Skip to main content
Log in

Clinical Pharmacokinetics of Cytarabine Formulations

  • Review Article
  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Cytarabine (cytosine arabinoside, Ara-C) is an effective chemotherapeutic agent for the treatment of acute myelogenous leukaemia and lymphocytic leukaemias. As cytarabine is an S-phase-specific drug, prolonged exposure of cells to cytotoxic concentrations is critical to achieve maximum cytotoxic activity. However, the activity of cytarabine is decreased by its rapid deamination to the biologically inactive metabolite uracil arabinoside. This rapid deamination is the reason for the ongoing search for effective formulations and derivatives of cytarabine that cannot be deaminated and exhibit better pharmacokinetic parameters.

Protection of cytarabine from fast degradation and elimination has been investigated by encapsulating the drug into pharmaceutically acceptable carriers. Cytarabine derivatives have shown promise in vitro and in animal models. For example, ancitabine (cyclocytidine), enocitabine and cytarabine ocfosfate have been used clinically in Japan. Cytarabine encapsulated into multivesicular liposomes has been approved in several countries for the intrathecal treatment of lymphomatous meningitis.

Although many compounds have been investigated, few cytarabine derivatives are currently available for clinical use. Further research is needed to improve the efficacy of cytarabine against haematological and solid tumours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Table I
Table II

Similar content being viewed by others

Notes

  1. Use of tradenames is for product identification only and does not imply endorsement.

References

  1. Gahrton G. Treatment of acute leukemia: advances in chemotherapy, immunotherapy and bone marrow transplantation. Adv Cancer Res 1983; 40: 255–329

    Article  PubMed  CAS  Google Scholar 

  2. Keating MJ, McCredie KB, Bodey GP, et al. Improved prospects for long-term survival in adults with acute myelogenous leukemia. JAMA 1982; 248: 2481–6

    Article  PubMed  CAS  Google Scholar 

  3. Plunkett W, Gandhi V. Cellular pharmacodynamics of anticancer drugs. Semin Oncol 1993; 20: 50–63

    PubMed  CAS  Google Scholar 

  4. Blasberg R, Molnar P, Groothius D, et al. Concurrent measurements of blood flow and transcapillary transport in avian sarcoma virus-induced experimental brain tumors: implications for chemotherapy. J Pharmacol Exp Ther 1984; 231: 724–35

    PubMed  CAS  Google Scholar 

  5. Plagemann PG, Marz R, Wohlhueter RM. Transport and metabolism of deoxycytidine and 1-β-D-arabinofuranosylcytosine into cultured Novikoff rat hepatoma cells, relationship to phosphorylation, and regulation of triphosphate synthesis. Cancer Res 1978; 38: 978–89

    PubMed  CAS  Google Scholar 

  6. Wiley JS, Jones SP, Sawyer WH, et al. Cytosine arabinoside influx and nucleoside transport sites in acute leukemia. J Clin Invest 1982; 69: 479–89

    Article  PubMed  CAS  Google Scholar 

  7. Graham FL, Whitmore GF. The effect of 1-β-D-arabinofuranosylcytosine on growth, viability, and DNA synthesis of mouse L-cells. Cancer Res 1970; 30: 2627–35

    PubMed  CAS  Google Scholar 

  8. Plunkett W, Liliemark JO, Estey E, et al. Saturation of ara-CTP accumulation during high-dose ara-C therapy: pharmacologic rationale for intermediate-dose ara-C. Semin Oncol 1987; 14 Suppl. 1: 159–66

    PubMed  CAS  Google Scholar 

  9. Chabner BA, Cytidine analogues. In: Chabner BA, Collins J, editors. Cancer chemotherapy: principles and practice. Philadelphia: JB Lippincott, 1990: 154–79

    Google Scholar 

  10. Frei E, Bickers JN, Hewlett JS, et al. Dose schedule and antitumor studies of arabinosyl cytosine. Cancer Res 1969; 29: 1324–32

