Skip to main content
Log in

Pharmacokinetics of the Carmustine Implant

  • Review Articles
  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Controlled release delivery of carmustine from biodegradable polymer wafers was approved as an adjunct to surgical resection in the treatment of recurrent glioblastoma multiforme after it was shown in clinical trials to be well tolerated and effective. Given the localised nature of the drug in the brain tissue, no direct pharmacokinetic measurements have been made in humans after implantation of a carmustine wafer. However, drug distribution and clearance have been extensively studied in both rodent and non-human primate brains at various times after implantation. In addition, studies to characterise the degradation of the polymer matrix, the release kinetics of carmustine and the metabolic fate of the drug and polymer degradation products have been conducted both in vitro and in vivo.

GLIADEL®1 wafers have been shown to release carmustine in vivo over a period of approximately 5 days; when in continuous contact with interstitial fluid, wafers should degrade completely over a period of 6 to 8 weeks. Metabolic elimination studies of the polymer degradation products have demonstrated that sebacic acid monomers are excreted from the body in the form of expired CO2, whereas 1,3-bis-(p-carboxyphenoxy)propane monomers are excreted primarily through the urine. Carmustine degradation products are also excreted primarily through the urine.

Pharmacokinetic studies in animals and associated modelling have demonstrated the capability of this modality to produce high dose-delivery (millimolar concentrations) within millimetres of the polymer implant, with a limited penetration distance of carmustine from the site of delivery. The limited spread of drug is presumably due to the high transcapillary permeability of this lipophilic molecule. However, the presence of significant convective flows due to postsurgical oedema may augment the diffusive transport of drug in the hours immediately after wafer implantation, leading to a larger short-term spread of drug. Additionally, in non-human primates, the presence of significant doses in more distant regions of the brain (centimetres away from the implant) has been shown to persist over the course of a week. The drug in this region was presumed to be transported from the implant site by either cerebral blood flow or cerebrospinal fluid flow, suggesting that although drug is able to penetrate the blood-brain barrier at the site of delivery, it may re-enter within the confines of the brain tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Fig. 2
Fig. 3
Fig. 4
Table II
Table III
Table IV
Fig. 5
Fig. 6
Table V
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Azizi SA, Miyamoto C. Principles of treatment of malignant gliomas in adults: an overview. J Neurovirol 1998; 4(2): 204–16

    Article  PubMed  CAS  Google Scholar 

  2. Donelli MG, Zucchetti M, Dincalci M. Do anticancer agents reach the tumor target in the human brain. Cancer Chemother Pharmacol 1992; 30(4): 251–60

    Article  PubMed  CAS  Google Scholar 

  3. Petersdorf SH, Livingston RB. High-dose chemotherapy for the treatment of malignant brain tumors. J Neurooncol 1994; 20(2): 155–63

    Article  PubMed  CAS  Google Scholar 

  4. Kochi M, Ushio Y. High-dose chemotherapy with autologous hematopoietic stem-cell rescue for patients with malignant brain tumors. Crit Rev Neurosurg 1999; 9(5): 295–302

    Article  PubMed  Google Scholar 

  5. Zucchetti M, Boiardi A, Silvani A, et al. Distribution of daunorubicin and daunorubicinol in human glioma tumors after administration of liposomal daunorubicin. Cancer Chemother Pharmacol 1999; 44(2): 173–6

    Article  PubMed  CAS  Google Scholar 

  6. Rapoport SI. Osmotic opening of the blood-brain barrier: principles, mechanism, and therapeutic applications. Cell Mol Neurobiol 2000; 20(2): 217–30

    Article  PubMed  CAS  Google Scholar 

  7. Gumerlock MK, Belshe BD, Madsen R, et al. Osmotic blood-brain-barrier disruption and chemotherapy in the treatment of high-grade malignant glioma -patient series and literature review. J Neurooncol 1992; 12(1): 33–46

    Article  PubMed  CAS  Google Scholar 

  8. Giese A, Westphal M. Glioma invasion in the central nervous system. Neurosurgery 1996; 39(2): 235–50

    Article  PubMed  CAS  Google Scholar 

  9. Hochberg FH, Pruitt AA, Beck DO, et al. The rationale and methodology for intra-arterial chemotherapy with BCNU as treatment for glioblastoma. J Neurosurg 1985; 63(6): 876–80

    Article  PubMed  CAS  Google Scholar 

  10. Mahaley MS, Whaley RA, Blue M, et al. Central neurotoxicity following intracarotid BCNU chemotherapy for malignant gliomas. J Neurooncol 1986; 3(4): 297–314

    Article  PubMed  Google Scholar 

  11. Jacobs A, Clifford P, Kay HEM. The Ommaya reservoir in chemotherapy for malignant disease in the CNS. Clin Oncol 1981; 7(2): 123–9

