Skip to main content
Log in

Principles and Clinical Application of Assessing Alterations in Renal Elimination Pathways

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Drugs and metabolites are eliminated from the body by metabolism and excretion. The kidney makes the major contribution to excretion of unchanged drug and also to excretion of metabolites. Net renal excretion is a combination of three processes — glomerular filtration, tubular secretion and tubular reabsorption. Renal function has traditionally been determined by measuring plasma Creatinine and estimating Creatinine clearance. However, estimated Creatinine clearance measures only glomerular filtration with a small contribution from active secretion. There is accumulating evidence of poor correlation between estimated Creatinine clearance and renal drug clearance in different clinical settings, challenging the ‘intact nephron hypothesis’ and suggesting that renal drug handling pathways may not decline in parallel. Furthermore, it is evident that renal drug handling is altered to a clinically significant extent in a number of disease states, necessitating dosage adjustment not just based on filtration. These observations suggest that a re-evaluation of markers of renal function is required.

Methods that measure all renal handling pathways would allow informed dosage individualisation using an understanding of renal excretion pathways and patient characteristics. Methodologies have been described to determine individually each of the renal elimination pathways. However, their simultaneous assessment has only recently been investigated. A cocktail of markers to measure simultaneously the individual renal handling pathways have now been developed, and evaluated in healthy volunteers.

This review outlines the different renal elimination pathways and the possible markers that can be used for their measurement. Diseases and other physiological conditions causing altered renal drug elimination are presented, and the potential application of a cocktail of markers for the simultaneous measurement of drug handling is evaluated. Further investigation of the effects of disease processes on renal drug handling should include people with HIV infection, transplant recipients (renal and liver) and people with rheumatoid arthritis. Furthermore, changes in renal function in the elderly, the effect of sex on renal function, assessment of living kidney donors prior to transplantation and the investigation of renal drug interactions would also be potential applications.

Once renal drug handling pathways are characterised in a patient population, the implications for accurate dosage individualisation can be assessed. The simultaneous measurement of renal function elimination pathways of drugs and metabolites has the potential to assist in understanding how renal function changes with different disease states or physiological conditions. In addition, it will further our understanding of fundamental aspects of the renal elimination of drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Table II
Fig. 2
Table III

Similar content being viewed by others

References

  1. Smith CL, Hampton EM. Using estimated Creatinine clearance for individualizing drug therapy: a reassessment. Ann Pharma-cother 1990; 24: 1185–90

    CAS  Google Scholar 

  2. Bonate PL, Reith K, Weir S. Drug interactions at the renal level: implications for drug development. Clin Pharmacokinet 1998; 34(5): 375–404

    Article  PubMed  CAS  Google Scholar 

  3. Cockcroft DW, Gault MH. Prediction of Creatinine clearance from serum Creatinine. Nephron 1976; 15: 31–41

    Article  Google Scholar 

  4. Hori R, Okumura K, Nihira H, et al. A new dosing regimen in renal insufficiency: application to cephalexin. Clin Pharmacol Ther 1985; 38(3): 290–5

    Article  PubMed  CAS  Google Scholar 

  5. Duffull SB, Kirkpatrick CM, Begg EJ. Comparison of two Bayesian approaches to dose-individualization for once-daily aminoglycoside regimens. Br J Clin Pharmacol 1997; 43(2): 125–35

    Article  PubMed  CAS  Google Scholar 

  6. Huang E, Hewitt RG, Shelton M, et al. Comparison of measured and estimated Creatinine clearance in patients with advanced HIV disease. Pharmacotherapy 1996; 16(2): 222–9

    PubMed  CAS  Google Scholar 

  7. Noormohamed SE, Katseres JK, Stapleton JT. Poor correlation between published methods to predict Creatinine clearance and measured Creatinine clearance in asymptomatic HIV infected individuals. Ren Fail 1998; 20(4): 627–33

    Article  PubMed  CAS  Google Scholar 

  8. Smith BL, Sarnoski TP, Dennis S, et al. Failure of predicted Creatinine clearance equations in HIV-seropositive patients. Int J Clin Pharmacol Ther Toxicol 1992; 30(10): 394–9

    PubMed  CAS  Google Scholar 

  9. Anders HJ, Rihl M, Loch O, et al. Prediction of Creatinine clearance from serum Creatinine in patients with rheumatoid arthritis: comparison of six formulae and one nomogram. Clin Rheumatol 2000; 19(1): 26–9