    Google Scholar 

  11. Momparler RL. A model for the chemotherapy of acute leukemia with 1-β-D-arabinofuranosylcytosine. Cancer Res 1974; 34: 1775–87

    PubMed  CAS  Google Scholar 

  12. Bolwell BJ, Classileth PA, Gale RP. High dose cytarabine: a review. Leukemia 1988; 2: 253–60

    PubMed  CAS  Google Scholar 

  13. Zimm S, Collins JM, Miser J, et al. Cytosine arabinoside cerebrospinal fluid kinetics. Clin Pharmacol Ther 1984; 35: 826–30

    Article  PubMed  CAS  Google Scholar 

  14. Furner RL, Mellet LB, Herren TC. Influence of tetrahydrouridine on the phosphorylation of 1-β-D-arabinofuranosylcytosine (ara-C) by enzymes from solid tumors in vitro. J Pharmacol Exp Ther 1975; 194: 103–10

    PubMed  CAS  Google Scholar 

  15. Kreis W, Chan K, Budman DR, et al. Effect of tetrahydrouridine on the clinical pharmacology of 1-β-D-arabinofuranosylcytosine when both drugs are coinfused over three hours. Cancer Res 1988; 48: 1337–42

    PubMed  CAS  Google Scholar 

  16. Kobayashi T, Tsukagoshi S, Sakurai Y. Enhancement of the cancer chemotherapeutic effect of cytosine arabinoside entrapped in liposomes on mouse leukemia L-1210. Gann 1975; 66: 719–20

    PubMed  CAS  Google Scholar 

  17. Kobayashi T, Kataoka T, Tsukagoshi S, et al. Enhancement of anti-tumor activity of 1-β-D-arabinofuranosylcytosine by encapsulation in liposomes. Int J Cancer 1977; 20: 581–7

    Article  PubMed  CAS  Google Scholar 

  18. Rustum YM, Dave C, Mayhew E, et al. Role of liposome type and route of administration in the antitumor activity of liposome-entrapped 1-β-D-arabinofuranosylcytosine against mouse L1210 leukemia. Cancer Res 1979; 39: 1390–5

    PubMed  CAS  Google Scholar 

  19. Ganapathi R, Krishan A, Wodinsky I, et al. Effect of cholesterol content on antitumor activity and toxicity of liposome-encapsulated 1-β-D-arabinofuranosylcytosine in vivo. Cancer Res 1980; 40: 630–3

    PubMed  CAS  Google Scholar 

  20. Ellens H, Rustum Y, Mayhew E, et al. Distribution and metabolism of liposome-encapsulated and free 1-β-D-arabinofuranosylcytosine (Ara-C) in dog and mouse tissues. J Pharmacol Exp Ther 1982; 222: 324–30

    PubMed  CAS  Google Scholar 

  21. Funato K, Yoda R, Kiwada H. Contribution of complement system on destabilization of liposomes composed of hydrogenated egg phosphatidylcholine in fresh rat plasma. Biochim Biophys Acta 1992; 1103: 198–204

    Article  PubMed  CAS  Google Scholar 

  22. Allen TM, Hansen C, Martin F, et al. Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim Biophys Acta 1991; 1066: 29–36

    Article  PubMed  CAS  Google Scholar 

  23. Allen TM, Mehra T, Hansen C, et al. Stealth liposomes: an improved sustained release system for 1-β-D-arabinofuranosylcytosine. Cancer Res 1992; 52: 2431–9

    PubMed  CAS  Google Scholar 

  24. Kim S, Khattibi S, Howell SB. Prolongation of drug exposure in cerebrospinal fluid by encapsulation into depot form. Cancer Res 1993; 32: 1596–8

    Google Scholar 

  25. Chamberlain MC, Khatibi S, Kim JC, et al. Treatment of leptomeningeal metastasis with intraventricular administration of depot cytarabine (DTC 101). A Phase I study. Arch Neurol 1993; 50: 261–4