    PubMed  CAS  Google Scholar 

  12. Bakhshi S, North RB. Implantable pumps for drug delivery to the brain. J Neurooncol 1995; 26(2): 133–9

    Article  PubMed  CAS  Google Scholar 

  13. Brem H. Polymers to treat brain tumors. Biomaterials 1990; 11(9): 699–701

    Article  PubMed  CAS  Google Scholar 

  14. Domb A, Maniar M, Bogdansky S, et al. Drug delivery to the brain using polymers. Crit Rev Ther Drug Carrier Syst 1991; 8(1): 1–17

    PubMed  CAS  Google Scholar 

  15. Brem H, Walter KA, Langer R. Polymers as controlled drug delivery devices for the treatment of malignant brain tumors. Eur J Pharm Biopharm 1993; 39(1): 2–7

    CAS  Google Scholar 

  16. Sipos EP, Brem H. New delivery systems for brain-tumor therapy. Neurol Clin 1995; 13(4): 813–25

    PubMed  CAS  Google Scholar 

  17. Walter KA, Tamargo RJ, Olivi A, et al. Intratumoral chemotherapy. Neurosurgery 1995; 37(6): 1129–45

    Article  Google Scholar 

  18. Menei P, Venier-Julienne MC, Benoit JP. Drug delivery into the brain using implantable polymeric systems. STP Pharma Sci 1997; 7(1): 53–61

    CAS  Google Scholar 

  19. Englehard HH. The role of interstitial BCNU chemotherapy in the treatment of malignant glioma. Surg Neurol 2000; 53(5): 458–64

    Article  Google Scholar 

  20. Brem H, Gabikian P. Biodegradable polymer implants to treat brain trumors. J Control Release 2001; 74(1–3): 63–7

    Article  PubMed  CAS  Google Scholar 

  21. Brem H, Piantadosi S, Burger PC, et al. Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent Gliomas. Lancet 1995; 345(8956): 1008–12

    Article  PubMed  CAS  Google Scholar 

  22. Brem H, Mahaley S, Vick NA, et al. Interstitial chemotherapy with drug polymer implants for the treatment of recurrent Gliomas. J Neurosurg 1991; 74(3): 441–6

    Article  PubMed  CAS  Google Scholar 

  23. Tew K, Colvin OM, Chabner BA. Alkylating agents. In: Chabner BA, Longo DL, editors. Cancer chemotherapy and biotherapy. Chapter 12. Philadelphia (PA): Lippincott-Raven Publishers, 1991: 297–332

    Google Scholar 

  24. Brem H, Kader A, Epstein JI, et al. Biocompatibility of a biodegradable, controlled-release polymer in the rabbit brain. Sel Cancer Ther 1989; 5(2): 55–65

    Article  PubMed  CAS  Google Scholar 

  25. Tamargo RJ, Epstein JI, Reinhard CS, et al. Brain biocompatibility of a biodegradable, controlled-release polymer in rats. J Biomed Mater Res 1989; 23(2): 253–66

    Article  PubMed  CAS  Google Scholar 

  26. Chasin M, Hollenbeck G, Brem H, et al. Interstitial drug therapy for brain tumors -a case study. Drug Dev Ind Pharm 1990; 16(18): 2579–94

    Article  CAS  Google Scholar 

  27. Tamargo RJ, Myseros JS, Epstein JI, et al. Interstitial chemotherapy of the 91-gliosarcoma -controlled release polymers for drug delivery in the brain. Cancer Res 1993; 53(2): 329–33

    PubMed  CAS  Google Scholar 

  28. Brem H, Tamargo RJ, Olivi A, et al. Biodegradable polymers for controlled delivery of chemotherapy with and without radiation therapy in the monkey brain. J Neurosurg 1994; 80(2): 283–90

    Article  PubMed  CAS  Google Scholar 

  29. Buahin KG, Brem H. Interstitial chemotherapy of experimental brain tumors: comparison of intratumoral injection versus polymeric controlled release. J Neurooncol 1995; 26(2): 103–10

    Article  PubMed  CAS  Google Scholar 

  30. Sipos EP, Tyler B, Piantadosi S, et al. Optimizing interstitial delivery of BCNU from controlled release polymers for the treatment of brain tumors. Cancer Chemother Pharmacol 1997; 39(5): 383–9

    Article  PubMed  CAS  Google Scholar 

  31. Brem H, Ewend MG, Piantadosi S, et al. The safety of interstitial chemotherapy with BCNU-loaded polymer followed by radiation therapy in the treatment of newly diagnosed malignant gliomas: Phase I trial. J Neurooncol 1995; 26(2): 111–23

    Article  PubMed  CAS  Google Scholar 

  32. Valtonen S, Timonen U, Toivanen P, et al. Interstitial chemotherapy with carmustine-loaded polymers for high-grade gliomas: a randomized double-blind study. Neurosurgery 1997; 41(1): 44–8

