Skip to main content
Log in

Clinical Pharmacokinetics of Tretinoin

  • Review Article
  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Recent reports of the dramatic antitumour effect of tretinoin (all-trans retinoic acid) in patients with acute promyelocytic leukaemia (APL) have generated a great deal of interest in the use of this drug as a chemopreventive and therapeutic agent. However, the biological efficacy of tretinoin is greatly impaired by (presumably) an induced hypercatabolism of the drug leading to reduced tretinoin sensitivity and resistance.

Several pharmacokinetic studies have shown that plasma drug exposure [as measured by the plasma area under the concentration-time curve (AUC)] declines substantially and rapidly when the drug is administered in a long term daily tretinoin regimen. These observations led to the hypothesis that the rapid development of acquired clinical resistance to tretinoin may have a pharmacological basis and result from an inability to present an effective drug concentration to the leukaemic cells during continuous treatment.

The principal mechanisms proposed to explain the increased disappearance of tretinoin from plasma include: (i) decreased intestinal absorption; (ii) enhanced enzymatic catabolism; and (iii) the induction of cytoplasmic retinoic acid binding proteins (CRABP), which leads to increased drug sequestration. The most favoured explanation is that continuous tretinoin treatment acts to induce drug catabolism by cytochrome P450 (CYP) enzymes.

Several strategies aimed at preventing or overcoming induced tretinoin resistance have been, and are being, planned. These strategies include intermittent dose administration, administration of pharmacological inhibitors of CYP oxidative enzymes, combination with interferon-α and intravenous administration of liposome-encapsulated tretinoin. As these strategies are now under investigation and the number of patients enrolled is small, further studies are needed to determine the efficacy and toxicity of these new schedules of drug administration.

In this article we provide an overview of the relevant aspects of tretinoin physiology and pharmacokinetics, and summarise the current status of knowledge to help in the better optimisation of tretinoin administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cullum ME, Zile MH. Metabolism of all-trans-retinoic acid and all-trans-retinyl acetate. J Biol Chem 1985; 260: 10590–6

    PubMed  CAS  Google Scholar 

  2. Degos L, Chomeienne C, Daniel MT, et al. Treatment of first relapse in acute promyelocytic leukemia with all-trans retinoic acid [letterl. Lancet 1990; 336(8728): 1440–1

    PubMed  CAS  Google Scholar 

  3. Castaigne S, Chomeienne C, Daniel MT, et al. All-trans retinoic acid as differentiation therapy for acute promyelocytic leukemia. Blood 1990; 76: 1704–9

    PubMed  CAS  Google Scholar 

  4. Warrel RP, Frankel Jr RP, Miller Jr WH, et al. Differentiation therapy of acute promyelocytic leukemia with tretinoin (all-trans retinoic acid). N Engl J Med 1991; 324(20): 1385–93

    Google Scholar 

  5. Fenaux P, Chastang C, Chomeienne C, et al. Tretinoin with chemotherapy in newly diagnosed acute promyelocytic leukemia: European APL group [letter]. Lancet 1994; 343(8904): 1033

    PubMed  CAS  Google Scholar 

  6. Kuzel T, Roenigk H, Samuelson E, et al. The treatment of mycosis fungoides with all-trans retinoic acid [abstract]. Blood 1993; 82: 570a

    Google Scholar 

  7. Gill PS, Espina BM, Mougdil T, et al. All-trans retinoic acid for the treatment of AIDS-related Kaposi’s sarcoma: results of a pilot phase II study. Leukemia 1994; 8(3): S26–32

    PubMed  Google Scholar 

  8. Lippman SM, Kavanagh JJ, Paredes-Espinoza M, et al. 13-cis retinoic acid plus interferon α-2a: highly active systemic therapy for squamous cell carcinoma of the skin. J Natl Cancer Inst 1992; 84(4): 241–5

    PubMed  CAS  Google Scholar 

  9. Lippman SM, Parkinson DR, Itri LM, et al. —cis retinoic acid and interferon α-2a effective combination therapy for advanced squamous cell carcinoma of the skin. J Natl Cancer Inst 1992; 84(4): 235–41

