settings determining therapeutic ratio. Pharmacol Ther 1988; 39: 179–87

    Article  PubMed  CAS  Google Scholar 

  197. Smoluk GD, Fahey RC, Calabro-Jones PM, et al. Radioprotection of cells in culture by WR-2721 and derivates: form of the drug responsible for protection. Cancer Res 1988; 48: 3641–7

    PubMed  CAS  Google Scholar 

  198. Sigdestad CP, Connor AM, Scott RM. The effect of S-2-(3-amino-propylamino)-ethylphosphorothioic acid (WR-2721) on intestinal crypt survival. Radiat Res 1975; 62: 267–75

    Article  PubMed  CAS  Google Scholar 

  199. Down JD, Laurent GJ, McAnulty RJ, et al. Oxygen-dependent protection of radiation lung damage in mice by WR 2721. Int J Radiat Biol Relat Stud Phys Chem Med 1984; 46: 597–607

    Article  PubMed  CAS  Google Scholar 

  200. Sodicoff M, Conger AD, Trepper P, et al. Short-term radioprotective effects of WR-2721 on the rat parotid glands. Radiat Res 1978; 75: 317–26

    Article  PubMed  CAS  Google Scholar 

  201. Sodicoff M, Conger AD, Pratt NE, et al. Radioprotection by WR-2721 against long-term chronic damage to the rat parotid gland. Radiat Res 1978; 76: 172–9

    Article  PubMed  CAS  Google Scholar 

  202. Liu T, Liu Y, He S, et al. Use of radiation with or without WR-2721 in advanced rectal cancer. Cancer 1992; 69: 2820–5

    Article  PubMed  CAS  Google Scholar 

  203. Montana GS, Anscher MS, Mansbach CM, et al. Topical application of WR-2721 to prevent radiation-induced proctosigmoiditis: a phase I/II trial. Cancer 1992; 69: 2826–30

    Article  PubMed  CAS  Google Scholar 

  204. Mitsuhashi N, Takahashi I, Takahashi M, et al. Clinical study of radioprotective effects of amifostine (YM-08310, WR-2721) on long-term outcome for patients with cervical cancer. Int J Radiat Oncol Biol Phys 1993; 26: 407–11

    Article  PubMed  CAS  Google Scholar 

  205. Wadler S, Beitler J, Rubin JS, et al. Pilot trial of cisplatin, radiation, and WR2721 in carcinoma of the uterine cervix: a New York Gynecologic Oncology Group Study. J Clin Oncol 1993; 11: 1511–6

    PubMed  CAS  Google Scholar 

  206. Niibe H, Takahashi I, Mitsuhashi N, et al. An evaluation of the clinical usefulness of amifostine (YM-08310), a radioprotective agent. J Jpn Soc Cancer Ther 1985; 20: 984–93

    CAS  Google Scholar 

  207. McDonald S, Meyerowitz C, Smudain T, et al. Amifostine preserves salivary gland dysfunction during irradiation of the head and neck. Int J Radiat Oncol Biol Phys 1995; 31 Suppl. 5:415

    Article  Google Scholar 

  208. Brizel D, Sauer R, Wannenmacher M, et al. Randomized phase III trial of radiation ± amifostine in patients with head and neck cancer. Proc Am Soc Clin Oncol 1998; 17: 1487

    Google Scholar 

  209. Büntzel J, Küttner K, Fröhlich D, et al. Selective cytoprotection with amifostine in concurrent radiochemotherapy for head and neck cancer. Ann Oncol 1998; 9: 505–9

    Article  PubMed  Google Scholar 

  210. Giglio R, Mickiewicz E, Pradier E, et al. Alternating chemotherapy (CT) + radiotherapy (RT) with amifostine (A) protection for head and neck cancer (HN): early stop of a randomized trial. Proc Am Soc Clin Oncol 1997; 16: 384

    Google Scholar 

  211. Tannehill SP, Mehta MP, Larson M, et al. Phase II clinical trial of amifostine (WR-2721), cisplatin, vinblastine and thoracic radiation therapy for unresectable stage III non-small cell lung cancer. Int J Radiat Oncol Biol Phys 1995; 32 Suppl. 1: 196

    Article  Google Scholar 

  212. Tannehill SP, Mehta MP. Amifostine and radiation therapy: past, present, and future. Semin Oncol 1996; 23 Suppl. 8: 69–77

    Google Scholar 

  213. Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 1998; 279: 377–80

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaas Hoekman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoekman, K., van der Vijgh, W.J.F. & Vermorken, J.B. Clinical and Preclinical Modulation of Chemotherapy-Induced Toxicity in Patients with Cancer. Drugs 57, 133–155 (1999). https://doi.org/10.2165/00003495-199957020-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199957020-00002

Keywords

Navigation