Skip to main content
Log in

Disposition of Drugs in Block Copolymer Micelle Delivery Systems

From Discovery to Recovery

  • Leading Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Since their discovery in the early 1980s, polymeric micelles have been the subject of several studies as delivery systems that can potentially improve the therapeutic performance and modify the toxicity profile of encapsulated drugs by changing their pharmacokinetic characteristics. The efforts in this area have led in recent years to the advancement of several polymeric micellar formulations to clinical trials, some of which have shown promise in changing the biodistribution of the incorporated drug after intravenous administration as a means of tumour-targeted drug delivery. Recently, the possible benefit of polymeric micellar delivery in enhancing the absorption and bioavailability of incorporated drugs from alternative routes of drug administration has attracted interest. This article provides an overview of the effect of polymeric micellar delivery on absorption, distribution, metabolism and excretion of incorporated therapeutic agents. It also aims to assess the current information on the performance of polymeric micellar delivery systems in modifying the pharmacokinetics/pharmacodynamics of the incorporated drugs in clinical trials, and to re-examine the important structural factors required for successful design of polymeric micellar delivery systems capable of inducing favourable changes in the pharmacokinetics of the encapsulated drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Fig. 2
Fig. 3
Table II
Fig. 4
Table III

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Aliabadi HM, Lavasanifar A. Polymeric micelles for drag delivery. Expert Opin Drag Del 2006; 3(1): 139–62

    Article  CAS  Google Scholar 

  2. Allen TM. Liposomes: opportunities in drag delivery. Drags 1997; 54 Suppl. 4: 8–14

    Article  CAS  Google Scholar 

  3. Allen TM. Long-circulating (sterically stabilized) liposomes for targeted drag delivery. Trends Pharmacol Sci 1994; 15(7): 215–20

    Article  PubMed  CAS  Google Scholar 

  4. Allen TM, Cullis PR. Drag delivery systems: entering the mainstream. Science 2004; 303(5665): 1818–22

    Article  PubMed  CAS  Google Scholar 

  5. Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drag delivery: design, characterization and biological significance. Adv Drag Deliv Rev 2001; 47(1): 113–31

    Article  CAS  Google Scholar 

  6. Kwon GS, Kataoka K. Block copolymer micelles as long-circulating drag vehicles. Adv Drag Deliv Rev 1995; 16(2–3): 295–309

    Article  CAS  Google Scholar 

  7. Kwon GS, Okano T. Polymeric micelles as new drug carriers. Adv Drug Deliv Rev 1996; 21(2): 107–16

    Article  CAS  Google Scholar 

  8. Torchilin VP. Targeted polymeric micelles for delivery of poorly soluble drags. Cell Mol Life Sci 2004; 61(19–20): 2549–59

    Article  PubMed  CAS  Google Scholar 

  9. Yokoyama M. Block copolymers as drag carriers. Crit Rev Ther Drag Carrier Syst 1992; 9(3–4): 213–48

    CAS  Google Scholar 

  10. Adams ML, Lavasanifar A, Kwon GS. Amphiphilic block copolymers for drag delivery. J Pharm Sci 2003; 92(7): 1343–55

    Article  PubMed  CAS  Google Scholar 

  11. Allen C, Eisenberg A, Maysinger D. Copolymer drag carriers: conjugates, micelles and microspheres. STP Pharma Sci 1999; 9(1): 139–51

    CAS  Google Scholar 

  12. Allen C, Maysinger D, Eisenberg A. Nano-engineering block copolymer aggregates for drag delivery. Colloids Surf B Biointerfaces 1999; 16(1–4): 3–27

    Article  CAS  Google Scholar 

  13. Kabanov AV, Vinogradov SV, Suzdaltseva YG, et al. Water-soluble block polycations as carriers for oligonucleotide delivery. Bioconjug Chem 1995; 6(6): 639–43

    Article  PubMed  CAS  Google Scholar 

  14. Kataoka K, Kwon GS, Yokoyama M, et al. Block copolymer micelles as vehicles for drug delivery. J Control Rel 1993; 24(1–3): 119–32

    CAS  Google Scholar 

  15. Kwon GS. Diblock copolymer nanoparticles for drag delivery. Crit Rev Ther Drag Carrier Syst 1998; 15(5): 481–512

    CAS  Google Scholar 

  16. Kwon GS. Polymeric micelles for delivery of poorly water-soluble compounds. Crit Rev Ther Drug Carrier Syst 2003; 20(5): 357–403

    Article  PubMed  CAS  Google Scholar 

  17. Lavasanifar A, Samuel J, Kwon GS. Poly(ethylene oxide)-block-poly(L-amino acid) micelles for drag delivery. Adv Drag Deliv Rev 2002; 54(2): 169–90

    Article  CAS  Google Scholar 

  18. Le Garrec D, Ranger M, Leroux JC. Micelles in anticancer drag delivery. Am J Drug Del 2004; 2(1): 15–42

    Article  Google Scholar 

  19. Mahmud A, Xiong XB, Aliabadi HM, et al. Polymeric micelles for drag targeting. J Drag Target 2007; 15(9): 553–84

    Article  CAS  Google Scholar 

  20. Jones M, Leroux J. Polymeric micelles: a new generation of colloidal drug carriers. Eur J Pharm Biopharm 1999; 48(2): 101–11