    PubMed  CAS  Google Scholar 

  10. Athanasiadis I, Kies MS, Miller M, et al. Phase II study of all-trans retinoic acid and interferon α-2a in patients with advanced non-small cell lung cancer. Clin Cancer Res 1995; 1:973

    PubMed  CAS  Google Scholar 

  11. Anzano MA, Byers SW, Smith JM, et al. Prevention of breast cancer in the rat with 9-cis RA as a single agent and in combination with tamoxifen. Cancer Res 1994; 54(17): 4614–7

    PubMed  CAS  Google Scholar 

  12. Hill DL. Retinoids and cancer prevention. Annu Rev Nutr 1992; 12: 161–81

    PubMed  CAS  Google Scholar 

  13. Huang ME, Yu-chen Y, Shu-rong C, et al. Use of all-trcms retinoid acid in the treatment of acute promyelocytic leukemia. Blood 1988; 72: 567–72

    PubMed  CAS  Google Scholar 

  14. Gillis JC, Goa KL. Tretinoin: a review of its pharmacodynamic and pharmacokinetic properties and use in the management of acute promyelocytic leukemia. Drugs 1995; 50(5): 897–923

    PubMed  CAS  Google Scholar 

  15. Frankel SR, Eardley A, Heller G, et al. All-trans retinoic acid for acute promyelocytic leukemia: results of the New York study. Ann Intern Med 1994; 120: 278–86

    PubMed  CAS  Google Scholar 

  16. Warrell Jr RP, de-The H, Wang ZY, et al. Acute promyelocytic leukemia. N Engl J Med 1993; 329: 177–89

    PubMed  CAS  Google Scholar 

  17. Warrell RP. Retinoid resistance in acute promyelocytic leukemia: new mechanisms, strategies and implications. Blood 1993; 82(7): 1949–53

    PubMed  CAS  Google Scholar 

  18. Lefebvre P, Thomas G, Gourmel B, et al. Pharmacokinetics of oral all-trans retinoic acid in patients with acute promyelocytic leukemia. Leukemia 1991; 5: 1054–8

    PubMed  CAS  Google Scholar 

  19. Muindi J, Frankel SR, Miller WH, et al. Continuous treatment with all-trans retinoic acid results in a progressive decrease in plasma concentrations: implications for relapse and retinoid ‘resistance’ in acute promyelocytic leukemia. Blood 1992; 79: 299–303

    PubMed  CAS  Google Scholar 

  20. Adamson PC, Boylan JF, Balis FM, et al. Time course of induction of metabolism of all-trans-retinoic acid and the up-regulation of cellular retinoic acid-binding protein. Cancer Research 1993; 53: 472–6

    PubMed  CAS  Google Scholar 

  21. Pemrick SM, Lucas DA, Grippo JF. The retinoid receptors. Leukemia 1994; 8: 1797–806

    PubMed  CAS  Google Scholar 

  22. Dermine S, Grignani F, Monica C, et al. Occurrence of resistance to retinoic acid in the acute promyelocytic leukemia cell line NB4 is associated with altered expression of the PML/RAR-α protein. Blood 1993; 82: 1573–7

    Google Scholar 

  23. De Ruyter MGM, De Leenheer AP. Retinoic acid, an endogenous compound of human blood: unequivocal demonstration of endogenous retinoic acid in normal physiological conditions. Anal Biochem 1979; 98: 402–9

    PubMed  Google Scholar 

  24. McCormick AM, Napoli JM, DeLuca HF. High pressure liquid chromatography of vitamin A metabolites and analogs. Methods Enzymol 1980; 67: 220–33

    PubMed  CAS  Google Scholar 

  25. Rissler K, Friedrich G. Determination of the retinoid (E)-1,2,3,4,-tetrahydro-1,1,4,4-tetramethyl-6-(1 methyl-2-phenylethenyl) naphtalene and its phenolic metabolite in human plasma by reversed-phase high performance liquid chromatography. J Chromatogr 1991; 565: 375–82

    PubMed  CAS  Google Scholar 

  26. Noy N. The ionization behaviour of retinoic acid in aqueous environments and bound to serum albumin. Biochim Biophys Acta 1992; 1106: 152–8

    Google Scholar 

  27. Noy N. The ionization behaviour of retinoic acid in lipid bilayers and in membranes. Biochim Biophys Acta 1992; 1106: 159–64