    Article  PubMed  CAS  Google Scholar 

  10. Boers M, Dijkmans BA, Breedveld FC. Prediction of glomerular filtration rate in patients with rheumatoid arthritis: satisfactory performance of Cockroft formula. J Rheumatol 1994; 21(3): 581–2

    PubMed  CAS  Google Scholar 

  11. Cocchetto DM, Tschanz C, Bjornsson TD. Decreased rate of Creatinine production in patients with hepatic disease: implications for estimation of Creatinine clearance. Ther Drug Monit 1983; 5(2): 161–8

    Article  PubMed  CAS  Google Scholar 

  12. Broekroelofs J, Stegeman CA, Navis GJ, et al. Creatinine-based estimation of rate of long term renal function loss in lung transplant recipients: which method is preferable? J Heart Lung Transplant 2000; 19(3): 256–62

    Article  PubMed  CAS  Google Scholar 

  13. Bunke M, Sloan R, Brier M, et al. An improved glomerular filtration rate in cardiac transplant recipients with once-a-day cyclosporine dosing. Transplantation 1995; 59(4): 537–40

    PubMed  CAS  Google Scholar 

  14. Caregaro L, Menon F, Angeli P, et al. Limitations of serum Creatinine level and Creatinine clearance as filtration markers in cirrhosis. Arch Intern Med 1994; 154: 201–5

    Article  PubMed  CAS  Google Scholar 

  15. Herman RA, Noormohamed S, Hirankarn S, et al. Comparison of a neural network approach with five traditional methods for predicting Creatinine clearance in patients with human immunodeficiency virus infection. Pharmacotherapy 1999; 19(6): 734–40

    Article  PubMed  CAS  Google Scholar 

  16. Kirkpatrick CM, Duffull SB, Begg EJ. Pharmacokinetics of gentamicin in 957 patients with varying renal function dosed once daily. Br J Clin Pharmacol 1999; 47(6): 637–43

    Article  PubMed  CAS  Google Scholar 

  17. Duffull SB, Begg EJ, Robinson BA, et al. A sequential Bayesian algorithm for dose individualisation of carboplatin. Cancer Chemother Pharmacol 1997; 39(4): 317–26

    Article  PubMed  CAS  Google Scholar 

  18. Streetman DS, Bleakley JF, Kim JS, et al. Combined phenotypic assessment of CYP1A2, CYP2C19, CYP2D6, CYP3A, N-acetyltransferase-2, and xanthine oxidase with the ‘Cooperstown cocktail’. Clin Pharmacol Ther 2000; 68(4): 375–83

    Article  PubMed  CAS  Google Scholar 

  19. Gross AS, McLachlan AJ, Minns I, et al. Simultaneous administration of a cocktail of markers to measure renal drug elimination pathways: absence of a pharmacokinetic interaction between fluconazole and sinistrin, p-aminohippuric acid and Pindolol. Br J Clin Pharmacol 2001; 51(6): 547–55

    Article  PubMed  CAS  Google Scholar 

  20. McLachlan AJ, Gross AS, Beal JL, et al. Analytical validation for a series of marker compounds used to assess renal drug elimination processes. Ther Drug Monit 2001; 23(1): 39–46

    Article  PubMed  CAS  Google Scholar 

  21. Tucker GT. The in vitro assessment of human hepatic drug metabolism. In: O’Grady J, Joubert PH, editors. Handbook of phase III clinical drug trials. Boca Raton (FL): CRC Press, 1997: 51–61

    Google Scholar 

  22. Frye RF, Matzke GR, Adedoyin A, et al. Validation of the five-drug ‘Pittsburgh cocktail’ approach for assessment of selective regulation of drug-metabolizing enzymes. Clin Pharmacol Ther 1997; 62(4): 365–76

    Article  PubMed  CAS  Google Scholar 

  23. Somogyi A. Renal transport of drugs: specificity and molecular mechanisms. Clin Exp Pharmacol Physiol 1996; 23(10–11): 986–9

    Article  PubMed  CAS  Google Scholar 

  24. Roch-Ramel F. Renal transport of organic anions. Curr Opin Nephrol Hypertens 1998; 7(5): 517–24

    Article  PubMed  CAS  Google Scholar 

  25. Ito S. Drug secretion systems in renal tubular cells: functional models and molecular identity. Pediatr Nephrol 1999; 13(9): 980–8

    Article  PubMed  CAS  Google Scholar 

  26. Inui KI, Masuda S, Saito H. Cellular and molecular aspects of drug transport in the kidney. Kidney Int 2000; 58(3): 944–58

    Article  PubMed  CAS  Google Scholar 

  27. Burckhardt G, Wolff NA. Structure of renal organic anion and cation transporters. Am J Physiol Renal Physiol 2000; 278(6): F853–66