    Article  PubMed  CAS  Google Scholar 

  26. Kim S, Chatelut E, Kim JC, et al. Extended CSF cytarabine exposure following intrathecal administration of DTC 101. J Clin Oncol 1993; 11: 2186–93

    PubMed  CAS  Google Scholar 

  27. Chamberlain MC, Kormanik P, Howell SB, et al. Pharmacokinetics of intralumbar DTC-101 for the treatment of leptomeningeal metastases. Arch Neurol 1995; 52: 912–7

    Article  PubMed  CAS  Google Scholar 

  28. Fukushima S, Juni K, Nakano M. Preparation of and drug release from W/O/W type double emulsions containing anticancer agents. Chem Pharm Bull 1983; 31: 4048–56

    Article  PubMed  CAS  Google Scholar 

  29. Okochi H, Nakano M. Comparative study of two preparation methods of w/o/w emulsions: stirring and membrane emulsification. Chem Pharm Bull 1997; 45: 1323–6

    Article  CAS  Google Scholar 

  30. Benoy CJ, Schneider R, Elson LA, et al. Enhancement of the cancer chemotherapeutic effect of the cell cycle phase specific agents methotrexate and cytosine arabinoside when given as a water-oil-water emulsion. Eur J Cancer 1974; 10: 27–33

    Article  PubMed  CAS  Google Scholar 

  31. Rahman YE, Patel KR, Cerny EA, et al. The treatment of intravenously implanted Lewis lung carcinoma with two sustained release forms of 1-β-D-arabinofuranosylcytosine. Eur J Cancer Clin Oncol 1984; 20: 1105–12

    Article  PubMed  CAS  Google Scholar 

  32. Herrmann R, Berdel WE. Therapeutic activity of a thioetherlipid conjugate of 1-β-D-arabinofuranosylcytosine in human colorectal cancer xenografts. Cancer Res 1992; 52: 1865–7

    PubMed  CAS  Google Scholar 

  33. Sehgal S, Rogers JA. Polymer-coated liposomes: improved liposome stability and release of cytosine arabinoside (Ara-C). J Microencapsul 1995; 12: 37–47

    Article  PubMed  CAS  Google Scholar 

  34. Liu KR, Peyman GA, She SC, et al. Reduced toxicity of intravitreally injected liposome-encapsulated cytarabine. Ophthalmic Surg 1989; 20: 358–61

    PubMed  CAS  Google Scholar 

  35. Hong F, Mayhew E. Therapy of central nervous system leukemia in mice by liposome-entrapped 1-β-D-arabinofuranosylcytosine. Cancer Res 1989; 49: 5097–102

    PubMed  CAS  Google Scholar 

  36. Kim S, Kim DJ, Geyer MA, et al. Multivesicular liposomes containing 1-β-D-arabinofuranosylcytosine for slow release intrathecal therapy. Cancer Res 1987; 47: 3935–7

    PubMed  CAS  Google Scholar 

  37. Murry DJ, Blaney SM. Clinical pharmacology of encapsulated sustained-release cytarabine. Ann Pharmacother 2000; 34: 1173–8

    Article  PubMed  CAS  Google Scholar 

  38. Glantz M, LaFollette S, Jaeckle K, et al. Randomized trial of a slow-release versus a standard formulation of cytarabine for the intrathecal treatment of lymphomatous meningitis. J Clin Oncol 1999; 17: 3110–6

    PubMed  CAS  Google Scholar 

  39. Glantz MJ, Jaeckle KA, Chamberlain MC, et al. A randomized controlled trial comparing intrathecal sustained-release cytarabine (DepoCyt) to intrathecal methotrexate in patients with neoplastic meningitis from solid tumors. Clin Cancer Res 1999; 5: 3394–402

    PubMed  CAS  Google Scholar 

  40. Koller-Lucae SK, Schott H, Schwendener RA. Interactions with human blood in vitro and pharmacokinetic properties in mice of liposomal N4-octadecyl-1-β-D-arabinofuranosylcytosine, a new anticancer drug. J Pharmacol Exp Ther 1997; 282: 1572–80