    PubMed  CAS  Google Scholar 

  28. Boylan JF, Gudas LJ. Overexpression of the cellular retinoic acid binding protein-I (CRABP-I) results in a reduction in differentiation specific gene expression in F9 teratocarcinoma cells. J Cell Biol 1991; 112:965–70

    PubMed  CAS  Google Scholar 

  29. Boylan JF, Rugas LJ. The level of CRABP I expression influences the amounts and types of all-trans retinoic acid metabolites in F9 teratocarcinoma stem cells. J Biol Chem 1992; 267:21486–91

    PubMed  CAS  Google Scholar 

  30. Kizaki M, Ikeda Y, Tanosaki R, et al. Effects of novel retinoic acid compound, 9-cis-retinoic acid, on proliferation, differentiation and expression of retinoic acid receptor-α and retinoid X receptor-α RNA by HL-60 cells. Blood 1993; 12(15): 3592–9

    Google Scholar 

  31. Goodman DS, Blaner WS. Biosynthesis, absorption and hepatic metabolism of retinol. In: Sporn MB, Roberts AB, Goodman DS, editors. The retinoids. Vol. 2. New York: Raven Press, 1984: 1–40

    Google Scholar 

  32. Fidge NH, Shiratori T, Ganguly J, et al. Pathway of absorption of retinal and retinoic acid in the rat. J Lipid Res 1968; 9: 103–9

    PubMed  CAS  Google Scholar 

  33. Smith JE, Milch PO, Muto Y, et al. The plasma transport and metabolism of retinoic acid in the rat. Biochem J 1973; 132: 821–7

    PubMed  CAS  Google Scholar 

  34. Kalin JR, Starling ME, Hill DE. Disposition of all-trans retinoic acid in mice following oral doses. Drug Metab Disp 1981; 9: 196–201

    CAS  Google Scholar 

  35. Eckhoff C, Collins MD, Nau H. Human plasma all-trans, 13 cis and 13-cis-4-oxo-retinoic acid profiles during subchronic vitamin A supplementation: comparison to retinol and retinyl ester plasma levels. J Nutr 1991; 121: 1016–25

    PubMed  CAS  Google Scholar 

  36. Folman Y, Russell RM, Tang GW, et al. Rabbits fed on beta carotene have higher serum levels of all-trans retinoic acid than those receiving no beta carotene. Br J Nutr 1989; 62: 195–201

    PubMed  CAS  Google Scholar 

  37. Napoli JL, Race KR. Biogenesis of retinoic acid from β-carotene. J Biol Chem 1988; 263: 17372–7

    PubMed  CAS  Google Scholar 

  38. Posch KC, Boerman MHEM, Burns RD, et al. Holo-cellular retinol-binding proteins as a substrate for microsomal retinal synthesis. Biochemistry 1991; 30: 6224–30

    PubMed  CAS  Google Scholar 

  39. Sporn MB, Roberts AB, Goodman DS. The retinoids: biology, chemistry and medicine. 2nd ed. New York: Raven Press Ltd, 1994

    Google Scholar 

  40. Eriksson U, Hansson E, Nordlinder H, et al. Quantitation and tissue localization of the cellular retinoic acid binding protein. J Cell Physiol 1987; 133:482–9

    PubMed  CAS  Google Scholar 

  41. Saari JC, Futterman S. Separable binding proteins for retinoic acid and retinol in bovine retina. J Biol Chem 1976; 253: 6432–6

    Google Scholar 

  42. Sundelin J, Das SR, Eriksson U, et al. The primary structure of bovine cellular retinoic acid-binding proteins. J Biol Chem 1985; 260: 6488–93

    PubMed  CAS  Google Scholar 

  43. Chytil F, Page DL, Ong DE. Presence of cellular retinol and retinoic acid binding proteins in human huterus. Int J Vitam Nutr Res 1975; 45: 293–8

    PubMed  CAS  Google Scholar 

  44. Elder JT, Astrom A, Pettersson U, et al. Differential regulation of retinoic acid receptors and binding proteins in human skin. J Invest Dermatol 1992; 98: 673–9

    PubMed  CAS  Google Scholar 

  45. Petkovich M, Bran NJ, Krust A, et al. A human RA receptor which belongs to the family of nuclear receptors. Nature 1987; 330: 444–50

