Skip to main content
Log in

Protein Binding and Stereoselectivity of Nonsteroidal Anti-Inflammatory Drugs

  • Clinical Pharmacokinetic Concepts
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Stereoselective binding of nonsteroidal anti-inflammatory drugs (NSAIDs) can be studied using various techniques. Thus the results obtained by different investigators may be poorly consistent and even contradictory. NSAIDs are bound stereoselectively to serum albumin to different degrees depending on the drug investigated (ibuprofen, indoprofen, carprofen, etodolac, ketoprofen and flurbiprofen). For other drugs, both enantiomers are bound to a similar extent (pirprofen, fenoprofen). This stereoselectivity could vary with experimental conditions, in particular with protein concentration (ketoprofen, etodolac), leading to individual differences. Finally, the stereoselectivity of protein binding and of pharmacokinetics can be compared: differences in binding between enantiomers can explain their differences in pharmacokinetics, once metabolic properties such as inversion have been taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bjorkman S. Stereoselective disposition of indoprofen in surgical patients. British Journal of Clinical Pharmacology 20: 463–467, 1985

    Article  PubMed  CAS  Google Scholar 

  • Brocks DR, Jamali F. The pharmacokinetics of etodolac enantiomers in the rat. Drug Metabolism and Disposition 18: 471–475, 1990

    PubMed  CAS  Google Scholar 

  • Brocks DR, Jamali F. Enantioselective pharmacokinetics of etodolac in the rat: tissue distribution, tissue binding and in vitro metabolism. Journal of Pharmaceutical Sciences 80: 1058–1061, 1991

    Article  PubMed  CAS  Google Scholar 

  • Brocks DR, Jamali F, Russel AS. Stereoselective disposition of etodolac enantiomers in synovial fluid. Journal of Clinical Pharmacology 31: 741–746, 1991

    PubMed  CAS  Google Scholar 

  • Brune K, Beck WS, Geisslinger G, Menzel-Soglowek S, Peskar BM, et al. Aspirin-like drugs may block pain independently of prostaglandin synthesis inhibition. Experientia 47: 257–261, 1991

    Article  PubMed  CAS  Google Scholar 

  • Caldwell J, Hutt AJ, Fournel-Gigleux S. The metabolic chiral inversion and dispositional enantioselectivity of the 2-arylpropionic acids and their biological consequences. Biochemical Pharmacology 37: 105–114, 1988

    Article  PubMed  CAS  Google Scholar 

  • Cantor CR, Schimmel PR. (Eds) Biophysical chemistry, Part III, pp. 849–886, WH Freeman and Company, San Francisco, 1980

    Google Scholar 

  • Chignell CF. Recent advances in methodology: spectroscopic techniques. Annals of the New York Academy of Sciences 226: 44–59, 1973

    Article  PubMed  CAS  Google Scholar 

  • Cox SR, Gall EP, Forbes KK, Gresham M, Goris G. Pharmacokinetics of the R(−) and S(+) enantiomers of ibuprofen in the serum and synovial fluid of arthritis patients. Journal of Clinical Pharmacology 31: 88–94, 1991

    PubMed  CAS  Google Scholar 

  • Day RO, Furst DE, Dromgoole SH, Kamm B, Roe R, et al. Relationship of serum naproxen concentration to efficacy in rheumatoid arthritis. Clinical Pharmacology and Therapeutics 31: 733–740, 1982

    Article  PubMed  CAS  Google Scholar 

  • Day RO, Graham GG, Williams KM, Champion GD, De Jager J. Clinical pharmacology of non-steroidal anti-inflammatory drugs. In Orme (Ed), Anti-rheumatic drugs, pp. 137–187, Pergamon Press, New York, NY, 1990

    Google Scholar 

  • Dubois N, Lapicque F, Abiteboul M, Netter P. Stereoselective protein binding of ketoprofen: effect of albumin concentration and of the biological system. Chirality, in press, 1993

    Google Scholar 

  • Evans AM, Nation RL, Sansom LN, Bochner F, Somogyi AA. Stereoselective plasma protein binding of ibuprofen enantiomers. European Journal of Clinical Pharmacology 36: 283–290, 1989

    Article  PubMed  CAS  Google Scholar 

  • Evans AM, Nation RL, Sansom LN, Bochner F, Somogyi AA. Effect of racemic ibuprofen dose on the magnitude and duration of platelet cyclo-oxygenase inhibition: relationship between inhibition of thromboxane production and the plasma unbound concentration of S(+)ibuprofen. British Journal of Clinical Pharmacology 31: 131–138, 1991

    Article  PubMed  CAS  Google Scholar 

  • Fitos I, Simonyi M, Tegyey Z, Ötvös L, Kajtar J, et al. Resolution by affinity chromatography: stereoselective binding of racemic oxazepam esters to human serum albumin. Journal of Chromatography 259: 494–498, 1983

