Skip to main content
Log in

Mechanisms of Resistance to Quinolones

  • State-of-The-Art Presentations
  • Published:
Drugs Aims and scope Submit manuscript

Summary

Mechanisms of resistance to the quinolones have been described for several bacterial species, but mainly for Escherichia coli and Staphylococcus aureus. Two principal mechanisms have been described: 1) alteration of the DNA gyrase, which is the target site of the quinolones; and 2) diminished accumulation in the cell as a result of either decreased uptake or increased efflux.

Alteration of DNA gyrase is usually the result of a mutation in the gyrA, or more rarely, the gyrB gene. All substitutions in subunit A of the gyrase are located in the 67 to 106 amino-acid domain and are clustered around Ser-83 in E. coli and Ser-84 in S. aureus.

A decrease in uptake has been described for Gram-negative bacteria such as Enterobacteriaceae and Pseudomonas aeruginosa. It has almost always been correlated with a modified electrophoretic profile of outer membrane proteins of the quinolone-resistant mutants. In E. coli, a decrease in OmpF seemed to be linked to the activation of the micF operon in most of the mutants described. These mutants were cross-resistant to unrelated antibiotics, such as trimethoprim, chloramphenicol, tetracycline, and some β-lactams. In all these mutants the normal or enhanced efflux of quinolones increased the level of resistance. Enhanced efflux has been described as the second mechanism of resistance in S. aureus.

Acquired resistance to the quinolones was thought, until recently, to result from chromosomal mutation. Plasmid-mediated resistance associated with an enhanced efflux has been described in S. aureus, but this needs to be confirmed. When a high level of resistance is observed, 2 or 3 mechanisms may be involved. Alteration of DNA gyrase generally results in higher levels of quinolone resistance than decreased permeability or enhanced efflux in S. aureus.

Appropriate quinolone therapy must be employed to minimise the selection of quinolone-resistant mutants and to prevent the spread of quinolone resistance among S. aureus, especially if the recent observation of plasmid-mediated resistance is confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bourguignon CJ, Levitt M, Sternglanz R. Studies on the mechanism of action of nalidixic acid. Antimicrobial Agents and Chemotherapy 4: 479–486, 1973

    Article  PubMed  CAS  Google Scholar 

  • Cambau E, Bordon F, Collatz E, Gutmann L. A novel gyrA point mutation confers resistance to fluoroquinolones but not to nalidixic acid in Escherichia coli. Abstract no. 96. General Meeting of ASM, New Orleans, 1992

    Google Scholar 

  • Celesk RA, Robillard NJ. Factors influencing the accumulation of ciprofloxacin in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 33: 1921–1926, 1989

    Article  PubMed  CAS  Google Scholar 

  • Chao L. An unusual interaction between the target of nalidixic acid and novobiocin. Nature 271: 385–386, 1978

    Article  PubMed  CAS  Google Scholar 

  • Chapman JS, Bertasso A, Georgopapadakou NH. Fleroxacin resistance in Escherichia coli. Antimicrobial Agents and Chemotherapy 33: 239–241, 1989

    Article  PubMed  CAS  Google Scholar 

  • Cohen SP, Hooper DC, Wolfson JS, Souza KS, McMurry LM, et al. Endogenous active efflux of norfloxacin in susceptible Escherichia coli. Antimicrobial Agents and Chemotherapy 32: 1187–1191, 1988

    Article  PubMed  CAS  Google Scholar 

  • Cohen SP, McMurry LM, Hooper DC, Wolfson JS, Levy SB. Cross-resistance to fluoroquinolones in multiple-antibiotic-resistant (Mar) Escherichia coli selected by tetracycline or chloramphenicol: decreased drug accumulation associated with membrane changes in addition to OmpF reduction. Antimicrobial Agents and Chemotherapy 33: 1318–1325, 1989

    Article  PubMed  CAS  Google Scholar 

  • Contreras A, Maxwell A. gyrB mutations which confer coumarin resistance also affect DNA supercoiling and ATP hydrolysis by Escherichia coli DNA gyrase. Molecular Microbiology 6: 1617–1624, 1992

    Article  PubMed  CAS  Google Scholar 

  • Cullen ME, Wyke AW, Kuroda R, Fisher LM. Cloning and characterization of a DNA gyrase A gene from Escherichia coli that confers clinical resistance to 4-quinolones. Antimicrobial Agents and Chemotherapy 33: 886–894, 1989

    Article  PubMed  CAS  Google Scholar 

  • Daikos GL, Lolans VT, Jackson GG. Alterations in outer membrane proteins of Pseudomonas aeruginosa associated with selective resistance to quinolones. Antimicrobial Agents and Chemotherapy 32: 785–787, 1988