    PubMed  CAS  Google Scholar 

  28. Berkhin EB, Humphreys MH. Regulation of renal tubular secretion of organic compounds. Kidney Int 2001; 59(1): 17–30

    Article  PubMed  CAS  Google Scholar 

  29. Kimura H, Takeda M, Narikawa S, et al. Human organic anion transporters and human organic cation transporters mediate renal transport of Prostaglandins. J Pharmacol Exp Ther 2002; 301(1): 293–8

    Article  PubMed  CAS  Google Scholar 

  30. Mikus G, Gross AS, Beckmann J, et al. The influence of the sparteine/debrisoquin phenotype on the disposition of flecainide. Clin Pharmacol Ther 1989; 45(5): 562–7

    Article  PubMed  CAS  Google Scholar 

  31. Weber W, Nitz M, Looby M. Nonlinear kinetics of the thiamine cation in humans: saturation of nonrenal clearance and tubular reabsorption. J Pharmacokinet Biopharm 1990; 18(6): 501–23

    PubMed  CAS  Google Scholar 

  32. Besseghir K, Roch-Ramel F. Renal excretion of drugs and other xenobiotics. Ren Physiol 1987; 10(5): 221–41

    PubMed  CAS  Google Scholar 

  33. Lam YW, Banerji S, Hatfield C, et al. Principles of drug administration in renal insufficiency. Clin Pharmacokinet 1997; 32(1): 30–57

    Article  PubMed  CAS  Google Scholar 

  34. McGurk KA, Brierley CH, Burchell B. Drug glucuronidation by human renal UDP-glucuronosyltransferases. Biochem Pharmacol 1998; 55(7): 1005–12

    Article  PubMed  CAS  Google Scholar 

  35. Vietri M, Pietrabissa A, Mosca F, et al. Mycophenolic acid glucuronidation and its inhibition by non-steroidal anti-inflammatory drugs in human liver and kidney. Eur J Clin Pharmacol 2000; 56(9-10): 659–64

    Article  PubMed  CAS  Google Scholar 

  36. Brinkmann U, Eichelbaum M. Polymorphisms in the ABC drug transporter gene MDR1. Pharmacogenomics J 2001; 1(1): 59–64

    Article  PubMed  CAS  Google Scholar 

  37. Tanigawara Y, Okamura N, Hirai M, et al. Transport of digoxin by human P-glycoprotein expressed in a porcine kidney epithelial cell line (LLC-PK1). J Pharmacol Exp Ther 1992; 263(2): 840–5

    PubMed  CAS  Google Scholar 

  38. Mollgard L, Hellberg E, Smolowicz A, et al. Interactions between P-glycoprotein and drugs used in the supportive care of acute myeloid leukemia patients. Leuk Lymphoma 2001; 42(1–2): 177–85

    Article  PubMed  CAS  Google Scholar 

  39. Tanigawara Y. Role of P-glycoprotein in drug disposition. Ther Drug Monit 2000; 22(1): 137–40

    Article  PubMed  CAS  Google Scholar 

  40. Adachi M, Reid G, Schuetz JD. Therapeutic and biological importance of getting nucleotides out of cells: a case for the ABC transporters, MRP4 and 5. Adv Drug Deliv Rev 2002; 54(10): 1333–42

    Article  PubMed  CAS  Google Scholar 

  41. Chen ZS, Hopper-Borge E, Belinsky MG, et al. Characterization of the transport properties of human multidrug resistance protein 7 (MRP7, ABCC10). Mol Pharmacol 2003; 63(2): 351–8

    Article  PubMed  CAS  Google Scholar 

  42. Tett S, Moore S, Ray J. Pharmacokinetics and bioavailability of fluconazole in two groups of males with human immunodeficiency virus (HIV) infection compared with those in a group of males without HIV infection. Antimicrob Agents Chemother 1995; 39(8): 1835–41

    Article  PubMed  CAS  Google Scholar 

  43. McLachlan AJ, Tett SE. Pharmacokinetics of fluconazole in people with HIV infection: a population analysis. Br J Clin Pharmacol 1996; 41(4): 291–8

    Article  PubMed  CAS  Google Scholar 

  44. Debruyne D. Clinical pharmacokinetics of fluconazole in superficial and systemic mycoses. Clin Pharmacokinet 1997; 33(1): 52–77