    Article  PubMed  CAS  Google Scholar 

  21. Kakizawa Y, Kataoka K. Block copolymer micelles for delivery of gene and related compounds. Adv Drug Deliv Rev 2002; 54(2): 203–22

    Article  PubMed  CAS  Google Scholar 

  22. Torchilin VP. PEG-based micelles as carriers of contrast agents for different imaging modalities. Adv Drag Deliv Rev 2002; 54(2): 235–52

    Article  CAS  Google Scholar 

  23. Torchilin VP. Structure and design of polymeric surfactant-based drug delivery systems. J Control Rel 2001; 73(2–3): 137–72

    Article  CAS  Google Scholar 

  24. Chang SF, Chang HY, Tong YC, et al. Nonionic polymeric micelles for oral gene delivery in vivo. Hum Gene Ther 2004; 15(5): 481–93

    Article  PubMed  CAS  Google Scholar 

  25. Chao YC, Chang SF, Lu SC, et al. Ethanol enhanced in vivo gene delivery with non-ionic polymeric micelles inhalation. J Control Rel 2007; 118(1): 105–17

    Article  CAS  Google Scholar 

  26. Chiappetta DA, Sosnik A. Poly(ethylene oxide)-poly(propylene oxide) block copolymer micelles as drag delivery agents: improved hydrosolubility, stability and bioavailability of drugs. Eur J Pharm Biopharm 2007; 66(3): 303–17

    Article  PubMed  CAS  Google Scholar 

  27. Francis MF, Cristea M, Winnik FM. Exploiting the vitamin B12 pathway to enhance oral drug delivery via polymeric micelles. Biomacromolecules 2005; 6(5): 2462–7

    Article  PubMed  CAS  Google Scholar 

  28. Francis MF, Cristea M, Winnik FM. Polymeric micelles for oral drag delivery: why and how. Pure Appl Chem 2004; 76(7–8): 1321–35

    Article  CAS  Google Scholar 

  29. Kwon GS. Polymeric drag delivery systems: drags and the pharmaceutical sciences. Boca Raton (FL): Taylor & Francis, 2005

    Google Scholar 

  30. Kwon SH, Kim SY, Ha KW, et al. Pharmaceutical evaluation of genistein-loaded Pluronic micelles for oral delivery. Arch Pharm Res 2007; 30(9): 1138–43

    Article  PubMed  CAS  Google Scholar 

  31. Sant VP, Smith D, Leroux JC. Enhancement of oral bioavailability of poorly water-soluble drugs by poly(ethylene glycol)-block-poly(alkyl acrylate-co-methacrylic acid) self-assemblies. J Control Rel 2005; 104(2): 289–300

    Article  CAS  Google Scholar 

  32. Shin S, Cho C, Oh I. Enhanced efficacy by percutaneous absorption of piroxicam from the poloxamer gel in rats. Int J Pharm 2000; 193(2): 213–8

    Article  PubMed  CAS  Google Scholar 

  33. Tong YC, Chang SF, Liu CY, et al. Eye drop delivery of nano-polymeric micelle formulated genes with cornea-specific promoters. J Gene Med 2007; 9(11): 956–66

    Article  PubMed  CAS  Google Scholar 

  34. Carafa M, Marianecci C, Annibaldi V, et al. Novel O-palmitoylscleroglucan-coated liposomes as drag carriers: development, characterization and interaction with leuprolide. Int J Pharm 2006; 325(1–2): 155–62

    Article  PubMed  CAS  Google Scholar 

  35. Zhang N, Ping QN, Huang GH, et al. Investigation of lectin-modified insulin liposomes as carriers for oral administration. Int J Pharm 2005; 294(1–2): 247–59

    Article  PubMed  CAS  Google Scholar 

  36. Cilek A, Celebi N, Tirnaksiz F, et al. A lecithin-based microemulsion of rh-insulin with aprotinin for oral administration: investigation of hypoglycemic effects in non-diabetic and STZ-induced diabetic rats. Int J Pharm 2005; 298(1): 176–85

    Article  PubMed  CAS  Google Scholar 

  37. Kim SK, Lee EH, Vaishali B, et al. Tricaprylin microemulsion for oral delivery of low molecular weight heparin conjugates. J Control Rel 2005; 105(1–2): 32–42

    Article  CAS  Google Scholar 

  38. Sun H, Pan H, Yang Z, et al. The immune response and protective efficacy of vaccination with oral microparticle Aeromonas sobria vaccine in mice. Int Immunopharmacol 2007; 7(9): 1259–64

    Article  PubMed  CAS  Google Scholar 

  39. Yang Z, Pan H, Sun H. The immune response and protective efficacy of oral alginate microparticle Aeromonas sobria vaccine in soft-shelled turtles (Trionyx sinensis). Vet Immunol and Immunopathol 2007; 119(3–4): 299–302

    Article  CAS  Google Scholar 

  40. Fundueanu G, Constantin M, Bortolotti F, et al. Cellulose acetate butyrate-pH/thermosensitive polymer microcapsules containing aminated poly(vinyl alcohol) microspheres for oral administration of DNA. Eur J Pharm Biopharm 2007; 66(1): 11–20