    Article  PubMed  CAS  Google Scholar 

  • Foster RT, Jamali F, Russel AS, Alballa SR. Pharmacokinetics of ketoprofen enantiomers in healthy subjects following single and multiple doses. Journal of Pharmaceutical Sciences 77: 70–73, 1988a

    Article  PubMed  CAS  Google Scholar 

  • Foster RT, Jamali F, Russel AS, Alballa SR. Pharmacokinetics of ketoprofen enantiomers in young and elderly arthritic patients following single and multiple doses. Journal of Pharmaceutical Sciences 77: 191–195, 1988b

    Article  PubMed  CAS  Google Scholar 

  • Fournel S, Caldwell J. The metabolic chiral inversion of 2-phenylpropionic acid in rat, mouse and rabbit. Biochemical Pharmacology 35: 4153–4159, 1986

    Article  PubMed  CAS  Google Scholar 

  • Geisslinger G, Schuster O, Stock KP, Loew D, Bach GL, et al. Pharmacokinetics of S(+) and R(−) ibuprofen in volunteers and first clinical experience of S(+) ibuprofen in rheumatoid arthritis. European Journal of Clinical Pharmacology 38: 493–497, 1990

    Article  PubMed  CAS  Google Scholar 

  • Hansen T, Day R, Williams K, Lee E, Knihinicki R, et al. The assay and in vitro binding of the enantiomers of ibuprofen. Clinical and Experimental Pharmacology and Physiology 9(Suppl.): 82–89, 1985

    Google Scholar 

  • Hayball PJ, Nation RL, Bochne F, Newton JL, Massy-Westropp RA, et al. Plasma protein binding of ketoprofen enantiomers in man: method development and its application. Chirality 3: 460–466, 1991

    Article  PubMed  CAS  Google Scholar 

  • Humber LG. Etodolac: the chemistry, pharmacology, metabolic disposition, and clinical profile of a novel anti-inflammatory pyranocarboxylic acid. Medical Research Reviews 7: 1–28, 1987

    Article  CAS  Google Scholar 

  • Iwakawa S, Spahn H, Benet L, Lin ET. Stereoselective binding of the glucuronide conjugates of carprofen enantiomers to human serum albumin. Biochemical Pharmacology 39: 949–953, 1990

    Article  PubMed  CAS  Google Scholar 

  • Iwakawa S, Suganuma T, Lee SF, Spahn H, Benet L, et al. Direct determination of diastereomeric carprofen glucuronides in human plasma and urine and preliminary measurements of stereoselective metabolic and renal elimination after oral administration of carprofen in man. Drug Metabolism and Disposition 17: 414–419, 1989

    PubMed  CAS  Google Scholar 

  • Jamali F. Pharmacokinetics of enantiomers of chiral non-steroidal anti-inflammatory drugs. European Journal of Drug Metabolism and Pharmacokinetics 13: 1–9, 1988

    Article  PubMed  CAS  Google Scholar 

  • Jamali F, Berry BW, Tehrani MR, Russel AS. Stereoselective pharmacokinetics of flurbiprofen in humans and rats. Journal of Pharmaceutical Sciences 77: 666–669, 1988a

    Article  PubMed  CAS  Google Scholar 

  • Jamali F, Mehvar R, Lemko C, Eradiri O. Application of a stereoselective high-performance liquid chromatography assay to a pharmacokinetic study of etodolac enantiomers in human. Journal of Pharmaceutical Sciences 77: 963–966, 1988b

    Article  PubMed  CAS  Google Scholar 

  • Jones ME, Sallustio BC, Purdie YJ, Meffin PJ. Enantioselective disposition of 2-arylpropionic acid nonsteroidal anti-inflammatory drugs. II. 2-phenylpropionic acid protein binding. Journal of Pharmacology and Experimental Therapeutics 238: 288–294, 1986

    CAS  Google Scholar 

  • Knadler MP, Brater DC, Hall SD. Plasma protein binding of flurbiprofen: enantioselectivity and influence of pathological status. Journal of Pharmacology and Experimental Therapeutics 249: 378–385, 1989

    PubMed  CAS  Google Scholar 

  • Kurz H, Trunk H, Weitz B. Evaluation of methods to determine protein-binding of drugs. Drug Research 35: 6, 1985

    Google Scholar 

  • Lee EJD, Williams K, Day R, Graham G, Champion D. Stereoselective disposition of ibuprofen enantiomers in man. British Journal of Clinical Pharmacology 19: 669–674, 1985

    Article  PubMed  CAS  Google Scholar 

  • Levy G. Pharmacokinetics of salicylate in man. Drug Metabolism Reviews 9: 3–19, 1979

    Article  PubMed  CAS  Google Scholar 

  • Lin JH, Cocchetto DM, Duggan DE. Protein binding as a primary determinant of the clinical pharmacokinetic properties of nonsteroidal anti-inflammatory drugs. Clinical Pharmacokinetics 12: 402–432, 1987

    Article  PubMed  CAS  Google Scholar 

  • McMenamy RH, Oncley JL. The specific binding of L-tryptophan to serum albumin. Journal of Biological Chemistry 233: 1436–1447, 1958