    PubMed  CAS  Google Scholar 

  46. Mangelsdorf DJ, Ong ES, Dyck JA, et al. Nuclear receptor that identifies a novel RA response pathway. Nature 1990; 345: 224–9

    PubMed  CAS  Google Scholar 

  47. Nepgal S, Saunders M, Kastner P, et al. Promoter context and response element-dependent specificity of the transcriptional activation and modulating functions of RA receptors. Cell 1992; 70: 1007–19

    Google Scholar 

  48. Blumberg B, Mangelsdorf DJ, Dyck JA, et al. Multiple retinoidresponsive receptors in a single cell: families of retinoid ‘X’ receptors and retinoic acid receptors in the xenopus egg. Proc Natl Acad Sci USA 1992; 89: 2321–5

    PubMed  CAS  Google Scholar 

  49. Muindi JRF, Frankel SR, Huselton C, et al. Clinical pharmacology of oral all-trans-retinoic acid in patients with acute promyelocytic leukemia. Cancer Res 1992; 52: 2138–42

    PubMed  CAS  Google Scholar 

  50. Muindi JRF, Young CW, Warrell RP. Clinical pharmacology of all-trans-retinoic acid. Leukemia 1994; 8: 1807–12

    PubMed  CAS  Google Scholar 

  51. Smith MA, Adamson PC, Balis FM, et al. Phase I and pharmacokinetic evaluation of all-trans retinoic acid in pediatric patients with cancer. J Clin Oncol 1992; 10(11) 1666–73

    PubMed  CAS  Google Scholar 

  52. Lee JS, Newman RA, Lippman SM, et al. Phase I evaluation of all-trans retinoic acid in adults with solid tumors. J Clin Oncol 1993; 11(85): 959–66

    PubMed  CAS  Google Scholar 

  53. Castaigne S, Lefebvre P, Chomienne C, et al. Effectiveness and pharmacokinetics of low-dose all-trans retinoic acid (25 mg/m2) in acute promyelocytic leukemia. Blood 1993; 82: 3560–3

    PubMed  CAS  Google Scholar 

  54. Smith DC, Jacob HE, Lotze MT, et al. A phase I trial of interferon-α 2a (IFN-α) and all-trans retinoic acid (ATRA): a pharmacokinetic assessment. Proc Am Soc Clin Oncol 1994; 13: 134

    Google Scholar 

  55. Lee JS, Newman RA, Lippman SM, et al. Phase I evaluation of all-trans retinoic acid with and without ketokonazole in adults with solid tumors. J Clin Oncol 1995; 13(6): 1501–8

    PubMed  CAS  Google Scholar 

  56. Adamson PC, Bailey J, Pluda J, et al. Pharmacokinetics of all-trans-retinoic acid administered on an intermittent schedule. J Clin Oncol 1995; 13: 1238–40

    PubMed  CAS  Google Scholar 

  57. Adamson PC, Reaman G, Feusner J. Pediatric phase I trial and pharmacokinetic study of all-trans retinoic (ATRA) acid administered on an intermittent schedule. Proc Am Soc Clin Oncol 1995; 14: 170

    Google Scholar 

  58. Toma S, Iacona I, Palumbo R, et al. Modulation of all-trans retinoic acid administered on intermittent schedule by α-interferon 2a in a patient with AIDS-related Kaposi’s sarcoma. AIDS. 1996; 10(9): 1049–50

    PubMed  CAS  Google Scholar 

  59. El Mansouri S, Tod M, Leclerq M, et al. Time- and dose-dependent kinetics of all-trans retinoic acid in rats after oral or intravenous administration. Drug Metab Dispos 1995; 23(2): 227–31

    PubMed  Google Scholar 

  60. Adamson PC, Balis FM, Smith M A, et al. Dose-dependent pharmacokinetics of all-trans retinoic acid. J Natl Cancer Inst 1992; 84: 1332–5

    PubMed  CAS  Google Scholar 

  61. Adamson PC. Pharmacokinetics of all-trans retinoic acid: clinical implications in acute promyelocytic leukemia. Semin Hematol 1994; 31(5): 14–7