    Article  PubMed  CAS  Google Scholar 

  41. Lu B, Wen R, Yang H, et al. Sustained-release tablets of indomethacin-loaded microcapsules: preparation, in vitro and in vivo characterization. Int J Pharm 2007; 333(1–2): 87–94

    Article  PubMed  CAS  Google Scholar 

  42. Francis MF, Cristea M, Yang Y, et al. Engineering polysaccharide-based polymeric micelles to enhance permeability of cyclosporin A across Caco-2 cells. Pharm Res 2005; 22(2): 209–19

    Article  PubMed  CAS  Google Scholar 

  43. Sezgin Z, Yuksel N, Baykara T. Investigation of Pluronic and PEG-PE micelles as carriers of meso-tetraphenyl porphine for oral administration. Int J Pharm 2007; 332(1–2): 161–7

    Article  PubMed  CAS  Google Scholar 

  44. Yoncheva K, Guembe L, Campanero MA, et al. Evaluation of bioadhesive potential and intestinal transport of pegylated poly(anhydride) nanoparticles. Int J Pharm 2007; 334(1–2): 156–65

    Article  PubMed  CAS  Google Scholar 

  45. Desai MP, Labhasetwar V, Amidon GL, et al. Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res 1996; 13(12): 1838–45

    Article  PubMed  CAS  Google Scholar 

  46. Batrakova EV, Han HY, Miller DW, et al. Effects of Pluronic P85 unimers and micelles on drug permeability in polarized BBMEC and Caco-2 cells. Pharm Res 1998; 15(10): 1525–32

    Article  PubMed  CAS  Google Scholar 

  47. Foger F, Hoyer H, Kafedjiiski K, et al. In vivo comparison of various polymeric and low molecular mass inhibitors of intestinal P-glycoprotein. Biomaterials 2006; 27(34): 5855–60

    Article  PubMed  CAS  Google Scholar 

  48. Seeballuck F, Ashford MB, O’Driscoll CM. The effects of Pluronics block copolymers and Cremophor EL on intestinal lipoprotein processing and the potential link with P-glycoprotein in Caco-2 cells. Pharm Res 2003; 20(7): 1085–92

    Article  PubMed  CAS  Google Scholar 

  49. Vinogradov SV, Batrakova EV, Li S, et al. Mixed polymer micelles of amphiphilic and cationic copolymers for delivery of antisense oligonucleotides. J Drug Target 2004; 12(8): 517–26

    Article  PubMed  CAS  Google Scholar 

  50. Zastre J, Jackson J, Bajwa M, et al. Enhanced cellular accumulation of a P-glycoprotein substrate, rhodamine-123, by Caco-2 cells using low molecular weight methoxypolyethylene glycol-block-polycaprolactone diblock copolymers. Eur J Pharm Biopharm 2002; 54(3): 299–309

    Article  PubMed  CAS  Google Scholar 

  51. Ould-Ouali L, Noppe M, Langlois X, et al. Self-assembling PEG-p(CL-co-TMC) copolymers for oral delivery of poorly water-soluble drugs: a case study with risperidone. J Control Rel 2005; 102(3): 657–68

    Article  CAS  Google Scholar 

  52. Mathot F, Van Beijsterveldt L, Preat V, et al. Intestinal uptake and biodistribution of novel polymeric micelles after oral administration. J Control Rel 2006; 111(1–2): 47–55

    Article  CAS  Google Scholar 

  53. Lee SC, Huh KM, Lee J, et al. Hydrotropic polymeric micelles for enhanced paclitaxel solubility: in vitro and in vivo characterization. Biomacromolecules 2007; 8(1): 202–8

    Article  PubMed  CAS  Google Scholar 

  54. Yi Y, Yoon HJ, Kim BO, et al. A mixed polymeric micellar formulation of itraconazole: characteristics, toxicity and pharmacokinetics. J Control Rel 2007; 117(1): 59–67

    Article  CAS  Google Scholar 

  55. Woo JS, Lee CH, Shim CK, et al. Enhanced oral bioavailability of paclitaxel by coadministration of the P-glycoprotein inhibitor KR30031. Pharm Res 2003; 20(1): 24–30

    Article  PubMed  CAS  Google Scholar 

  56. Peltier S, Oger JM, Lagarce F, et al. Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded lipid nanocapsules. Pharm Res 2006; 23(6): 1243–50

    Article  PubMed  CAS  Google Scholar 

  57. Johnson BM, Charman WN, Porter CJH. An in vitro examination of the impact of polyethylene glycol 400, Pluronic P85, and vitamin E d-alpha-tocopheryl polyethylene glycol 1000 succinate on P-glycoprotein efflux and enterocyte-based metabolism in excised rat intestine. AAPS Pharm Sci 2002; 4(4): E40

    Article  Google Scholar 

  58. Banerjee SK, Jagannath C, Hunter RL, et al. Bioavailability of tobramycin after oral delivery in FVB mice using CRL-1605 copolymer, an inhibitor of P-glycoprotein. Life Sci 2000; 67(16): 2011–6