    Article  PubMed  CAS  Google Scholar 

  45. D’Agati V, Appel GB. Renal pathology of human immunodeficiency virus infection. Semin Nephrol 1998; 18(4): 406–21

    PubMed  Google Scholar 

  46. Dellow EL, Unwin RJ, Miller RF. Presentation, diagnosis, and management of renal failure in patients with HIV infection. AIDS Patient Care STDS 2000; 14(2): 71–7

    Article  PubMed  CAS  Google Scholar 

  47. Conaldi PG, Biancone L, Bottelli A, et al. HIV-1 kills renal tubular epithelial cells in vitro by triggering an apoptotic pathway involving caspase activation and Fas upregulation. J Clin Invest 1998; 102(12): 2041–9

    Article  PubMed  CAS  Google Scholar 

  48. Barry M, Gibbons S, Back D, et al. Protease inhibitors in patients with HIV disease: clinically important pharmacokinetic considerations. Clin Pharmacokinet 1997; 32(3): 194–209

    Article  PubMed  CAS  Google Scholar 

  49. Nankivell BJ, Gruenewald SM, Allen RD, et al. Predicting glomerular filtration rate after kidney transplantation. Transplantation 1995; 59(12): 1683–9

    Article  PubMed  CAS  Google Scholar 

  50. Nankivell BJ, Chapman JR, Allen RD. Predicting glomerular filtration rate after simultaneous pancreas and kidney transplantation. Clin Transplant 1995; 9(2): 129–34

    PubMed  CAS  Google Scholar 

  51. Schuck O, Teplan V, Vitko S, et al. Predicting glomerular function from adjusted serum Creatinine in renal transplant patients. Int J Clin Pharmacol Ther 1997; 35(1): 33–7

    PubMed  CAS  Google Scholar 

  52. Schuck O, Stribrna J, Teplan V, et al. Long-term follow-up of the tubular secretion of Creatinine in renal graft recipients. Physiol Res 1998; 47(6): 419–26

    PubMed  CAS  Google Scholar 

  53. Kasiske BL, Andany MA, Hernandez D, et al. Comparing methods for monitoring serum Creatinine to predict late renal allograft failure. Am J Kidney Dis 2001; 38(5): 1065–73

    Article  PubMed  CAS  Google Scholar 

  54. Goerdt PJ, Heim-Duthoy KL, Macres M, et al. Predictive performance of renal function estimate equations in renal allografts. Br J Clin Pharmacol 1997; 44: 261–5

    Article  PubMed  CAS  Google Scholar 

  55. Lo A, Burckart GJ. P-glycoprotein and drug therapy in organ transplantation. J Clin Pharmacol 1999; 39(10): 995–1005

    Article  PubMed  CAS  Google Scholar 

  56. Takabatake T, Ohta H, Ishida Y, et al. Low serum Creatinine levels in severe hepatic disease. Arch Intern Med 1988; 148(6): 1313–5

    Article  PubMed  CAS  Google Scholar 

  57. Heering P, Schadewaldt P, Bach D, et al. Nephrotoxicity of cyclosporine in humans: effect of cyclosporine on glomerular filtration and proximal tubular reabsorption. Clin Investig 1993; 71: 1010–5

    Article  PubMed  CAS  Google Scholar 

  58. Boers M, Dijkmans BA, Breedveld FC, et al. Errors in the prediction of Creatinine clearance in patients with rheumatoid arthritis. Br J Rheum 1988; 27: 233–5

    Article  CAS  Google Scholar 

  59. Kunihara M, Nagai J, Murakami T, et al. Renal excretion of rhodamine 123, a P-glycoprotein substrate, in rats with glycerolinduced acute renal failure. J Pharm Pharmacol 1998; 50: 1161–5

    Article  PubMed  CAS  Google Scholar 

  60. Malmrose LC, Gray SL, Pieper CF, et al. Measured versus estimated Creatinine clearance in a high-functioning elderly sample: MacArthur Foundation Study of Successful Aging. J Am Geriatr Soc 1993; 41(7): 715–21

    PubMed  CAS  Google Scholar 

  61. Fliser D, Bischoff I, Hanses A, et al. Renal handling of drugs in the healthy elderly: Creatinine clearance underestimates renal function and pharmacokinetics remain virtually unchanged. Eur J Clin Pharmacol 1999; 55(3): 205–11

    Article  PubMed  CAS  Google Scholar 

  62. Ujhelyi MR, Bottorff MB, Schur M, et al. Aging effects on the organic base transporter and stereoselective renal clearance. Clin Pharmacol Ther 1997; 62(2): 117–28

    Article  PubMed  CAS  Google Scholar 

  63. Reyes JL, Melendez E, Alegria A, et al. Influence of sex differences on the renal secretion of organic anions. Endocrinology 1998; 139(4): 1581–7