    PubMed  CAS  Google Scholar 

  62. Data on file, F. Hoffmann-La Roche, Basel, Switzerland

  63. Skare KL, Deluca HF. Biliary metabolites of all-trans-retinoic acid in the rat. Arch Biochem Biophys 1983; 224: 13–8

    PubMed  CAS  Google Scholar 

  64. Zachman RD, Dunagin Jr PE, Olson JA. Formation and enterohepatic circulation of metabolites of retinol and retinoic acid in bile duct-cannulated rats. J Lipid Res 1966; 7: 3–9

    PubMed  CAS  Google Scholar 

  65. Geison RL, Johnson BC. Studies on the in vivo metabolism of retinoic acid in the rat. Lipids 1970; 5: 371–8

    PubMed  CAS  Google Scholar 

  66. Ito Y, Zile M, De Luca HF, et al. Metabolism of retinoic acid in vitamin A-deficient rats. Biochim Biophys Acta 1974; 369: 338–50

    CAS  Google Scholar 

  67. Adamson PC, Pitot HC, Balis F, et al. Variability in the oral bioavailability of all-trans retinoic acid. J Natl Cancer Inst 1993; 85: 993–6

    PubMed  CAS  Google Scholar 

  68. Barua AB, Batres RO, Olson JA. Characterization of retinyl β-glucuronide in human blood. Am J Clin Nutr 1989; 50: 370–4

    PubMed  CAS  Google Scholar 

  69. Barua AB, Gunning DG, Olson JA. Metabolism in vivo of all-trans-[11-3H] retinoic acid after an oral dose in rats. Biochem J 1991; 277: 527–31

    PubMed  CAS  Google Scholar 

  70. Blaner WS, Hussain MM, Talmage DA, et al. Retinoids are actively metabolized in rabbit bone marrow. FASEB J 1991; 5: A717

    Google Scholar 

  71. Kakizuka A, Miller Jr WH, Umesono K, et al. Chromosomal translocation t(15; 17) in human acute promyelocytic leukemia fuses RARα with a novel putative transcriptional factor, PML.Cell 1991; 68: 663–74

    Google Scholar 

  72. de-Thé H, Lavau C, Marchio A, et al. The PML-RARα fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 1991; 66: 675–84

    PubMed  Google Scholar 

  73. Sandberg JA, Eckhoff C, Nau H, et al. Pharmacokinetics of 13-cis, all-trans, 13-cis-4-oxo, and all-trans retinoic acid after intravenous administration in the cynomolglus monkeys. Drug Metab Disp 1994; 22(1): 154–60

    CAS  Google Scholar 

  74. Fiorella PD, Napoli JL. Microsomal retinoic acid metabolism. J Biol Chem 1994; 269: 10538–44

    PubMed  CAS  Google Scholar 

  75. Roberts AB, Nichols MD, Newton DL, et al. In vitro metabolism of retinoic acid in hamster intestine and liver. J Biol Chem 1979; 254: 6296–302

    PubMed  CAS  Google Scholar 

  76. Frolik CA, Roberts AB, Tavela TE, et al. Isolation and identification of 4-hydroxy and 4-oxo retinoic acid: in vitro metabolites of all-trans retinoic acid in hamster trachea and liver. Biochemistry 1979; 18: 2092–7

    PubMed  CAS  Google Scholar 

  77. Frolik CA, Roller PP, Roberts AB, et al. In vitro and in vivo metabolism of all-trans retinoic acid and 1 3-cis retinoic acid in hamster. J Biol Chem 1980; 225: 8057–62

    Google Scholar 

  78. Roberts AB, Lamb LC, Sporn MB. Metabolism of all-trans-retinoic acid in hamster liver microsomes: oxidation of 4-hydroxy- to 4-keto-retinoic acid. Arch Biochem Biophys 1980; 199:374–83

    PubMed  CAS  Google Scholar 

  79. Martini R, Murray M. Participation of 3A enzymes in rat hepatic microsomal retinoic acid 4-hydroxylation. Arch Biochem Biophys 1993; 303: 57–66

    PubMed  CAS  Google Scholar 

  80. Van Wauwe J, Van Nyen G, Coene MC, et al. Liarozole, an inhibitor of retinoic acid metabolism exert retinoid-mimetic effects in vivo. J Pharmacol Exp Ther 1992; 261: 773–9