    Article  PubMed  CAS  Google Scholar 

  59. Jagannath C, Wells A, Mshvildadze M, et al. Significantly improved oral uptake of amikacin in FVB mice in the presence of CRL-1605 copolymer. Life Sci 1999; 64(19): 1733–8

    Article  PubMed  CAS  Google Scholar 

  60. Jeong B, Kim SW, Bae YH. Thermosensitive sol-gel reversible hydrogels. Adv Drug Deliv Rev 2002; 54(1): 37–51

    Article  PubMed  CAS  Google Scholar 

  61. Dowling TC, Arjomand M, Lin ET, et al. Relative bioavailability of ketoprofen 20% in a poloxamer-lecithin organogel. Am J Health Syst Pharm 2004; 61(23): 2541–4

    PubMed  CAS  Google Scholar 

  62. Escobar-Chavez JJ, Quintanar-Guerrero D, Ganem-Quintanar A. In vivo skin permeation of sodium naproxen formulated in Pluronic F-127 gels: effect of Azone and Transcutol. Drug Dev Ind Pharm 2005; 31(4–5): 447–54

    Article  PubMed  CAS  Google Scholar 

  63. Nair V, Panchagnula R. Poloxamer gel as vehicle for transdermal iontophoretic delivery of arginine vasopressin: evaluation of in vivo performance in rats. Pharmacol Res 2003; 47(6): 555–62

    Article  PubMed  CAS  Google Scholar 

  64. Pillai O, Panchagnula R. Transdermal delivery of insulin from poloxamer gel: ex vivo and in vivo skin permeation studies in rat using iontophoresis and chemical enhancers. J Control Rel 2003; 89(1): 127–40

    Article  CAS  Google Scholar 

  65. Richards H, Thomas CP, Bowen JL, et al. In-vitro transcutaneous delivery of ketoprofen and polyunsaturated fatty acids from a Pluronic lecithin organogel vehicle containing fish oil. J Pharm Pharmacol 2006; 58(7): 903–8

    Article  PubMed  CAS  Google Scholar 

  66. Shin SC, Cho CW. Enhanced transdermal delivery of pranoprofen from the bioadhesive gels. Arch Pharm Res 2006; 29(10): 928–33

    Article  PubMed  CAS  Google Scholar 

  67. Stamatialis DF, Rolevink HH, Koops GH. Transdermal timolol delivery from a Pluronic gel. J Control Rel 2006; 116(2): e53–5

    Article  CAS  Google Scholar 

  68. Suh H, Jun HW, Dzimianski MT, et al. Pharmacokinetic and local tissue disposition studies of naproxen-following topical and systemic administration in dogs and rats. Biopharm Drug Dispos 1997; 18(7): 623–33

    Article  PubMed  CAS  Google Scholar 

  69. Kumar R, Chen MH, Parmar VS, et al. Supramolecular assemblies based on copolymers of PEG600 and functionalized aromatic diesters for drug delivery applications. J Am Chem Soc 2004; 126(34): 10640–4

    Article  PubMed  CAS  Google Scholar 

  70. Miyazaki S, Suzuki S, Kawasaki N, et al. In situ gelling xyloglucan formulations for sustained release ocular delivery of pilocarpine hydrochloride. Int J Pharm 2001; 229(1–2): 29–36

    Article  PubMed  CAS  Google Scholar 

  71. Klang S, Abdulrazik M, Benita S. Influence of emulsion droplet surface charge on indomethacin ocular tissue distribution. Pharm Dev Technol 2000; 5(4): 521–32

    Article  PubMed  CAS  Google Scholar 

  72. Sznitowska M, Zurowska-Pryczkowska K, Dabrowska E, et al. Increased partitioning of pilocarpine to the oily phase of submicron emulsion does not result in improved ocular bioavailability. Int J Pharm 2000; 202(1–2): 161–4

    Article  PubMed  CAS  Google Scholar 

  73. Tamilvanan S. Oil-in-water lipid emulsions: implications for parenteral and ocular delivering systems. Prog Lipid Res 2004; 43(6): 489–533

    Article  PubMed  CAS  Google Scholar 

  74. Vyas SP, Mysore N, Jaitely V, et al. Discoidal niosome based controlled ocular delivery of timolol maleate. Pharmazie 1998; 53(7): 466–9

    PubMed  CAS  Google Scholar 

  75. Budai L, Hajdu M, Budai M, et al. Gels and liposomes in optimized ocular drug delivery: studies on ciprofloxacin formulations. Int J Pharm 2007; 343(1–2): 34–40

    Article  PubMed  CAS  Google Scholar 

  76. Hathout RM, Mansour S, Mortada ND, et al. Liposomes as an ocular delivery system for acetazolamide: in vitro and in vivo studies. AAPS Pharm Sci Tech 2007; 8(1): 1

    Article  Google Scholar 

  77. Gupta AK, Madan S, Majumdar DK, et al. Ketorolac entrapped in polymeric micelles: preparation, characterisation and ocular anti-inflammatory studies. Int J Pharm 2000; 209(1–2): 1–14