    Article  PubMed  CAS  Google Scholar 

  64. Cerrutti JA, Quaglia NB, Brandoni A, et al. Effects of gender on the pharmacokinetics of drugs secreted by the renal organic anions transport systems in the rat. Pharmacol Res 2002; 45(2): 107–12

    Article  PubMed  CAS  Google Scholar 

  65. Meibohm B, Beierle I, Derendorf H. How important are gender differences in pharmacokinetics? Clin Pharmacokinet 2002; 41(5): 329–42

    Article  PubMed  CAS  Google Scholar 

  66. Salive ME, Jones CA, Guralnik JM, et al. Serum Creatinine levels in older adults: relationship with health status and medications. Age Ageing 1995; 24(2): 142–50

    Article  PubMed  CAS  Google Scholar 

  67. Carter JT, Lee CM, Weinstein RJ, et al. Evaluation of the older cadaveric kidney donor: the impact of donor hypertension and Creatinine clearance on graft performance and survival. Transplantation 2000; 70(5): 765–71

    Article  PubMed  CAS  Google Scholar 

  68. Bertolatus JA, Goddard L. Evaluation of renal function in potential living kidney donors. Transplantation 2001; 71(2): 256–60

    Article  PubMed  CAS  Google Scholar 

  69. Zarzuelo A, Sanchez-Navarro A, Lopez FG, et al. A review of the isolated kidney as an experimental model for pharmacokinetic studies. Methods Find Exp Clin Pharmacol 2000; 22(10): 757–63

    Article  PubMed  CAS  Google Scholar 

  70. Russel FG, Masereeuw R, van Aubel RA. Molecular aspects of renal anionic drug transport. Annu Rev Physiol 2002; 64: 563–94

    Article  PubMed  CAS  Google Scholar 

  71. Kassirer JP. Clinical evaluation of kidney function: glomerular function. N Engl J Med 1971; 285(7): 385–9

    Article  PubMed  CAS  Google Scholar 

  72. Chiou WL, Hsu FH. Pharmacokinetics of Creatinine in man and its implications in the monitoring of renal function and in dosage regimen modifications in patients with renal insufficiency. J Clin Pharmacol 1975; 15(5–6): 427–34

    PubMed  CAS  Google Scholar 

  73. Bjornsson TD. Use of serum Creatinine concentrations to determine renal function. Clin Pharmacokinet 1979; 4: 200–22

    Article  PubMed  CAS  Google Scholar 

  74. Luke DR, Halstenson CE, Opsahl JA, et al. Validity of Creatinine clearance estimates in the assessment of renal function. Clin Pharmacol Ther 1990; 48(5): 503–8

    Article  PubMed  CAS  Google Scholar 

  75. Adam W. All that is excreted does not glister: or why do we keep on collecting urine to measure Creatinine clearance? Aust N Z J Med 1993; 23(6): 638

    Article  PubMed  CAS  Google Scholar 

  76. Spinier SA, Nawarskas JJ, Boyce EG, et al. Predictive performance of ten equations for estimating Creatinine clearance in cardiac patients. Ann Pharmacother 1998; 32(12): 1275–83

    Article  Google Scholar 

  77. Levey AS, Bosch JP, Lewis JB, et al. A more accurate method to estimate glomerular filtration rate from serum Creatinine: a new prediction equation. Ann Intern Med 1999; 130(6): 461–70

    PubMed  CAS  Google Scholar 

  78. Chiou WL. Creatinine XI. Extensive renal tubular reabsorption and secretion in man and its clinical significance. Res Commun Chem Pathol Pharmacol 1982; 36(2): 349–52

    PubMed  CAS  Google Scholar 

  79. Bostom AG, Kronenberg F, Ritz E. Predictive performance of renal function equations for patients with chronic kidney disease and normal serum Creatinine levels. J Am Soc Nephrol 2002; 13(8): 2140–4

    Article  PubMed  CAS  Google Scholar 

  80. Pesola GR, Akhavan I, Madu A, et al. Prediction equation estimates for Creatinine clearance in the intensive care unit. Intensive Care Med 1993; 19: 39–43

    Article  PubMed  CAS  Google Scholar 

  81. Rosario MC, Thomson AH, Jodrell DI, et al. Population pharmacokinetics of gentamicin in patients with cancer. Br J Clin Pharmacol 1998; 46(3): 229–36