    Article  PubMed  CAS  Google Scholar 

  33. Subach BR, Witham TF, Kondziolka D, et al. Morbidity and survival after 1,3-bis(2-chloroethyl)-1 nitrosourea wafer implantation for recurrent glioblastoma: a retrospective case matched cohort series. Neurosurgery 1999; 45(1): 17–22

    Article  PubMed  CAS  Google Scholar 

  34. Domb AJ, Langer R. Polyanhydrides: 1. Preparation of highmolecular-weight polyanhydrides. J Polym Sci Pol Chem 1987; 25(12): 3373–86

    CAS  Google Scholar 

  35. Dang WB, Daviau T, Brem H. Morphological characterization of polyanhydride biodegradable implant GLIADEL® during in vitro and in vivo erosion using scanning electron microscopy. Pharm Res 1996; 13(5): 683–91

    Article  PubMed  CAS  Google Scholar 

  36. Domb AJ, Israel ZH, Elmalak O, et al. Preparation and characterization of carmustine loaded polyanhydride wafers for treating brain tumors. Pharm Res 1999; 16(5): 762–5

    Article  PubMed  CAS  Google Scholar 

  37. Leong KW, Brott BC, Langer R. Bioerodible polyanhydrides as drug-carrier matrices: 1. Characterization, degradation, and release characteristics. J Biomed Mater Res 1985; 19(8): 941–55

    CAS  Google Scholar 

  38. Leong KW, Damore P, Marietta M, et al. Bioerodible polyanhydrides as drug-carrier matrices: 2. Biocompatibility and chemical reactivity. J Biomed Mater Res 1986; 20(1): 51–64

    Article  CAS  Google Scholar 

  39. Langer R. Biomaterials in drug delivery and tissue engineering: one laboratory’s experience. Acc Chem Res 2000; 33(2): 94–101

    Article  PubMed  CAS  Google Scholar 

  40. Loo TL, Dion RT, Dixon L, et al. The antitumor agent, 1,3-Bis(2-chloroethyl)-1-nitrosourea. J Pharm Sci 1966; 55(5): 492–7

    Article  CAS  Google Scholar 

  41. Dang WB, Daviau T, Ying P, et al. Effects of GLIADEL® wafer initial molecular weight on the erosion of wafer and release of BCNU. J Control Release 1996; 42(1): 83–92

    Article  CAS  Google Scholar 

  42. Wu MP, Tamada JA, Brem H, et al. In-vivo versus in-vitro degradation of controlled-release polymers for intracranial surgical therapy. J Biomed Mater Res 1994; 28(3): 387–95

    Article  PubMed  CAS  Google Scholar 

  43. Tamada J, Langer R. The development of polyanhydrides for drug delivery applications. J Biomater Sci Polym Ed 1992; 3(4): 315–53

    Article  PubMed  CAS  Google Scholar 

  44. Langer R. Polymeric delivery systems for controlled drug release. Chem Eng Commun 1980; 6(1–3): 1–48

    Article  CAS  Google Scholar 

  45. Domb AJ, Rock M, Schwartz J, et al. Metabolic disposition and elimination studies of a radiolabeled biodegradable polymeric implant in the rat brain. Biomaterials 1994; 15(9): 681–8

    Article  PubMed  CAS  Google Scholar 

  46. Domb AJ, Rock M, Perkin C, et al. Excretion of a radiolabeled anticancer biodegradable polymeric implant from the rabbit brain. Biomaterials 1995; 16(14): 1069–72

    Article  PubMed  CAS  Google Scholar 

  47. Grossman SA, Reinhard C, Colvin OM, et al. The intracerebral distribution of BCNU delivered by surgically implanted biodegradable polymers. J Neurosurg 1992; 76(4): 640–7

    Article  PubMed  CAS  Google Scholar 

  48. Fenstermacher JD, Patlack CS, Blasberg RG. Transport of material between brain extracellular fluid, brain cells and blood. Fed Proc 1974; 33(9): 2070–4

    PubMed  CAS  Google Scholar 

  49. Fenstermacher JD, Patlak CS. The movements of water and solutes in the brains of mammals. In: Pappius HM, Feindel W, editors. Dynamics of brain edema. New York: Springer, 1976: 87–94

    Chapter  Google Scholar 

  50. Fenstermacher J, Kaye T. Drug ‘diffusion’ within the brain. Ann N Y Acad Sci 1988; 531: 29–39

    Article  PubMed  CAS  Google Scholar 

  51. Morrison PF, Dedrick RL. Transport of cisplatin in rat brain following microinfusion: an analysis. J Pharm Sci 1986; 75(2): 120–8