    Article  PubMed  CAS  Google Scholar 

  78. Liaw J, Chang SF, Hsiao FC. In vivo gene delivery into ocular tissues by eye drops of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) polymeric micelles. Gene Ther 2001; 8(13): 999–1004

    Article  PubMed  CAS  Google Scholar 

  79. Carmignani C, Rossi S, Saettone MF, et al. Ophthalmic vehicles containing polymer-solubilized tropicamide: ‘in vitro/in vivo’ evaluation. Drug Dev Ind Pharm 2002; 28(1): 101–5

    Article  PubMed  CAS  Google Scholar 

  80. Tu J, Pang H, Yan Z, et al. Ocular permeability of pirenzepine hydrochloride enhanced by methoxy poly(ethylene glycol)-poly(D,L-lactide) block copolymer. Drug Del Ind Pharm 2007; 33(10): 1142–50

    Article  CAS  Google Scholar 

  81. Allen TM, Hansen CB, Lopes de Menezes DE. Pharmacokinetics of long circulating liposomes. Adv Drug Deliv Rev 1995; 16(2–3): 267–84

    Article  CAS  Google Scholar 

  82. Aliabadi HM, Brocks DR, Mahdipoor P, et al. A novel use of an in vitro method to predict the in vivo stability of block copolymer based nano-containers. J Control Rel 2007; 122(1): 63–70 [online]. Available from URL: http://www.sciencedirect.com/science/journal/01683659 [Accessed 2008 Apr 23]

    Article  CAS  Google Scholar 

  83. Aliabadi HM, Brocks DR, Lavasanifar A. Polymeric micelles for the solublization and delivery of cyclosporine A: pharmacokinetics and biodistribution. Bio-materials 2005; 26(35): 7251–9

    CAS  Google Scholar 

  84. Nishiyama N, Kataoka K. Nanostructured devices based on block copolymer assemblies for drug delivery: designing structures for enhanced drug function. Adv Polym Sci 2006; 193: 67–101

    Article  CAS  Google Scholar 

  85. Alakhov V, Klinski E, Li S, et al. Block copolymer-based formulation of doxorubicin: from cell screen to clinical trials. Colloids Surf B Biointerfaces 1999; 16(1–4): 113–34

    Article  CAS  Google Scholar 

  86. Danson S, Ferry D, Alakhov V, et al. Phase I dose escalation and pharmacokinetic study of Pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer. Br J Cancer 2004; 90(11): 2085–91

    PubMed  CAS  Google Scholar 

  87. Hamaguchi T, Kato K, Yasui H, et al. A phase I and pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation. Br J Cancer 2007; 97(2): 170–6

    Article  PubMed  CAS  Google Scholar 

  88. Hamaguchi T, Matsumura Y, Suzuki M, et al. NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. Br J Cancer 2005; 92(7): 1240–6

    Article  PubMed  CAS  Google Scholar 

  89. Matsumura Y, Hamaguchi T, Ura T, et al. Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br J Cancer 2004; 91(10): 1775–81

    Article  PubMed  CAS  Google Scholar 

  90. Nishiyama N, Kato Y, Sugiyama Y, et al. Cisplatin-loaded polymer-metal complex micelle with time-modulated decaying property as a novel drug delivery system. Pharm Res 2001; 18(7): 1035–41

    Article  PubMed  CAS  Google Scholar 

  91. Uchino H, Matsumura Y, Negishi T, et al. Cisplatin-incorporating polymeric micelles (NC-6004) can reduce nephrotoxicity and neurotoxicity of cisplatin in rats. Br J Cancer 2005; 93(6): 678–87

    Article  PubMed  CAS  Google Scholar 

  92. Allen TM, Hansen C, Martin F, et al. Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim Biophys Acta 1991; 1066(1): 29–36

    Article  PubMed  CAS  Google Scholar 

  93. Gabizon A, Shmeeda H, Barenholz Y. Pharmacokinetics of pegylated liposomal doxorubicin: review of animal and human studies. Clin Pharmacokinet 2003; 42(5): 419–36

    Article  PubMed  CAS  Google Scholar 

  94. Harris JM, Martin NE, Modi M. Pegylation: a novel process for modifying pharmacokinetics. Clin Pharmacokinet 2001; 40(7): 539–51

    Article  PubMed  CAS  Google Scholar 

  95. Moghimi SM, Szebeni J. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res 2003; 42(6): 463–78

    Article  PubMed  CAS  Google Scholar 

  96. Batrakova EV, Li S, Li Y, et al. Distribution kinetics of a micelle-forming block copolymer Pluronic P85. J Control Rel 2004; 100(3): 389–97

    Article  CAS  Google Scholar 

  97. Liu J, Zeng F, Allen C. In vivo fate of unimers and micelles of a poly(ethylene glycol)-block-poly(caprolactone) copolymer in mice following intravenous administration. Eur J Pharm Biopharm 2007; 65(3): 309–19

    Article  PubMed  CAS  Google Scholar 

  98. Dhanikula AB, Singh DR, Panchagnula R. In vivo pharmacokinetic and tissue distribution studies in mice of alternative formulations for local and systemic delivery of paclitaxel: gel, film, prodrug, liposomes and micelles. Curr Drug Deliv 2005; 2(1): 35–44