    PubMed  CAS  Google Scholar 

  41. Koller-Lucae SK, Schott H, Schwendener RA. Low density lipoprotein and liposome mediated uptake and cytotoxic effect of N4-octadecyl-1-β-D-arabinofuranosylcytosine in Daudi lymphoma cells. Br J Cancer 1999; 80: 1542–9

    Article  PubMed  CAS  Google Scholar 

  42. Koller-Lucae SK, Suter MJ, Rentsch KM, et al. Metabolism of the new liposomal anticancer drug N4-octadecyl-1-β-D-arabinofuranosylcytosine in mice. Drug Metab Dispos 1999; 27: 342–50

    PubMed  CAS  Google Scholar 

  43. Tsuruo T, Hori K, Iida H, et al. Enzyme catalyzation of the deacylation of N4-acyl derivatives of 1-β-D-arabinofuranosylcytosine in the mouse liver microsome. Cancer Res 1982; 42: 2250–4

    PubMed  CAS  Google Scholar 

  44. Schwendener RA, Horber DH, Ottiger C, et al. Alkasar-18, 1-(β-D-arabinofuranosyl)-4-octadecylamino-2(1H)-pyrimidin-one, N4-octadecyl-ara-C, NOAC. Drags Future 1995; 20: 11–5

    Google Scholar 

  45. Horber DH, Schott H, Schwendener RA. Cellular pharmacology of a liposomal preparation of N4-hexadecyl-1-β-D-arabinofuranosylcytosine, a lipophilic derivative of 1-β-D-arabinofuranosylcytosine. Br J Cancer 1995; 71: 957–62

    Article  PubMed  CAS  Google Scholar 

  46. Horber DH, Ottiger C, Schott H, et al. Pharmacokinetic properties and interactions with blood components of N4-hexadecyl-1-β-D-arabinofuranosylcytosine (NHAC) incorporated into liposomes. J Pharm Pharmacol 1995; 47: 282–8

    Article  PubMed  CAS  Google Scholar 

  47. Horber DH, Schott H, Schwendener RA. Cellular pharmacology of N4-hexadecyl-1-β-D-arabinofuranosylcytosine in the human leukemic cell lines K-562 and U-937. Cancer Chemother Pharm 1995; 36: 483–92

    Article  CAS  Google Scholar 

  48. Novotny L, Balazova E, Sandula J, et al. Treatment of leukemia L1210 and P388 by arabinosylcytosine-polysaccharide conjugates. Int J Cancer 1991; 47: 281–4

    Article  PubMed  CAS  Google Scholar 

  49. Schwendener RA, Horber DH, Odermatt B, et al. Oral antitumour activity in murine L12101eukaemia and pharmacological properties of liposome formulations of N4-alkyl derivatives of 1-β-D-arabinofuranosylcytosine. J Cancer Res Clin Oncol 1996; 122: 102–8

    Article  PubMed  CAS  Google Scholar 

  50. Schwendener RA, Schott H. Lipophilic 1-β-D-arabinofuranosyl cytosine derivatives in liposomal formulations for oral and parenteral antileukemic therapy in the murine L1210 leukemia model. J Cancer Res Clin Oncol 1996; 122: 723–6

    Article  PubMed  CAS  Google Scholar 

  51. Schott H, Schwendener RA. Synthesis and structure-activity studies in vivo of liposomal phospholipid-N4-palmitoyl- and N4-hexadecyl-1-β-D-arabinofuranosylcytosine conjugates. Anticancer Drag Des 1996; 11: 451–62

    CAS  Google Scholar 

  52. Hong CI, Nechaev A, Kirisits AJ, et al. Nucleoside conjugates. 14. Synthesis and antitumor activity of 1-β-D-arabinofuranosylcytosine conjugates of ether lipids with improved water solubility. J Med Chem 1995; 38: 1629–34

    Article  PubMed  CAS  Google Scholar 

  53. Hong CI, Bernacki RJ, Hui SW, et al. Formulation, stability, and antitumor activity of 1-β-D-arabinofuranosylcytosine conjugate of thioether phospholipid. Cancer Res 1990; 50: 4401–6

