Skip to main content
Log in

Clinical Pharmacokinetics of Molsidomine

  • Review Article
  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Summary

Molsidomine is a prodrug for the formation of nitric oxide (NO). Its pharmacokinetics are characterised by rapid absorption and hydrolysis, taking a short time to achieve maximal systemic concentrations of both the parent compound and its active metabolite, SIN-1. The time to peak plasma drug concentration (tmax) is 1 to 2 hours. The bioavailability of the parent compound after oral administration in tablet form is 44 to 59%, but further metabolism to release NO and form polar metabolites is rapid; the half-life (t½) of SIN-1 is 1 to 2 hours. Urinary excretion accounts for more than 90% of the part of the administered dose of molsidomine which is not excreted unchanged. Protein binding of the parent compound is very low (3 to 11 %) and its volume of distribution (Vd) corresponds to the range of body weight.

Single-dose studies (1,2 and 4mg) have revealed linear pharmacokinetics, and multiple dose studies in healthy individuals (2mg 3 times daily for 7 days) and coronary artery disease (CAD) patients (4mg 4 times daily for 4 weeks) do not show any accumulation of the drug.

A study in young and elderly individuals indicated that the first-pass effect is decreased and t½ prolonged with age, resulting in an increased area under the concentration-time curve (AUC) of molsidomine and SIN-1. In patients with liver disease and congestive heart failure similar changes were observed, but much less so in patients with CAD. Clearance was also impaired in patients with liver disease, but the pharmacokinetics of molsidomine were not markedly altered by impaired renal function. In general, due to a large therapeutic dose range, dosage adjustments are not required on the basis of clinical experience. In certain patients a lower starting dose may be recommended, such as in those with impaired liver or kidney function, in congestive heart failure or in the presence of concomitant treatment with other vasoactive compounds.

A linear dose-effect relationship is observed with counterclockwise hysteresis, i.e. a greater effect associated with the decrease of plasma concentrations than during their increase, which may be at least partly due to the metabolic delay in the formation of NO from SIN-1. Accordingly, the duration of action of molsidomine is longer than would be expected on the basis of the elimination half-life.

The pharmacokinetics of molsidomine support the recommended dosages for use in angina pectoris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hashimoto K, Taira N, Hirata M, et al. The mode of hypotensive action of newly synthesized sydnonimine derivatives. Drug Res 1971; 21: 1329–32

    CAS  Google Scholar 

  2. Ignarro LJ, Buga GM, Wood KS, et al. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 1987; 84: 9265–9

    Article  PubMed  CAS  Google Scholar 

  3. Anderson TJ, Meredith IT, Ganz P, et al. Nitric oxide and nitrovasodilators: similarities, differences and potential interactions. J Am Coll Cardiol 1994; 24: 555–66

    Article  PubMed  CAS  Google Scholar 

  4. Majid PA, De Feyter PJ, Van der Wall EE, et al. Molsidomine in the treatment of patients with angina pectoris: acute hemodynamic effects and clinical efficacy. N Engl J Med 1980; 302: 1–6

    Article  PubMed  CAS  Google Scholar 

  5. Vogt A, Kreuzer H. Comparative study of the hemodynamic effects of oral molsidomine and isosorbide dinitrate in man. Eur J Clin Pharmacol 1982; 23: 11–4

    Article  PubMed  CAS  Google Scholar 

  6. Unger P, Vachiery J-L, de Cannière D, et al. Comparison of the hemodynamic responses to molsidomine and isosorbide dinitrate in congestive heart failure. Am Heart J 1994; 128: 557–63

    Article  PubMed  CAS  Google Scholar 

  7. Tanayama S, Fujita T, Shirakawa Y, et al. Metabolic fate of 5-ethoxycarbonyl-3-morpholino-sydnonimine (SIN-10): I. Absorption, excretion and tissue distribution in rats and mice. Jpn J Pharmacol 1970; 20: 413–23

    Article  PubMed  CAS  Google Scholar 

  8. Tanayama S, Nakai Y, Fujita T, et al. Biotransformation of molsidomine (N-ethoxycarbonyl-3-morpholino-sydnonimine), a new anti-anginal agent, in rats. Xenobiotica 1974; 4: 175

    Article  CAS  Google Scholar 

  9. Ibrahim TM, Unger P, Sobolski J, et al. Hemodynamic effects of SIN-1 in acute left heart failure. Cardiovasc Drug Ther 1989; 3: 557–61

    Article  CAS  Google Scholar 

  10. Wilson ID, Fromson JM, Illing HPA, et al. The metabolism of [l4C]N-ethoxycarbonyl-3-morpholinosydnonimine (molsidomine) in man. Xenobiotica 1987; 17: 93–104

    Article  PubMed  CAS  Google Scholar 

  11. Dell D, Fromson JM, Illing HPA, et al. Pharmacokinetics and pharmacodynamics of molsidomine in man. Br J Clin Pharmacol 1978; 5: 395–60

    Google Scholar 

  12. Data on file, Hoechst AG

  13. Dell D, Chamberlain J. Determination of molsidomine in plasma by high-performance liquid column chromatography. J Chromatogr 1978; 146: 465–72