    Article  PubMed  CAS  Google Scholar 

  99. Kim SC, Kim DW, Shim YH, et al. In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J Control Rel 2001; 72(1–3): 191–202

    Article  CAS  Google Scholar 

  100. Le Garrec D, Gori S, Luo L, et al. Poly(N-vinylpyrrolidone)-block-poly(D,L-lactide) as a new polymeric solubilizer for hydrophobic anticancer drugs: in vitro and in vivo evaluation. J Control Rel 2004; 99(1): 83–101

    Article  CAS  Google Scholar 

  101. Yokoyama M, Miyauchi M, Yamada N, et al. Polymer micelles as novel drug carrier: Adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer. J Control Rel 1990; 11(1–3): 269–78

    CAS  Google Scholar 

  102. Kwon GS, Yokoyama M, Okano T, et al. Biodistribution of micelle-forming polymer-drug conjugates. Pharm Res 1993; 10(7): 970–4

    Article  PubMed  CAS  Google Scholar 

  103. Yokoyama M, Okano T, Sakurai Y, et al. Toxicity and antitumor activity against solid tumors of micelle-forming polymeric anticancer drug and its extremely long circulation in blood. Cancer Res 1991; 51(12): 3229–36

    PubMed  CAS  Google Scholar 

  104. Kwon GS, Suwa S, Yokohama M, et al. Enhanced tumor accumulation and prolonged circulation times for micelle-forming poly(ethylene oxide-aspartate) block copolymer-adriamycin conjugates. J Control Rel 1994; 29: 17–23

    Article  CAS  Google Scholar 

  105. Yokoyama M, Okano T, Sakurai Y, et al. Selective delivery of adriamycin to a solid tumor using a polymeric micelle carrier system. J Drug Target 1999; 7(3): 171–86

    Article  PubMed  CAS  Google Scholar 

  106. Nakanishi T, Fukushima S, Okamoto K, et al. Development of the polymer micelle carrier system for doxorubicin. J Control Rel 2001; 74(1–3): 295–302

    Article  CAS  Google Scholar 

  107. Rapoport NY, Christensen DA, Fain HD, et al. Ultrasound-triggered drug targeting of tumors in vitro and in vivo. Ultrasonics 2004; 42(1–9): 943–50

    Article  PubMed  CAS  Google Scholar 

  108. Kataoka K, Matsumoto T, Yokoyama M, et al. Doxorubicin-loaded poly(ethylene glycol)-poly(beta-benzyl-L-aspartate) copolymer micelles: their pharmaceutical characteristics and biological significance. J Control Rel 2000; 64(1–3): 143–53

    Article  CAS  Google Scholar 

  109. Yoo HS, Park TG. Folate receptor targeted biodegradable polymeric doxorubicin micelles. J Control Rel 2004; 96(2): 273–83

    Article  CAS  Google Scholar 

  110. Gao ZG, Lee DH, Kim DI, et al. Doxorubicin loaded pH-sensitive micelle targeting acidic extracellular pH of human ovarian A2780 tumor in mice. J Drug Target 2005; 13(7): 391–7

    Article  PubMed  CAS  Google Scholar 

  111. Lee ES, Na K, Bae YH. Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor. J Control Rel 2005; 103(2): 405–18

    Article  CAS  Google Scholar 

  112. Zhang X, Burt HM, Von Hoff D, et al. An investigation of the antitumour activity and biodistribution of polymeric micellar paclitaxel. Cancer Chemother Pharmacol 1997; 40(1): 81–6

    Article  PubMed  CAS  Google Scholar 

  113. Zhang X, Burt HM, Mangold G, et al. Anti-tumor efficacy and biodistribution of intravenous polymeric micellar paclitaxel. Anticancer Drugs 1997; 8(7): 696–701

    Article  PubMed  CAS  Google Scholar 

  114. Leung SY, Jackson J, Miyake H, et al. Polymeric micellar paclitaxel phosphorylates Bcl-2 and induces apoptotic regression of androgen-independent LNCaP prostate tumors. Prostate 2000; 44(2): 156–63

    Article  PubMed  CAS  Google Scholar 

  115. Kim TY, Kim DW, Chung JY, et al. Phase I and pharmacokinetic study of Genexol-PM, a Cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res 2004; 10(11): 3708–16

    Article  PubMed  CAS  Google Scholar 

  116. Han LM, Guo J, Zhang LJ, et al. Pharmacokinetics and biodistribution of polymeric micelles of paclitaxel with Pluronic P123. Acta Pharmacol Sin 2006; 27(6): 747–53

    Article  PubMed  CAS  Google Scholar 

  117. Mizumura Y, Matsumura Y, Hamaguchi T, et al. Cisplatin-incorporated polymeric micelles eliminate nephrotoxicity, while maintaining antitumor activity. Jpn J Cancer Res 2001; 92(3): 328–36

    Article  PubMed  CAS  Google Scholar 

  118. Nishiyama N, Okazaki S, Cabral H, et al. Novel cisplatin-incorporated polymeric micelles can eradicate solid tumors in mice. Cancer Res 2003; 63(24): 8977–83