    PubMed  CAS  Google Scholar 

  54. Hori K, Tsuruo T, Tsukagoshi S, et al. Purification and characterization of an amidohydrolase for N4-long-chain fatty acyl derivatives of 1-β-D-arabinofuranosylcytosine from mouse liver microsomes. Cancer Res 1984; 44: 1187–93

    PubMed  CAS  Google Scholar 

  55. Hori K, Tsuruo T, Naganuma K, et al. Antitumor effects and pharmacology of orally administered N4-palmitoyl-l-beta-D-arabinofuranosylcytosine in mice. Cancer Res 1984; 44: 172–7

    PubMed  CAS  Google Scholar 

  56. Aoshima M, Tsukagoshi S, Sakurai Y, et al. Antitumor activities of newly synthesized N4-acyl-1-β-D-arabinofuranosylcytosine. Cancer Res 1976; 36: 2726–32

    PubMed  CAS  Google Scholar 

  57. Aoshima M, Tsukagoshi S, Sakurai Y, et al. N4-Behenoyl-1-β-D-arabinofuranosylcytosine as a potential new antitumor. Cancer Res 1977; 37: 2481–6

    PubMed  CAS  Google Scholar 

  58. Ueda T, Nakamura T, Ando S, et al. Pharmacokinetics of N4-behenoyl-1-β-D-arabinofuranosylcytosine in patients with acute leukemia. Cancer Res 1983; 43: 3412–6

    PubMed  CAS  Google Scholar 

  59. Yoshida T, Kobayashi K, Okabe Y, et al. Plasma and leukemic cell pharmacokinetics of high-dose N4-behenoyl-1-β-D-arabinofuranosylcytosine in acute leukemia patients. J Clin Pharmacol 1994; 34: 52–9

    PubMed  CAS  Google Scholar 

  60. Kimura K, Ohno R, Amaki I, et al. Treatment of acute myelogenous leukemia in adults with N4-behenoyl-1-β-D-arabinofuranosylcytosine. Cancer 1985; 56: 1913–7

    Article  PubMed  CAS  Google Scholar 

  61. Hoshi A, Kanzawa F, Iigo M, et al. Effect and toxicity of combination treatment including cyclocytidine or cytosine arabinoside in L-1210 and sarcoma-180 systems. Gann 1975; 66: 539–46

    PubMed  CAS  Google Scholar 

  62. Kodama K, Morozumi M, Saitoh K, et al. Antitumor activity and pharmacology of 1-β-D-arabinofuranosylcytosine 5′-stearylphosphate: an orally active derivative of 1-β-D-arabinofuranosylcytosine. Jpn J Cancer Res 1989; 80: 679–85

    Article  PubMed  CAS  Google Scholar 

  63. Saneyoshi M, Morozumi M, Kodama K, et al. Synthetic nucleosides and nucleotides. XVI. Synthesis and biological evaluations of a series of 1-β-D-arabinofuranosylcytosine 5′-alkyl or arylphosphates. Chem Pharm Bull 1980; 28: 2915–23

    Article  PubMed  CAS  Google Scholar 

  64. Higashigawa M, Hori H, Ohkubo T, et al. Deoxyribonucleoside triphosphate pools and Ara-CTP levels in P388 murine leukemic cells treated with 1-β-D-arabinofuranosylcytosine-5′-stearylphosphate which is a newly synthesized derivative of 1-β-D-arabinofuranosylcytosine. Med Oncol Tumor Pharmacother 1990; 7: 223–6

    PubMed  CAS  Google Scholar 

  65. Koga K, Iizuka E, Sato A, et al. Characteristic antitumor activity of cytarabine ocfosfate against human colorectal adenocarcinoma xenografts in nude mice. Cancer Chemother Pharmacol 1995; 36: 459–62