    Article  PubMed  CAS  Google Scholar 

  • Fashing CE, Tenover FC, Slama TG, Fisher LM, Sreedharan S, et al. gyrA mutations in ciprofloxacin-resistant methicillin-resistant Staphylococcus aureus from Indiana, Minnesota and Tennessee. Journal of Infectious Diseases 164: 976–979, 1991

    Article  Google Scholar 

  • Fukuda H, Hosaka M, Hirai K, Iyobe S. New norfloxacin resistance gene in Pseudomonas aeruginosa PAO. Antimicrobial Agents and Chemotherapy 34: 1757–1761, 1990

    Article  PubMed  CAS  Google Scholar 

  • Geliert M, Mizuuchi K, O’Dea MH, Itoh T, Tomisawa J. Nalidixic acid resistance: a second genetic character involved in DNA gyrase activity. Proceedings of the National Academy of Sciences of the United States of America 74: 4772–4776, 1977

    Article  Google Scholar 

  • Gootz TD, Martin BA. Characterization of high-level quinolone resistance in Campylobacter jejuni. Antimicrobial Agents and Chemotherapy 35: 840–845, 1991

    Article  PubMed  CAS  Google Scholar 

  • Goswitz JJ, Willard KE, Fasching CE, Peterson LR. Detection of gyrA gene mutations associated with ciprofloxacin resistance in methicillin-resistant Staphylococcus aureus: analysis of polymerase chain reaction and automated direct DNA sequencing. Antimicrobial Agents and Chemotherapy 36: 1166–1169, 1992

    Article  PubMed  CAS  Google Scholar 

  • Griggs DG, Hall MC, Piddock LVJ. Mechanisms of quinolone-resistance in clinical and veterinary isolates of Salmonella. Abstract no. 94, p. 16. General Meeting of ASM, New Orleans, 1992

    Google Scholar 

  • Gutmann L, Billot-Klein D, Williamson R, Goldstein FW, Mounier J, et al. Mutation of Salmonella paratyphi A conferring cross-resistance to several groups of antibiotics by decreased permeability and loss of invasiveness. Antimicrobial Agents and Chemotherapy 32: 195–201, 1988

    Article  PubMed  CAS  Google Scholar 

  • Gutmann L, Williamson R, Moreau N, Kitzis M, Collatz E, et al. Cross-resistance to nalidixic acid, trimethoprim and chloramphenicol associated with alterations in outer membrane proteins of Klebsiella, Enterobacter and Serratia. Journal of Infectious Diseases 151: 501–507, 1985

    Article  PubMed  CAS  Google Scholar 

  • Hächler H, Cohen SP, Levy SB. marA, a regulated locus which controls expression of chromosomal multiple antibiotic resistance in Escherichia coli. Journal of Bacteriology 173: 5532–5538, 1991

    PubMed  Google Scholar 

  • Hallett P, Maxwell A. Novel quinolone resistance mutations of the Escherichia coli DNA gyrase A protein: enzymatic analysis of the mutant proteins. Antimicrobial Agents and Chemotherapy 35: 335–340, 1991

    Article  PubMed  CAS  Google Scholar 

  • Hane MW, Wood T. Escherichia coli K-12 mutants resistant to nalidixic acid: genetic mapping and dominance studies. Journal of Bacteriology 99: 238–241, 1969

    PubMed  CAS  Google Scholar 

  • Heisig P, Wiedemann B. Use of a broad-host-range plasmid for genetic characterization of fluoroquinolone-resistant Gram-negative bacteria. Antimicrobial Agents and Chemotherapy 35: 2031–2036, 1991

    Article  PubMed  CAS  Google Scholar 

  • Hirai K, Aoyama H, Irikura T, Iyobe S, Mitsuhashi S. Differences in susceptibility to quinolones of outer membrane mutants of Salmonella typhimurium and Escherichia coli. Antimicrobial Agents and Chemotherapy 29: 535–538, 1986a

    Article  PubMed  CAS  Google Scholar 

  • Hirai K, Aoyama H, Suzue S, Irikura T, Iyobe S, et al. Isolation and characterization of norfloxacin-resistant mutants of Escherichia coli K-12. Antimicrobial Agents and Chemotherapy 30: 248–253, 1986b

    Article  PubMed  CAS  Google Scholar 

  • Hirai K, Suzue S, Irikura T, Iyobe S, Mitsuhashi S. Mutations producing resistance to norfloxacin in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 31: 582–586, 1987