    PubMed  CAS  Google Scholar 

  119. Cabral H, Nishiyama N, Okazaki S, et al. Preparation and biological properties of dichloro(1,2-diaminocyclohexane)platinum(II) (DACHPt)-loaded polymeric micelles. J Control Rel 2005; 101(1–3): 223–32

    Article  CAS  Google Scholar 

  120. Bogdanov Jr AA, Martin C, Bogdanova AV, et al. An adduct of cis-diam-minedichloroplatinum(II) and poly(ethylene glycol)poly(L-lysine)-succinate: synthesis and cytotoxic properties. Bioconjug Chem 1996; 7(1): 144–9

    Article  PubMed  CAS  Google Scholar 

  121. Shi B, Fang C, You MX, et al. Stealth MePEG-PCL micelles: effects of polymer composition on micelles physiochemical characteristics, in vitro drug release, in vivo pharmacokinetics in rats and biodistribution in S180 tumor bearing mice. Colloid Polym Sci 2005; 283(9): 954–67

    Article  CAS  Google Scholar 

  122. Koizumi F, Kitagawa M, Negishi T, et al. Novel SN-38-incorporating polymeric micelles, NK012, eradicate vascular endothelial growth factor-secreting bulky tumors. Cancer Res 2006; 66(20): 10048–56

    Article  PubMed  CAS  Google Scholar 

  123. Kim SY, Lee YM, Shin HJ, et al. Indomethacin-loaded methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) diblock copolymeric nanosphere: pharmacokinetic characteristics of indomethacin in the normal Sprague-Dawley rats. Biomaterials 2001; 22(14): 2049–56

    Article  PubMed  CAS  Google Scholar 

  124. Papahadjopoulos D, Allen TM, Gabizon A, et al. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci U S A 1991; 88(24): 11460–4

    Article  PubMed  CAS  Google Scholar 

  125. Allen TM, Hansen C, Rutledge J. Liposomes with prolonged circulation times: factors affecting uptake by reticuloendothelial and other tissues. Biochim Biophys Acta 1989; 981(1): 27–35

    Article  PubMed  CAS  Google Scholar 

  126. Liu D, Mori A, Huang L. Large liposomes containing ganglioside GM1 accumulate effectively in spleen. Biochim Biophys Acta 1991; 1066(2): 159–65

    Article  PubMed  CAS  Google Scholar 

  127. Kwon G, Suwa S, Yokoyama M, et al. Enhanced tumor accumulation and prolonged circulation times of micelle-forming poly(ethylene oxide-aspartate) block copolymer-adriamycin conjugates. J Control Rel 1994; 28(1–3): 334–5

    Article  Google Scholar 

  128. Aliabadi HM, Elhasi S, Mahmud A, et al. Encapsulation of hydrophobic drugs in polymeric micelles through co-solvent evaporation: the effect of solvent composition on micellar properties and drug loading. Int J Pharm 2007; 329: 158–65

    Article  PubMed  CAS  Google Scholar 

  129. Jeong YI, Cheon JB, Kim SH, et al. Clonazepam release from core-shell type nanoparticles in vitro. J Control Rel 1998; 51(2–3): 169–78

    Article  CAS  Google Scholar 

  130. Nah JW, Paek YW, Jeong YI, et al. Clonazepam release from poly(DL-lactide-co-glycolide) nanoparticles prepared by dialysis method. Arch Pharm Res 1998; 21(4): 418–22

    Article  PubMed  CAS  Google Scholar 

  131. Lee J, Cho EC, Cho K. Incorporation and release behavior of hydrophobic drug in functionalized poly(D,L-lactide)-block-poly(ethylene oxide) micelles. J Control Rel 2004; 94(2–3): 323–35

    Article  CAS  Google Scholar 

  132. Lavasanifar A, Samuel J, Sattari S, et al. Block copolymer micelles for the encapsulation and delivery of amphotericin B. Pharm Res 2002; 19(4): 418–22

    Article  PubMed  CAS  Google Scholar 

  133. Jette KK, Law D, Schmitt EA, et al. Preparation and drug loading of poly(ethylene glycol)-block-poly(epsilon-caprolactone) micelles through the evaporation of a cosolvent azeotrope. Pharm Res 2004; 21(7): 1184–91

    Article  PubMed  CAS  Google Scholar 

  134. Kim SY, Shin IG, Lee YM, et al. Methoxy poly(ethylene glycol) and epsilon-caprolactone amphiphilic block copolymeric micelle containing indomethacin: II. Micelle formation and drug release behaviours. J Control Rel 1998; 51(1): 13–22

    Article  CAS  Google Scholar 

  135. Lavasanifar A, Samuel J, Kwon GS. Micelles self-assembled from poly(ethylene oxide)-block-poly(N-hexyl stearate L-aspartamide) by a solvent evaporation method: effect on the solubilization and haemolytic activity of amphotericin B. J Control Rel 2001; 77(1–2): 155–60

    Article  CAS  Google Scholar 

  136. Shuai X, Ai H, Nasongkla N, et al. Micellar carriers based on block copolymers of poly(epsilon-caprolactone) and poly(ethylene glycol) for doxorubicin delivery. J Control Rel 2004; 98(3): 415–26