    Article  PubMed  CAS  Google Scholar 

  52. Nicholson C. Interaction between diffusion and Michaelis-Menten uptake of dopamine after ionophoresis in striatum. J Biophys 1995; 68(5): 1699–715

    Article  CAS  Google Scholar 

  53. Jain RK. Transport of molecules in the tumor interstitium: a review. Cancer Res 1987; 47(12): 3039–51

    PubMed  CAS  Google Scholar 

  54. Saltzman WM, Radomsky ML. Drugs released from polymers: diffusion and elimination in brain-tissue. Chem Eng Sci 1991; 46(10): 2429–44

    Article  CAS  Google Scholar 

  55. Dang WB, Saltzman WM. Dextran retention in the rat brain following release from a polymer implant. Biotechnol Prog 1992; 8(6): 527–32

    Article  PubMed  CAS  Google Scholar 

  56. Mak M, Fung L, Strasser JF, et al. Distribution of drugs following controlled delivery to the brain interstitium. J Neurooncol 1995; 26(2): 91–102

    Article  PubMed  CAS  Google Scholar 

  57. Krewson C, Saltzman WM. Delivery and distribution of recombinant human nerve growth factor in the brain interstitium. Ann Neurol 1995; 38(2): 294–5

    Google Scholar 

  58. Krewson CE, Klarman ML, Saltzman WM. Distribution of nerve growth-factor following direct delivery to brain interstitium. Brain Res 1995; 680(1–2): 196–206

    Article  PubMed  CAS  Google Scholar 

  59. Mahoney MJ, Saltzman WM. Controlled release of proteins to tissue transplants for the treatment of neurodegenerative disorders. J Pharm Sci 1996; 85(12): 1276–81

    Article  PubMed  CAS  Google Scholar 

  60. Krewson CE, Saltzman WM. Transport and elimination of recombinant human NGF during long-term delivery to the brain. Brain Res 1996; 727(1–2): 169–81

    Article  PubMed  CAS  Google Scholar 

  61. Fung LK, Shin M, Tyler B, et al. Chemotherapeutic drugs released from polymers: distribution of 1,3-bis(2-chloroethyl)-1-nitrosourea in the rat brain. Pharm Res 1996; 13(5): 671–82

    Article  PubMed  CAS  Google Scholar 

  62. Strasser JF, Fung LK, Eller S, et al. Distribution of 1,3-bis(2-chloroethyl)-1-nitrosourea and tracers in the rabbit brain after interstitial delivery by biodegradable polymer implants. J Pharmacol Exp Ther 1995; 275(3): 1647–55

    PubMed  CAS  Google Scholar 

  63. Fung LK, Ewend MG, Sills A, et al. Pharmacokinetics of interstitial delivery of carmustine, 4-hydroperoxycyclophosphamide, and paclitaxel from a biodegradable polymer implant in the monkey brain. Cancer Res 1998; 58(4): 672–84

    PubMed  CAS  Google Scholar 

  64. Reulen HJ, Graham R, Spatz M, et al. Role of pressure gradients and bulk flow in dynamics of vasogenic brain edema. J Neurosurg 1977; 46(1): 24–35

    Article  PubMed  CAS  Google Scholar 

  65. Kalyanasundaram S, Calhoun VD, Leong KW. A finite element model for predicting the distribution of drugs delivered intracranially to the brain. Am J Physiol Regul Integr Comp Physiol 1997; 42(5): R1810–R21

    Google Scholar 

  66. Kalyanasundaram S, Leong KW. Intracranial drug delivery systems. STP Pharma Sci 1997; 7(1): 62–70

    CAS  Google Scholar 

  67. Wang CH, Li J, Teo CS, et al. The delivery of BCNU to brain tumors. J Control Release 1999; 61(1–2): 21–41

    Article  PubMed  CAS  Google Scholar 

  68. Jain RK. Vascular and interstitial barriers to delivery of therapeutic agents in tumors. Cancer Metastasis Rev 1990; 9(3): 253–66

    Article  PubMed  CAS  Google Scholar 

  69. Castillo M, Ewend MG, Cush S, et al. Magnetic resonance imaging appearance of carmustine-impregnated implantable wafers. Int J Neurol 1998; 4(5): 380–4

    Google Scholar 

  70. Teicher BA, Holden SA, Eder JP, et al. Influence of schedule on alkylating agent cyto-toxicity in vitro and in vivo. Cancer Res 1989; 49(21): 5994–8

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Henry Brem and Betty Tyler of Johns Hopkins University for providing figure 1, and Mark A. Stroh of Cornell University for providing figure 8. Funding for our original research in this area was provided by the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Mark Saltzman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleming, A.B., Saltzman, W.M. Pharmacokinetics of the Carmustine Implant. Clin Pharmacokinet 41, 403–419 (2002). https://doi.org/10.2165/00003088-200241060-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200241060-00002

Keywords

Navigation