    Article  PubMed  CAS  Google Scholar 

  • Hooper DC, Wolfson JS, Bozza MA, Ng EY. Genetics and regulation of outer membrane protein expression by quinolone resistance loci nfxB, nfxC, and cfxB. Antimicrobial Agents and Chemotherapy 36: 1151–1154, 1992

    Article  PubMed  CAS  Google Scholar 

  • Hooper DC, Wolfson JS, Ng EY, Swartz MN. Mechanisms of action of and resistance to ciprofloxacin. American Journal of Medicine 82: 12–20, 1987

    PubMed  CAS  Google Scholar 

  • Hooper DC, Wolfson JS, Souza KS, Ng EY, McHugh GL, et al. Mechanisms of quinolone resistance in Escherichia coli: characterization of nfxB and cfxB, two mutant resistance loci decreasing norfloxacin accumulation. Antimicrobial Agents and Chemotherapy 33: 283–290, 1989a

    Article  PubMed  CAS  Google Scholar 

  • Hooper DC, Wolfson JS, Souza KS, Tung C, McHugh GL, et al. Genetic and biochemical characterization of norfloxacin resistance in Escherichia coli. Antimicrobial Agents and Chemotherapy 29: 639–644, 1986

    Article  PubMed  CAS  Google Scholar 

  • Hooper DC, Wolfson JS, Tung C, Souza KS, Swartz MN. Effects of inhibition of the B subunit of DNA gyrase on conjugation in Escherichia coli. Journal of Bacteriology 171: 2235–2237, 1989b

    PubMed  CAS  Google Scholar 

  • Horowitz DS, Wang JC. Mapping the active site tyrosine of Escherichia coli DNA gyrase. Journal of Biological Chemistry 262: 5339–5344, 1987

    PubMed  CAS  Google Scholar 

  • Hrebenda J, Heleszko H, Brzostek K, Bielecki J. Mutation affecting resistance of Escherichia coli K-12 to nalidixic acid. Journal of General Microbiology 131: 2285–2292, 1985

    PubMed  CAS  Google Scholar 

  • Ishii H, Sato K, Hoshino K, Sato M, Yamaguchi A, et al. Active efflux of ofloxacin by a highly quinolone-resistant strain of Proteus vulgaris. Journal of Antimicrobial Chemotherapy 28: 827–836, 1991

    Article  PubMed  CAS  Google Scholar 

  • Kaatz GW, Seo SM. Up-regulation of norA 1199 results in fluoro-quinolones (FQ) resistance in Staphylococcus aureus (SA). Abstract no. 1481, p. 357, 32nd ICAAC, Anaheim, USA, 1992

    Google Scholar 

  • Kaatz GW, Seo SM, Ruble CA. Mechanisms of fluoroquinolone resistance in Staphylococcus aureus. Journal of Infectious Diseases 163: 1080–1086, 1991

    Article  PubMed  CAS  Google Scholar 

  • Levy SB. Active efflux mechanisms for antimicrobial resistance. Antimicrobial Agents and Chemotherapy 36: 695–703, 1992

    Article  PubMed  CAS  Google Scholar 

  • Lewin CS, Smith JT. gyrA gene alterations affecting the second killing action of ciprofloxacin. Abstract 812, p. 234. 31st ICAAC, Chicago, 1991

    Google Scholar 

  • Lucain C, Regamey P, Bellido P, Pechere J. Resistance emerging after pefloxacin therapy of experimental Enterobacter cloacae peritonitis. Antimicrobial Agents and Chemotherapy 33: 937–943, 1989

    Article  PubMed  CAS  Google Scholar 

  • Masecar BL, Celesk RA, Robillard NJ. Analysis of acquired ciprofloxacin resistance in a clinical strain of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 34: 281–286, 1990

    Article  PubMed  CAS  Google Scholar 

  • Masecar BL, Robillard NJ. Spontaneous quinolone resistance in Serratia marcescens due to a mutation in gyr A. Antimicrobial Agents and Chemotherapy 35: 898–902, 1991

    Article  PubMed  CAS  Google Scholar 

  • Miehéa-Hamzehpour M, Furet YX, Pechère JC. Role of protein D2 and lipopolysaccharide in diffusion of quiholones through the outer membrane of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 35: 2091–2097, 1991a

    Article  Google Scholar 

  • Michéa-Hamzehpour M, Lucain C, Pechère JC. Resistance to pefloxacin in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 35: 512–518, 1991b

    Article  PubMed  Google Scholar 

  • Moniot-Ville N, Guibert J, Moreau N, Acar JF, Collatz E, et al. Mechanisms of quinolone resistance in a clinical isolate of Escherichia coli highly resistant to fluoroquinolones but susceptible to nalidixic acid. Antimicrobial Agents and Chemotherapy 35: 519–523, 1991