    PubMed  Google Scholar 

  81. Roberts ES, Vaz ADN, Coon MJ. Role of isozymes of rabbit microsomal cytochrome P-450 in the metabolism of retinoic acid, retinol and retinal. Mol Pharmacol 1992; 41: 427–33

    PubMed  CAS  Google Scholar 

  82. Leo MA, Lasker JM, Raucy JL, et al. Metabolism of retinol and retinoic acid by human liver cytochrome P-450IIC8. Arch Biochem Biophys 1989; 269: 305–12

    PubMed  CAS  Google Scholar 

  83. Cornic M, Delva L, Castaigne S, et al. In vitro all-trans retinoic acid sensitivity and cellular retinoic acid binding protein levels in relapse leukemic cells after remission induction by ATRA in acute promyelocytic leukemia. Leukemia 1994; 8: 914–7

    PubMed  CAS  Google Scholar 

  84. Vanden Bossche H, Willemsens G, Janssen PAJ. Cytochrome P-450-dependent metabolism of retinoic acid in rat skin microsomes: inhibition by ketoconazole. Skin Pharmacol 1988; 1: 176–85

    PubMed  CAS  Google Scholar 

  85. Vanden Bossche H, Willemsens G. Retinoic acid and cytochrome P-450. In: Saurat JH, editor. Retinoids 10 years on. Basel: Karger, 1991:79–88

    Google Scholar 

  86. Van Wauwee JP, Coene MC, Goossens J, et al. Ketoconazole inhibits the in vitro and in vivo metabolism of all-trans retinoic acid. J Pharmacol Exp Ther 1988; 245: 718–22

    Google Scholar 

  87. Van Wauwee JP, Coene MC, Goossens J, et al. Effects of cytochrome P-450 inhibitors on the in vivo metabolism of all-trans retinoic-acid in rats. J Pharmacol Exp Ther 1990; 252: 365–9

    Google Scholar 

  88. Adamson PC. Clinical and pharmacokinetic studies of all-trans retinoic acid in pediatric patients with cancer. Leukemia 1994; 8(11): 1813–6

    PubMed  CAS  Google Scholar 

  89. Fiorella PD, Napoli JL. Expression of cellular retinoic acid binding protein (CRABP) in Escherichia coli: characterization and evidence that holo CRABP is a substrate in retinoic acid metabolism. J Biol Chem 1991; 266: 16572–9

    PubMed  CAS  Google Scholar 

  90. Tavakkol A, Griffith CEM, Keane KM, et al. Cellular localization of mRNA for cellular retinoic acid-binding protein II and nuclear retinoic acid receptor in retinoic-acid treated human skin. J Invest Dermatol 1992; 99: 146–50

    PubMed  CAS  Google Scholar 

  91. Hirschel-Scholz S, Siegenthaler G, Saurat JH. Ligand specific and non-specific in vivo modulation of human epidermal celular retinoic acid binding proteins (CRABP). Eur J Clin Invest 1989; 19:220–7

    PubMed  CAS  Google Scholar 

  92. Williams JB, Napoli JL. Metabolism of retinoic acid and retinol during differentiation of F9 embryonal carcinoma cells. Biochem Pharmacol 1985; 36: 1386–8

    Google Scholar 

  93. De Coster R, Wouters W, Van Ginckel R, et al. Experimental studies with liarozole (R 75251): an antitumoral agent which inhibits retinoic acid breakdown. J Steroid Biochem Mol Biol 1992; 43: 197–201

    PubMed  Google Scholar 

  94. Goldfarb MT, Ellis CN, Voorhees JJ. Retinoids in dermatology. Mayo Clin Proc 1987; 62: 1161–4

    PubMed  CAS  Google Scholar 

  95. Dijkman GA, Van Moorselaar RJA, Van Ginkel R, et al. Antitumoral effects of liarozole in androgen-dependent and independent R3327-Dunning prostate adenocarcinomes. J Urol 1994; 151:217–22

    PubMed  CAS  Google Scholar 

  96. Rigas JR, Francis PA, Muindi JRF, et al. Constitutive variability in the pharmacokinetics of the natural retinoid, all-trans-retinoic acid, and its modulation by ketoconazole. J Natl Cancer Inst 1993; 85: 1921–6