    Article  PubMed  CAS  Google Scholar 

  14. Singlas E, Martre H. Pharmacocinétique humaine de la molsidomine. Ann Cardiol Angiol 1983; 32: 503–9

    CAS  Google Scholar 

  15. Bergstrand R, Vedin A, Wilhelmsson C, et al. Intravenous and oral administration of molsidomine, a pharmacodynamic and pharmacokinetic study. Eur J Clin Pharmacol 1984; 27: 203–8

    Article  PubMed  CAS  Google Scholar 

  16. Spreux-Varoquax O, Ulmer B, Cordonnier P, et al. Pharmacokinetics of molsidomine and its active metabolite, SIN-1 (or linsidomine), in the elderly. Fundam Clin Pharmacol 1991; 5: 549–56

    Article  Google Scholar 

  17. Wildgrube HJ, Ostrowski J, Chamberlain J, et al. Liver function and pharmacokinetics of molsidomine and its metabolite 3-morpholinosydnonimine in healthy volunteers. Arzneimittelforschung 1986; 7: 1129–33

    Google Scholar 

  18. Meinertz T, Brandstätter A, Trenk D, et al. Relationship between pharmacokinetics and pharmacodynamics of molsidomine and its metabolites in humans. Am Heart J 1985; 109: 644–8

    Article  PubMed  CAS  Google Scholar 

  19. Oltmanns D, Friedmann W, Ostrowski J. Zur Pharmakokinetik von Molsidomin bei hochdosierter Langzeitbehandlung des frischen Herzinfarkts. Herzmedizin 1982; 5: 3–13

    Google Scholar 

  20. Weiser JR, Heger KH, Oltmanns D, et al. Zur Pharmakokinetik von Molsidomin bei eingeschränkter Leberfunktion. Herzmedizin 1986; 9: 41–6

    Google Scholar 

  21. Strasser R, Klepzig H, Ostrowski J, et al. Molsidomin bei koronarer Herzkrankheit. Munch Med Wochenschr 1983; 125: 156–8

    CAS  Google Scholar 

  22. Ostrowski J, Schweizer P, Erbel R, et al. Correlation of pharmacokinetic data to clinical effect of molsidomine. Proceedings of the First European Congress on Biopharmacology and Pharmacokinetics: 1981 Apr 1–3; Clermont Ferrand 1981; 3: 418–424

    Google Scholar 

  23. Grosse-Heitmeyer W, Huber T, Grewe R. Vergleich von oraler und intravenöser Anwendung von Molsidomin bei Patienten mit Herzinsuffizienz. Med Klin 1994; 89: 54–7

    Google Scholar 

  24. Spreux-Varoquax O, Doll J, Dutot C, et al. Pharmacokinetics of molsidomine and its active metabolites, linsidomine, in patients with liver cirrhosis. Br J Clin Pharmacol 1991; 32: 399–401

    Article  Google Scholar 

  25. Huber T, Grosse-Heitmeyer W, Rietbrock S, et al. Pharmacokinetics and pharmacodynamics of molsidomine in patients with liver dysfunction due to congestive heart failure. Int J Clin Pharmacol Ther Toxicol 1992; 30: 491–2

    PubMed  CAS  Google Scholar 

  26. Palmer RMJ, Ferrige AG, Moncada S. Release of nitric oxide accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987; 327: 524–6

    Article  PubMed  CAS  Google Scholar 

  27. Stamler JS, Simon DI, Osborne JA, et al. S Nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci USA 1992; 89: 444–8

    Article  PubMed  CAS  Google Scholar 

  28. Hueppe D, Jaeger D, Tromm A, et al. Dosisabhängige Akutwirkung und Langzeiteinfluβ von Molsidomin auf die portale und kardiale Hämodynamik bei Patienten mit Leberzirrhose. Med Klin 1994; 89 Suppl. II: 65–8

    Google Scholar 

  29. Sennesael J, Verbeelen D, Degrés S, et al. Pharmacokinetics of linsidomine (SIN1) after single and multiple intravenous short infusions in patients with renal insufficiency. Int J Clin Pharmacol Toxicol 1993; 11: 533–41

    Google Scholar 

  30. Lehmann KH. Die Wirkung von Molsidomin auf das Bela-stungs-EKG in Abhängigkeit von der Blutplasmakonzentration des Pharmakons [dissertation]. Ulm: Fakultät für klinische Medizin der Universität Ulm, 1979

    Google Scholar 

  31. Brack MJ, More RS, Hubner PJ, et al. The effects of different nitrate preparations on plasma heparin concentrations and the activated thromboplastin time. Postgrad Med J 1994; 70: 100–3

    Article  PubMed  CAS  Google Scholar 

  32. Unger P, Leone A, Staroukine M, et al. Hemodynamic responses to molsidomine in patients with ischemic cardiomyopathy tolerant to isosorbide dinitrate. J Cardiovasc Pharmacol 1991; 18: 888–94

    Article  PubMed  CAS  Google Scholar 

  33. Abrams J. The role of nitrates in coronary heart disease. Arch Intern Med 1995; 155: 357–64

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenkranz, B., Winkelmann, B.R. & Parnham, M.J. Clinical Pharmacokinetics of Molsidomine. Clin-Pharmacokinet 30, 372–384 (1996). https://doi.org/10.2165/00003088-199630050-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199630050-00004

Keywords

Navigation