    Article  PubMed  CAS  Google Scholar 

  • Nakamura S, Nakamura M, Kojima T, Yoshida H. gyrA and gyrB mutations in quinolone-resistant strains of Escherichia coli. Antimicrobial Agents and Chemotherapy 33: 254–255, 1989

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi N, Yoshida S, Wakebe H, Inoue M, Mitsuhashi S. Mechanisms of clinical resistance to fluoroquinolones in Enterococcus faecalis. Antimicrobial Agents and Chemotherapy 35: 1053–1059, 1991a

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi N, Yoshida S, Wakebe H, Inoue M, Yamaguchi T, et al. Mechanisms of clinical resistance to fluoroquinolones in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy 35: 2562–2567, 1991b

    Article  PubMed  CAS  Google Scholar 

  • Neyfakh AA. The multidrug efflux transporter of Bacillus subtilis is a structural and functional homolog of the Staphylococcus Nor A protein. Antimicrobial Agents and Chemotherapy 36: 484–485, 1992

    Article  PubMed  CAS  Google Scholar 

  • Ohshita Y, Hiramatsu K, Yokota T. A point mutation in norA gene is responsible for quinolone resistance in Staphylococcus aureus. Biochemical and Biophysical Research Communications 172: 1028–1034, 1990

    Article  PubMed  CAS  Google Scholar 

  • Okuda J, Okamoto S, Takahata M, Nishino T. Inhibitory effects of ciprofloxacin and sparfloxacin on DNA gyrase purified from fluoroquinolone-resistant strains of methicillin-resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy 35: 2288–2293, 1991

    Article  PubMed  CAS  Google Scholar 

  • Oram M, Fisher LM. 4-quinolone resistance mutations in the DNA gyrase of Escherichia coli clinical isolates identified by using the polymerase chain reaction. Antimicrobial Agents and Chemotherapy 35: 387–389, 1991

    Article  PubMed  CAS  Google Scholar 

  • Philips AC, Towner KJ. Use of a non-radioactive DNA hybridization technique to study the effect of quinolone antibiotics on plasmid replication and curing. Journal of Antimicrobial Chemotherapy 25: 745–750, 1990

    Article  Google Scholar 

  • Piddock LJV, Hall MC, Bellido F, Bains M, Hancock REW. A pleiotropic, posttherapy, enoxacin-resistant mutant of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 36: 1057–1061, 1992

    CAS  Google Scholar 

  • Piddock LJV, Hall MC, Walters RN. Phenotypic characterization of quinolone-resistant mutants of Enterobacteriaceae selected from wild type, gyrA type and multiply-resistant (marA) type strains. Journal of Antimicrobial Chemotherapy 28: 185–198, 1991

    Article  PubMed  CAS  Google Scholar 

  • Piddock LJV, Walters RN. Bactericidal activities of five quinolones for Escherichia coli strains with mutations in genes encoding the SOS response or cell division. Antimicrobial Agents and Chemotherapy 36: 819–825, 1992

    Article  PubMed  CAS  Google Scholar 

  • Piddock LJV, Zhu M. Mechanism of action of sparfloxacin against and mechanism of resistance in Gram-negative and Grampositiye bacteria. Antimicrobial Agents and Chemotherapy 35: 2423–2427, 1991

    Article  PubMed  CAS  Google Scholar 

  • Robillard NJ. Broad-host-range gyrase A gene probe. Antimicrobial Agents and Chemotherapy 34: 1889–1894, 1990

    Article  PubMed  CAS  Google Scholar 

  • Robillard NJ, Scarpa AL. Genetic and physiological characterization of ciprofloxacin resistance in Pseudomonas aeruginosa PAO. Antimicrobial Agents and Chemotherapy 32: 535–539, 1988

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Inoue Y, Fujii T, Aoyama H, Inoue M, et al. Purification and properties of DNA gyrase from a fluoroquinolone-resistant strain of Escherichia coli. Antimicrobial Agents and Chemotherapy 30: 777–780, 1986

    Article  PubMed  CAS  Google Scholar 

  • Shen LL, Mitsher LA, Sharma PN, O’Donnell TJ, Chu DWT, et al. Mechanism of inhibition of DNA gyrase by quinolone anti-bacterials: a cooperative drug-DNA binding model. Biochemistry 28: 3886–3894, 1989

    Article  PubMed  CAS  Google Scholar 

  • Sreedharan S, Oram M, Jensen B, Peterson LR, Fisher LM. DNA gyrase gyrA mutations in ciprofloxacin-resistant strains of Staphylococcus aureus: close similarity with quinolone resistance mutations in Escherichia coli. Journal of Bacteriology 172: 7260–7262, 1990