    Article  PubMed  CAS  Google Scholar 

  66. Ueda T, Kamiya K, Urasaki Y, et al. Clinical pharmacology of 1-β-D-arabinofuranosylcytosine-5′-stearylphosphate, an orally administered long-acting derivative of low-dose 1-β-D-arabinofuranosylcytosine. Cancer Res 1994; 54: 109–13

    PubMed  CAS  Google Scholar 

  67. Kuhr T, Eisterer W, Apfelbeck U, et al. Treatment of patients with advanced chronic myelogenous leukemia with interferon-α-2b and continuous oral cytarabine ocfosfate (YNK01): a pilot study. Leuk Res 2000; 24: 583–7

    Article  PubMed  CAS  Google Scholar 

  68. Braess J, Freund M, Hanauske A, et al. Oral cytarabine ocfosfate in acute myeloid leukemia and non-Hodgkin’s lymphoma — phase I/II studies and pharmacokinetics. Leukemia 1998; 12: 1618–26

    Article  PubMed  CAS  Google Scholar 

  69. Braess J, Kern W, Unterhalt M, et al. Response to cytarabine ocfosfate (YNK01) in a patient with chronic lymphocytic leukemia refractory to treatment with chlorambucil/prednisone, fludarabine, and prednimustine/mitoxantrone. Ann Hematol 1996; 73: 201–4

    Article  PubMed  CAS  Google Scholar 

  70. Schleyer E, Braess J, Ramsauer B, et al. Pharmacokinetics of Ara-CMP-stearate (YNK01): phase I study of the oral Ara-C derivative. Leukemia 1995; 9: 1085–90

    PubMed  CAS  Google Scholar 

  71. Kanai T, Ichino M. Pyrimidine nucleosides. 6. Syntheses and anticancer activities of N4-substituted 2,2′-anhydronucleosides. J Med Chem 1974; 17: 1076–8

    Article  PubMed  CAS  Google Scholar 

  72. Rosowsky A, Kim SH, Ross J, et al. Lipophilic 5′-(alkyl phosphate) esters of 1-β-D-arabinofuranosylcytosine and its N4-acyl and 2,2′-anhydro-3′-O-acyl derivatives as potential prodrags. J Med Chem 1982; 25: 171–8

    Article  PubMed  CAS  Google Scholar 

  73. Kataoka T, Sakurai Y. Effect and mode of action of N4-behenoyl-β-D-arabinofuranosylcytosine. Recent Results Cancer Res 1980; 70: 147–51

    Article  PubMed  CAS  Google Scholar 

  74. Ohishi J, Kataoka T, Tsukagoshi S, et al. Production of N4-succinyl-1-β-D-arabinofuranosylcytosine, anovel metabolite of N4-behenoyl-1-β-D-arabinofuranosylcytosine, in mice and its biological significance. Cancer Res 1981; 41: 2501–6

    CAS  Google Scholar 

  75. Rubas W, Supersaxo A, Weder HG, et al. Treatment of murine L1210 lymphoid leukemia and melanoma B16 with lipophilic cytosine arabinoside prodrugs incorporated into unilamellar liposomes. Int J Cancer 1986; 37: 149–54

    Article  PubMed  CAS  Google Scholar 

  76. Schwendener RA, Pestalozzi B, Berger S, et al. Treatment of acute myelogenous leukemia with liposomes containing N4-oleyl-cytosine arabinoside. In: Lopez-Berenstein G, Fidler IJ, editors. Liposomes in the therapy of infectious diseases and cancer. New York: Alan R Liss Inc., 1989: 95–105

    Google Scholar 

  77. Schwendener RA, Schott H. Treatment of L1210 murine leukemia with liposome-incorporated N4-hexadecyl-1-β-D-arabinofuranosyl cytosine. Int J Cancer 1992; 51: 466–9

    Article  PubMed  CAS  Google Scholar 

  78. Hashida M, Liao MH, Muranishi S, et al. Dosage form characteristics of microsphere-in-oil emulsion. II: Examination of some factors affecting lymphotropicity. Chem Pharm Bull 1980; 28: 1659–66