    Article  CAS  Google Scholar 

  137. Shuai X, Merdan T, Schaper AK, et al. Core-cross-linked polymeric micelles as paclitaxel carriers. Bioconjug Chem 2004; 15(3): 441–8

    Article  PubMed  CAS  Google Scholar 

  138. Yokoyama M, Inoue S, Kataoka K, et al. Preparation of adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer: a new type of polymeric anticancer agent. Makromol Chem 1987; 8: 431–5

    CAS  Google Scholar 

  139. Yokoyama M, Miyauchi M, Yamada N, et al. Characterization and anticancer activity of the micelle-forming polymeric anticancer drug Adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer. Cancer Res 1990; 50(6): 1693–700

    PubMed  CAS  Google Scholar 

  140. Yokoyama M, Okano T, Sakurai Y, et al. Improved synthesis of adriamycin-conjugated poly(ethylene oxide)-poly(aspartic acid) block copolymer and formation of unimodal micellar structure with controlled amount of physically entrapped adriamycin. J Control Rel 1994; 32: 269–77

    Article  CAS  Google Scholar 

  141. A study using intravenous Paxceed™ to treat patients with rheumatoid arthritis [ClinicalTrials.gov identifier NCT00055133; online]. Available from URL: http://clinicaltrials.gov/ct2/show/NCT00055133 [Accessed 2008 Aug 24]

  142. Kim DW, Kim SY, Kim HK, et al. Multicenter phase II trial of Genexol-PM, a novel Cremophor-free, polymeric micelle formulation of paclitaxel, with cis-platin in patients with advanced non-small-cell lung cancer. Ann Oncol 2007; 18(12): 2009–14

    Article  PubMed  Google Scholar 

  143. Lee KS, Chung HC, Im SA, et al. Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res Treat 2008; 108(2): 241–50

    Article  PubMed  CAS  Google Scholar 

  144. Alakhov V, Moskaleva E, Batrakova EV, et al. Hypersensitization of multidrug resistant human ovarian carcinoma cells by Pluronic P85 block copolymer. Bioconjug Chem 1996; 7(2): 209–16

    Article  PubMed  CAS  Google Scholar 

  145. Batrakova EV, Dorodnych TY, Klinskii EY, et al. Anthracycline antibiotics non-covalently incorporated into the block copolymer micelles: in vivo evaluation of anti-cancer activity. Br J Cancer 1996; 74(10): 1545–52

    Article  PubMed  CAS  Google Scholar 

  146. Venne A, Li S, Mandeville R, et al. Hypersensitizing effect of Pluronic L61 on cytotoxic activity, transport, and subcellular distribution of doxorubicin in multiple drug-resistant cells. Cancer Res 1996; 56(16): 3626–9

    PubMed  CAS  Google Scholar 

  147. Batrakova EV, Han HY, Alakhov V, et al. Effects of Pluronic block copolymers on drug absorption in Caco-2 cell monolayers. Pharm Res 1998; 15(6): 850–5

    Article  PubMed  CAS  Google Scholar 

  148. Miller DW, Batrakova EV, Kabanov AV. Inhibition of multidrug resistance-associated protein (MRP) functional activity with Pluronic block copolymers. Pharm Res 1999; 16(3): 396–401

    Article  PubMed  CAS  Google Scholar 

  149. Batrakova E, Lee S, Li S, et al. Fundamental relationships between the composition of Pluronic block copolymers and their hypersensitization effect in MDR cancer cells. Pharm Res 1999; 16(9): 1373–9

    Article  PubMed  CAS  Google Scholar 

  150. Batrakova EV, Li S, Alakhov VY, et al. Optimal structure requirements for Pluronic block copolymers in modifying P-glycoprotein drug efflux transporter activity in bovine brain microvessel endothelial cells. J Pharmacol Exp Ther 2003; 304(2): 845–54

    Article  PubMed  CAS  Google Scholar 

  151. Valle JW, Lawrance J, Brewer J, et al. A phase II, window study of SP1049C as first-line therapy in inoperable metastatic adenocarcinoma of the oesophagus [abstract no. 4195]. J Clin Oncol 2004 Jul 15; 22(14S): 362S

    Google Scholar 

  152. Zhang X, Jackson JK, Burt HM. Development of amphiphilic diblock copolymers as micellar carriers of Taxol. Int J Pharm 1996; 132(1–2): 195–206

    Article  CAS  Google Scholar 

  153. Negishi T, Koizumi F, Uchino H, et al. NK105, a paclitaxel-incorporating micellar nanoparticle, is a more potent radiosensitising agent compared to free paclitaxel. Br J Cancer 2006; 95(5): 601–6

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge funding from the Natural Sciences and Engineering Council of Canada (NSERC) and the Canadian Institutes of Health Research (CIHR). The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afsaneh Lavasanifar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aliabadi, H.M., Shahin, M., Brocks, D.R. et al. Disposition of Drugs in Block Copolymer Micelle Delivery Systems. Clin Pharmacokinet 47, 619–634 (2008). https://doi.org/10.2165/00003088-200847100-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200847100-00001

Keywords

Navigation