    PubMed  CAS  Google Scholar 

  • Sreedharan S, Peterson LR, Fisher LM. Ciprofloxacin resistance in coagulase-positive and -negative staphylococci: role of mutations at serine 84 in the DNA gyrase A protein of Staphylococcus aureus and Staphylococcus epidermidis. Antimicrobial Agents and Chemotherapy 35: 2151–2154, 1991

    Article  PubMed  CAS  Google Scholar 

  • Stein DC, Danaher RJ, Cook TM. Characterization of a gyrB mutation responsible for low-level nalidixic acid resistance in Neisseria gonorrhoeae. Antimicrobial Agents and Chemotherapy 35: 622–626, 1991

    Article  PubMed  CAS  Google Scholar 

  • Sugino A, Peebles CL, Kreuzer KN, Cozzarelli NR. Mechanism of action of nalidixic acid: purification of Escherichia coli nalA gene product and its relationship to DNA gyrase and a novel nicking-closing enzyme. Proceedings of the National Academy of Sciences of the United States of America 74: 4767–4771, 1977

    Article  PubMed  CAS  Google Scholar 

  • Sutcliffe JA, Gootz TD, Barrett JF. Biochemical characteristics and physiological significance of major topoisomerases. Antimicrobial Agents and Chemotherapy 33: 2027–2033, 1989

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Ishii H, Sato K, Osada Y, Nishino T. Characterization of high-level quinolone-resistance in methicillin-resistant Staphylococcus aureus. Abstract no. 808, p. 233. 31st ICAAC, Chicago, 1991

    Google Scholar 

  • Trucksis M, Wolfson JS, Hooper DC. A novel locus conferring fluoroquinolone resistance in Staphylococcus aureus:. Journal of Bacteriology 173: 5854–5860, 1991

    PubMed  CAS  Google Scholar 

  • Ubukata K, Itoh-Yamashita N, Konno M. Cloning and expression of the norA gene for fluoroquinolone resistance in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy 33: 1535–1539, 1989

    Article  PubMed  CAS  Google Scholar 

  • Wolfson JS, Hooper DC, McHugh GL, Bozza MA, Swartz MN. Mutants of Escherichia coli K-12 exhibiting reduced killing by both quinolone and β-lactam antimicrobial agents. Antimicrobial Agents and Chemotherapy 34: 1938–1943, 1990

    Article  PubMed  CAS  Google Scholar 

  • Yamagishi J, Furutani Y, Inoue S, Ohue T, Nakamura S, et al. New nalidixic acid resistance mutations related to deoxyri-bonucleic acid gyrase activity. Journal of Bacteriology 148: 450–458, 1981

    PubMed  CAS  Google Scholar 

  • Yamagishi J, Yoshida H, Yamayoshi M, Nakamura S. Nalidixic acid-resistant mutations of the gyrB gene of Escherichia coli. Molecular and General Genetics 204: 367–378, 1986

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H, Bogaki M, Nakamura M, Nakamura S. Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrobial Agents and Chemotherapy 34: 1271–1272, 1990a

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H, Bogaki M, Nakamura S, Ubukata K, Konn M. Nucleotide sequence and characterization of the Staphylococcus aureus norA gene, which confers resistance to quinolones. Journal of Bacteriology 172: 6942–6949, 1990b

    PubMed  CAS  Google Scholar 

  • Yoshida H, Bogaki M, Nakamura M, Yamanaka LM, Nakamura S. Quinolone resistance-determining region in the DNA gyrase gyrB gene of Escherichia coli. Antimicrobial Agents and Chemotherapy 35: 1647–1650, 1991b

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H, Kojima T, Yamagishi J, Nakamura S. Quinolone-resistant mutations of the gyrA gene of Escherichia coli. Molecular and General Genetics 211: 1–7, 1988

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H, Nakamura M, Bogaki M, Nakamura S. Proportion of DNA gyrase mutants among quinolone-resistant strains of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 34: 1273–1275, 1990c

    Article  PubMed  CAS  Google Scholar 

  • Yoshida S, Kojima T, Inoue M, Mitsuhashi S. Uptake of sparfloxacin and norfloxacin by clinical isolates of Staphylococcus aureus. Antimicrobial Agents and Chemotherapy 35: 368–370, 1991a

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cambau, E., Gutmann, L. Mechanisms of Resistance to Quinolones. Drugs 45 (Suppl 3), 15–23 (1993). https://doi.org/10.2165/00003495-199300453-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199300453-00005

Keywords

Navigation