    Article  PubMed  CAS  Google Scholar 

  82. Kim KE, Onesti G, Ramirez O, et al. Creatinine clearance in renal disease: a reappraisal. BMJ 1969; 4: 11–4

    Article  PubMed  CAS  Google Scholar 

  83. Bauer JH, Brooks CS, Burch RN. Clinical appraisal of Creatinine clearance as a measurement of glomerular filtration rate. Am J Kidney Dis 1982; 2(3): 337–46

    PubMed  CAS  Google Scholar 

  84. Jones JD, Burnett PC. Creatinine metabolism in humans with decreased renal function: Creatinine deficit. Clin Chem 1974; 20(9): 1204–12

    PubMed  CAS  Google Scholar 

  85. Sansoe G, Ferrari A, Castellana CN, et al. Cimetidine administration and tubular Creatinine secretion in patients with compensated cirrhosis. Clin Sci (Lond) 2002; 102(1): 91–8

    Article  CAS  Google Scholar 

  86. Kemperman FA, Surachno J, Krediet RT, et al. Cimetidine improves prediction of the glomerular filtration rate by the Cockcroft-Gault formula in renal transplant recipients. Transplantation 2002; 73(5): 770–4

    Article  PubMed  CAS  Google Scholar 

  87. Prins JM, Weverling GJ, van Ketel RJ, et al. Circadian variations in serum levels and the renal toxicity of aminoglycosides in patients. Clin Pharmacol Ther 1997; 62(1): 106–11

    Article  PubMed  CAS  Google Scholar 

  88. Beauchamp D, Labrecque G. Aminoglycoside nephrotoxicity: do time and frequency of administration matter? Curr Opin Crit Care 2001; 7(6): 401–8

    Article  PubMed  CAS  Google Scholar 

  89. Buclin T, Sechaud R, Bertschi AP, et al. Estimation of glomerular filtration rate by sinistrin clearance using various approaches. Ren Fail 1998; 20(2): 267–76

    Article  PubMed  CAS  Google Scholar 

  90. Orlando R, Floreani M, Padrini R, et al. Determination of inulin clearance by bolus intravenous injection in healthy subjects and ascitic patients: equivalence of systemic and renal clearance as glomerular filtration markers. Br J Clin Pharmacol 1998; 46: 605–9

    Article  PubMed  CAS  Google Scholar 

  91. Kinowski J-M, Bressolle F, Rodier M, et al. A limited sampling model with Bayesian estimation to determine inulin pharmacokinetics using the population data modelling program P-PHARM. Clin Drug Invest 1995; 9(5): 260–9

    Article  Google Scholar 

  92. Gay-Crosier F, Schreiber G, Hauser C. Anaphylaxie from inulin in vegetables and processed food [letter]. N Engl J Med 2000; 342(18): 1372

    Article  PubMed  CAS  Google Scholar 

  93. Buclin T, Pechere-Bertschi A, Sechaud R, et al. Sinistrin clearance for determination of glomerular filtration rate: a reappraisal of various approaches using a new analytical method. J Clin Pharmacol 1997; 37: 679–92

    PubMed  CAS  Google Scholar 

  94. Estelberger W, Petek W, Zitta S, et al. Determination of the glomerular filtration rate by identification of sinistrin kinetics. Eur J Clin Chem Clin Biochem 1995; 33(4): 201–9

    PubMed  CAS  Google Scholar 

  95. Hess M, Carr J. NASA takes action to improve safety in human research. Washington (DC): National Aeronautics and Space Administration, 1995

    Google Scholar 

  96. Chandra R, Barron JL. Anaphylactic reaction to intravenous sinistrin (Inutest) [letter]. Ann Clin Biochem 2002; 39(Pt 1): 76

    Article  PubMed  Google Scholar 

  97. Frennby B, Sterner G. Contrast media as markers of GFR. Eur Radiol 2002; 12(2): 475–84

    Article  PubMed  Google Scholar 

  98. Gaspari F, Perico N, Remuzzi G. Measurement of glomerular filtration rate. Kidney Int Suppl 1997; 63: s151–4

    PubMed  CAS  Google Scholar 

  99. Herget-Rosenthal S, Trabold S, Huesing J, et al. Cystatin C: an accurate marker of glomerular filtration rate after renal transplantation? Transpl Int 2000; 13(4): 285–9

    Article  PubMed  CAS  Google Scholar 

  100. Price CP, Finney H. Developments in the assessment of glomerular filtration rate. Clin Chim Acta 2000; 297(1–2): 55–66

    Article  PubMed  CAS  Google Scholar 

  101. Risch L, Blumberg A, Huber AR. Assessment of renal function in renal transplant patients using cystatin C: a comparison to other renal function markers and estimates. Ren Fail 2001; 23(3–4): 439–48