    PubMed  CAS  Google Scholar 

  97. Miller VA, Rigas JR, Muindi JR, et al. Modulation of all-trans retinoic acid pharmacokinetics by liarozole. Cancer Chemother Pharmacol 1994; 34(6): 522–6

    PubMed  CAS  Google Scholar 

  98. Westarp ME, Westarp MP, Bruynseels J, et al. Oral liarozole as a catabolic inhibitor potently increases retinoic acid in vivo: first experience from an ongoing therapeutic trial in highly malignant primary brain tumors. Onkologie 1993; 16: 22–5

    Google Scholar 

  99. Relling MV, Aoyama T, Gonzalez FJ, et al. Tolbutamide and mephenytoin hydroxylation by human cytochrome P-450s in the CYP2C subfamily. J Pharmacol Exp Ther 1990; 152: 442–7

    Google Scholar 

  100. Veronese ME, Miners JO, Randies D, et al. Validation of the tolbutamide metabolic ratio for population screening using sulphaphenazole to produce model phenotyping poor metabolisers. Clin Pharmacol Ther 1990; 47: 403–11

    PubMed  CAS  Google Scholar 

  101. Pond SM, Birkett DJ, Wade DN. Mechanism of inhibition of tolbutamide metabolism: phenylbutazone, oxyphenbutazone, sulfaphenazole. Clin Pharmacol Ther 1977; 22: 573–9

    PubMed  CAS  Google Scholar 

  102. Toma S, Monteghirfo S, Tasso P, et al. Antiproliferative and synergistic effect of interferon α-2a, retinoids and their association in established human cancer cell lines. Cancer Lett 1994; 82: 209–16

    PubMed  CAS  Google Scholar 

  103. Okuno H, Kitao Y, Takasu M, et al. Depression of drug metabolizing activity in the human liver by interferon a. Eur J Clin Pharmacol 1990; 39: 365–7

    PubMed  CAS  Google Scholar 

  104. Moor DM, Kalvakolanu DV, Lippman SM, et al. Retinoic acid and interferon in human cancer: mechanistic and clinical studies. Semin Hematol 1994; 31: 31–7

    Google Scholar 

  105. Israel BC, Blouin RA, Mclntyre W, et al. Effect of interferon a monotherapy on hepatic drug metabolism in cancer patients. Br J Clin Pharmacol 1993; 36: 229–35

    PubMed  CAS  Google Scholar 

  106. Lazzarino M, Corso A, Regazzi MB, et al. Modulation of all-trans retinoic acid pharmacokinetics in acute promyelocytic leukemia by prolonged interferon a therapy. Br J Haematol 1995; 90: 928–30

    PubMed  CAS  Google Scholar 

  107. Bailey J, Pluda JM, Foli A, et al. Phase I/I I study of intermittent all-trans-retinoic-acid alone and in combination with interferon alpha-2a, in patients with epidemic Kaposi’s sarcoma. J Clin Oncol 1995; 13: 1966–74

    PubMed  CAS  Google Scholar 

  108. Mehta K, Sadeghi T, McQueen T, et al. Liposome encapsulation circumvents the hepatic clearance mechanisms of all-trans retinoic acid. Leukemia Res 1994; 18(8): 587–96

    CAS  Google Scholar 

  109. Gray A, Morgan J. Liposomes in haematology. Blood Rev 1991; 5: 258–72

    PubMed  CAS  Google Scholar 

  110. Phillips NC, Tsoukas C. Liposomal encapsulation of azidothymidine results in decreased hematopoietic toxicity and enhanced activity against murine acquired immunodeficiency syndrome. Blood 1992; 79: 1137–43

    PubMed  CAS  Google Scholar 

  111. Drach J, Lopez-Berestein G, McQueen T, et al. Induction of differentiation in myeloid leukemia cell lines and acute promyelocytic leukemia cells by liposomal all-trans retinoic acid. Cancer Res 1993; 53: 2100–4

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Regazzi, M.B., Iacona, I., Gervasutti, C. et al. Clinical Pharmacokinetics of Tretinoin. Clin-Pharmacokinet 32, 382–402 (1997). https://doi.org/10.2165/00003088-199732050-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199732050-00004

Keywords

Navigation