    Article  PubMed  CAS  Google Scholar 

  79. Yoshioka T, Ikeuchi K, Hashida M, et al. Prolonged release of bleomycin from parenteral gelatin sphere-in-oil-in-water multiple emulsion. Chem Pharm Bull 1982; 30: 1408–15

    Article  PubMed  CAS  Google Scholar 

  80. Kim S. Liposomes as carriers of cancer chemotherapy: current status and future prospects. Drugs 1993; 46: 618–38

    Article  PubMed  CAS  Google Scholar 

  81. Hunt CA, Rustum YM, Mayhew E, et al. Retention of cytosine arabinoside in mouse lung following intravenous administration in liposomes of different size. Drug Metab Dispos 1979; 7: 124–8

    PubMed  CAS  Google Scholar 

  82. Richardson VJ, Curt GA, Ryman BE, et al. Liposomally trapped AraCTP to overcome AraC resistance in a murine lymphoma in vitro. Br J Cancer 1982; 45: 559–64

    Article  PubMed  CAS  Google Scholar 

  83. Ganapathi R, Krishan A, Wodinsky I, et al. Effect of cholesterol content on antitumor activity and toxicity of liposome-encapsulated 1-β-D-arabinofuranosylcytosine in vivo. Cancer Res 1980; 40: 630–3

    PubMed  CAS  Google Scholar 

  84. Tokunaga Y, Iwasa T, Fujisaki J, et al. Liposomal sustained-release delivery systems for intravenous injection V. Biological disposition of liposome-entrapped lipophilic prodrug of 1-β-D-arabinofuranosylcytosine. Chem Pharm Bull 1988; 36: 4060–7

    Article  PubMed  CAS  Google Scholar 

  85. Tokunaga Y, Iwasa T, Fujisaki J, et al. Liposomal sustained-release delivery systems for intravenous injection. IV. Antitumor activity of newly synthesized lipophilic 1-β-D-arabinofuranosylcytosine prodrug-bearing liposomes. Chem Pharm Bull 1988; 36: 3574–83

    Article  PubMed  CAS  Google Scholar 

  86. Nishikawa M, Kamijo A, Fujita T, et al. Synthesis and pharmacokinetics of a new liver-specific carrier, glycosylated carboxymethyl-dextran, and its application to drug targeting. Pharm Res 1993; 10: 1253–61

    Article  PubMed  CAS  Google Scholar 

  87. Shapiro WR, Posner JB, Ushio Y, et al. Treatment of meningeal neoplasms. Cancer Treat Rep 1977; 61: 733–43

    PubMed  CAS  Google Scholar 

  88. Balis FM, Poplack DG. Central nervous system pharmacology of antileukemic drugs. Am J Pediatr Hematol Oncol 1989; 11: 74–86

    Article  PubMed  CAS  Google Scholar 

  89. Zimm S, Collins JM, Miser J, et al. Cytosine arabinoside cerebrospinal fluid kinetics. Clin Pharmacol Ther 1984; 35: 826–30

    Article  PubMed  CAS  Google Scholar 

  90. Kim S, Howell SB. Multivesicular liposomes containing cytarabine entrapped in the presence of hydrochloric acid for intracavitary chemotherapy. Cancer Treat Rep 1987; 71: 705–11

    PubMed  CAS  Google Scholar 

  91. Schwendener RA, Horber DH, Ottiger C, et al. Preclinical properties of N4-hexadecyl- and N4-octadecyl-1-β-D-arabinofuranosylcytosine in liposomal preparations. J Liposome Res 1995; 5: 27–47

    Article  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this manuscript. There are no potential conflicts of interest directly relevant to the contents of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akinobu Hamada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamada, A., Kawaguchi, T. & Nakano, M. Clinical Pharmacokinetics of Cytarabine Formulations. Clin Pharmacokinet 41, 705–718 (2002). https://doi.org/10.2165/00003088-200241100-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200241100-00002

Keywords

Navigation