    Article  PubMed  CAS  Google Scholar 

  102. Keevil BG, Kilpatrick ES, Nichols SP, et al. Biological variation of cystatin C: implications for the assessment of glomerular filtration rate. Clin Chem 1998; 44(7): 1535–9

    PubMed  CAS  Google Scholar 

  103. Tian S, Kusano E, Ohara T, et al. Cystatin C measurement and its practical use in patients with various renal diseases. Clin Nephrol 1997; 48(2): 104–8

    PubMed  CAS  Google Scholar 

  104. O’Riordan S, Ouldred E, Brice S, et al. Serum cystatin C is not a better marker of Creatinine or digoxin clearance than serum Creatinine. Br J Clin Pharmacol 2002; 53(4): 398–402

    Article  PubMed  Google Scholar 

  105. Schuck O, Gottfriedova H, Maly J, et al. Glomerular filtration rate assessment in individuals after orthotopic liver transplantation based on serum cystatin C levels. Liver Transpl 2002; 8(7): 594–9

    Article  PubMed  Google Scholar 

  106. Olivieri O, Bassi A, Pizzolo F, et al. Cystatin C versus Creatinine in renovascular disease. Clin Chem 2002; 48(12): 2256–9

    PubMed  CAS  Google Scholar 

  107. Orlando R, Mussap M, Plebani M, et al. Diagnostic value of plasma cystatin C as a glomerular filtration marker in decom-pensated liver cirrhosis. Clin Chem 2002; 48(6 Pt 1): 850–8

    PubMed  CAS  Google Scholar 

  108. Krieser D, Rosenberg AR, Kainer G, et al. The relationship between serum Creatinine, serum cystatin C and glomerular filtration rate in pediatric renal transplant recipients: a pilot study. Pediatr Transplant 2002; 6(5): 392–5

    Article  PubMed  CAS  Google Scholar 

  109. Van Den Noortgate NJ, Janssens WH, Delanghe JR, et al. Serum cystatin C concentration compared with other markers of glomerular filtration rate in the old old. J Am Geriatr Soc 2002; 50(7): 1278–82

    Article  Google Scholar 

  110. Leung N. A tale of two markers. Liver Transpl 2002; 8(7): 600–2

    Article  PubMed  Google Scholar 

  111. Thomassen SA, Johannesen IL, Erlandsen EJ, et al. Serum cystatin C as a marker of the renal function in patients with spinal cord injury. Spinal Cord 2002; 40(10): 524–8

    Article  PubMed  CAS  Google Scholar 

  112. Burkhardt H, Bojarsky G, Gladisch R. Diagnostic efficiency of cystatin C and serum Creatinine as markers of reduced glomerular filtration rate in the elderly. Clin Chem Lab Med 2002; 40(11): 1135–8

    Article  PubMed  CAS  Google Scholar 

  113. Leach TD, Kitiyakara C, Price CP, et al. Prognostic significance of serum cystatin C concentrations in renal transplant recipients: 5-year follow-up. Transplant Proc 2002; 34(4): 1152–8

    Article  PubMed  CAS  Google Scholar 

  114. Wasen E, Suominen P, Isoaho R, et al. Serum cystatin C as a marker of kidney dysfunction in an elderly population. Clin Chem 2002; 48(7): 1138–40

    PubMed  CAS  Google Scholar 

  115. Uchida K, Gotoh A. Measurement of cystatin-C and Creatinine in urine. Clin Chim Acta 2002; 323(1–2): 121–8

    Article  PubMed  CAS  Google Scholar 

  116. Laterza OF, Price CP, Scott MG. Cystatin C: an improved estimator of glomerular filtration rate? Clin Chem 2002; 48(5): 699–707

    PubMed  CAS  Google Scholar 

  117. Dharnidharka VR, Kwon C, Stevens G. Serum cystatin C is superior to serum Creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis 2002; 40(2): 221–6

    Article  PubMed  CAS  Google Scholar 

  118. van Ginneken CA, Russel FG. Saturable pharmacokinetics in the renal excretion of drugs. Clin Pharmacokinet 1989; 16(1): 38–54

    Article  PubMed  Google Scholar 

  119. Eichelbaum M, Gross AS. Stereochemical aspects of drug action and disposition. Adv Drug Res 1996; 28: 1–64

    Article  CAS  Google Scholar 

  120. Somogyi A, Rumrich G, Fritzch G, et al. Stereospecificity in contraluminal and luminal transporters of organic cations in the rat renal proximal tubule. J Pharmacol Exp Ther 1996; 278: 31–6

    PubMed  CAS  Google Scholar 

  121. Maiza A, Waldek S, Ballardie FW, et al. Estimation of renal tubular secretion in man, in health and disease, using endogenous N-1-methylnicotinamide. Nephron 1992; 60(1): 12–6

    Article  PubMed  CAS  Google Scholar 

  122. Edwards BD, Maiza A, Daley-Yates PT, et al. Altered clearance of N-1 methylnicotinamide associated with the use of low doses of cyclosporine. Am J Kidney Dis 1994; 23(1): 23–30

    PubMed  CAS  Google Scholar 

  123. Olsen NV, Ladefoged SD, Feldt-Rasmussen B, et al. The effects of Cimetidine on Creatinine excretion, glomerular filtration rate and tubular function in renal transplant recipients. Scand J Clin Lab Invest 1989; 49: 155–9

    Article  PubMed  CAS  Google Scholar 

  124. Hilbrands LB, Artz MA, Wetzels JF, et al. Cimetidine improves the reliability of Creatinine as a marker of glomerular filtration. Kidney Int 1991; 40: 1171–6

    Article  PubMed  CAS  Google Scholar 

  125. Roubenoff R, Drew H, Moyer M, et al. W-OK, Hellmann DB. Oral Cimetidine improves the accuracy and precision of Creatinine clearance in lupus nephritis. Ann Intern Med 1990; 113: 501–6

    PubMed  CAS  Google Scholar 

  126. Kinowski J-M, Rodier M, Bressolle F, et al. Bayesian estimation of p-aminohippurate clearance by a limited sampling strategy. J Pharm Sci 1995; 84(3): 307–11

    Article  PubMed  CAS  Google Scholar 

  127. Hirata-Dulas CA, Awni WM, Matzke GR, et al. Evaluation of two intravenous single-bolus methods for measuring effective renal plasma flow. Am J Kidney Dis 1994; 23(3): 374–81

    PubMed  CAS  Google Scholar 

  128. Prescott LF, Freestone S, McAuslane JA. The concentration-dependent disposition of intravenous p-aminohippurate in subjects with normal and impaired renal function. Br J Clin Pharmacol 1993; 35(1): 20–9

    PubMed  CAS  Google Scholar 

  129. Balant L, Muir K, Dayer P, et al. Simultaneous tubular excretion and reabsorption of pindolol in man. Eur J Clin Pharmacol 1981; 21(1): 65–72

    Article  PubMed  CAS  Google Scholar 

  130. Dowling TC, Frye RF, Fraley DS, et al. Characterization of tubular functional capacity in humans using para-aminohip-purate and famotidine. Kidney Int 2001; 59(1): 295–303

    Article  PubMed  CAS  Google Scholar 

  131. Janku I, Zvara K. Quantitative analysis of drug handling by the kidney using a physiological model of renal drug clearance. Eur J Clin Pharmacol 1993; 44(6): 521–4

    Article  PubMed  CAS  Google Scholar 

  132. Iida N, Takara K, Ohmoto N, et al. Reversal effects of antifungal drugs on multidrug resistance in MDR1-overexpressing HeLa cells. Biol Pharm Bull 2001; 24(9): 1032–6

    Article  PubMed  CAS  Google Scholar 

  133. Wang EJ, Lew K, Casciano CN, et al. Interaction of common azole antifungals with P glycoprotein. Antimicrob Agents Chemother 2002; 46(1): 160–5

    Article  PubMed  CAS  Google Scholar 

  134. Paolini M, Biagi GL, Bauer C, et al. Cocktail strategy: complications and limitations. J Clin Pharmacol 1993; 33(11): 1011–2

    PubMed  CAS  Google Scholar 

  135. Tucker GT, Houston JB, Huang SM. Optimizing drug development: strategies to assess drug metabolism/transporter interaction potential -towards a consensus. Br J Clin Pharmacol 2001; 52(1): 107–17

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Drs Tett, Kirkpatrick and McLachlan do not have any pharmaceutical industry affiliation and have no pecuniary interests (personal or professional), grants or other potential conflicts of interest with any pharmaceutical company. Annette Gross is employed by GlaxoSmithKline. No sources of funding were used to assist in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan E. Tett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tett, S.E., Kirkpatrick, C.M.J., Gross, A.S. et al. Principles and Clinical Application of Assessing Alterations in Renal Elimination Pathways. Clin Pharmacokinet 42, 1193–1211 (2003). https://doi.org/10.2165/00003088-200342140-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200342140-00002

Keywords

Navigation