    PubMed  CAS  Google Scholar 

  • Meffin PJ, Sallustio B, Purdie Y, Jones ME. Enantioselective disposition of 2-arylpropionic acid nonsteroidal anti-inflammatory drugs. I. 2-Phenylpropionic acid disposition. Journal of Pharmacology and Experimental Therapeutics 238: 280–287, 1986

    PubMed  CAS  Google Scholar 

  • Miller JHM, Smail GA. Interaction of the enantiomers of warfarin with human serum albumin, peptides and amino acids. Journal of Pharmacy and Pharmacology 29(Suppl.): 33P, 1977

    Article  PubMed  CAS  Google Scholar 

  • Monot C, Netter P, Stalars MC, Martin J, Royer RJ, et al. Difficulties in applying the Scatchard model of ligand binding to proteins. Proposal of a new mathematical tools. Application to salicylate. Journal of Pharmaceutical Sciences 72: 35–41, 1983

    CAS  Google Scholar 

  • Muller N, Lapicque F, Monot C, Payan E, Dropsy R, et al. Stereoselective binding of etodolac to human serum albumin. Chirality 4: 240–246, 1992

    Article  PubMed  CAS  Google Scholar 

  • Muller N, Payan E, Lapicque F, Bannwarth B, Netter P. Pharmacological aspects of chiral nonsteroidal anti-inflammatory drugs. Fundamental and Clinical Pharmacology 4: 617–634, 1990

    Article  PubMed  CAS  Google Scholar 

  • Netter P, Lapicque F, Benzoni D, Bannwarth B, LeLoet X, et al. Concentrations and biological effects of etodolac enantiomers in synovial fluid. Clinical Pharmacology and Therapeutics 53: 152, 1993

    Google Scholar 

  • Netter P, Monot C, Stalars MC, Mur JM, Royer RJ, et al. Decrease of in vitro protein binding of salicylate in rheumatoid arthritis. European Journal of Drug Metabolism and Pharmacokinetics 9: 109–116, 1984

    Article  PubMed  CAS  Google Scholar 

  • O’Reilly RA. Interaction of several coumarin compounds with human and canine plasma albumin. Molecular Pharmacology 7: 209–218, 1971

    PubMed  Google Scholar 

  • Oravcova J, Mlynarik V, Bystricky S, Soltes L, Szalay P, et al. Interaction of pirprofen enantiomers with human serum albumin. Chirality 3: 412–417, 1991

    Article  PubMed  CAS  Google Scholar 

  • Otagiri M, Masuda K, Imai T, Imamura Y, Yamasaki M. Binding of pirprofen to human serum albumin studied by dialysis and spectroscopy techniques. Biochemical Pharmacology 38: 1–7, 1989

    Article  PubMed  CAS  Google Scholar 

  • Perrin JH. A circular dichroic investigation of the binding of fenoprofen, 2(3-phenoxyphenyl)-propionic acid, to human serum albumin. Journal of Pharmacy and Pharmacology 25: 208–212, 1973

    Article  PubMed  CAS  Google Scholar 

  • Rendic S, Alebic-Kolbah T, Kajfez F, Sunjic V. Stereoselective binding of (+) and (−) α(benzoylphenyl)propionic acid (ketoprofen) to human serum albumin. Il Farmaco 35: 51–59, 1980

    CAS  Google Scholar 

  • Rendic S, Sunjic V, Kajfez F, Blazenic N, Alebic-Kolbah T. Resolution of (±) α(benzoylphenyl)propionic acid (ketoprofen) and diastereomeric interaction of its enantiomers with some biological systems. Chimia 4: 170–172, 1975

    Google Scholar 

  • Sallustio BC, Purdie YJ, Whitehead AG, Ahem MJ, Meffin PJ. The disposition of ketoprofen enantiomers in man. British Journal of Clinical Pharmacology 26: 765–770, 1988

    Article  PubMed  CAS  Google Scholar 

  • Siebler D, Kinawi A. Bindung von razemischem Indoprofen und seiner Enantiomeren an Humanserum-albumin. Arzneimittel-Forschung 39: 659–660, 1989

    PubMed  CAS  Google Scholar 

  • Sioufi A, Colussi D, Marfil F, Dubois JP. Determination of the (+) and (−) enantiomers of pirprofen in human plasma by high-performance liquid chromatography. Journal of Chromatography 414: 131–137, 1987

    Article  PubMed  CAS  Google Scholar 

  • Spahn H, Spahn I, Pflugmann G, Mutschler E. Measurement of carprofen enantiomer concentrations in plasma and urine using L-leucinamide as the coupling component. Journal of Chromatography 433: 331–338, 1988

    Article  PubMed  CAS  Google Scholar 

  • Stoltenborg JK, Puglisi CV, Rubio F, Vane FM. High-performance liquid chromatographic determination of stereoselective disposition of carprofen in humans. Journal of Pharmaceutical Sciences 70: 1207–1212, 1981

    Article  PubMed  CAS  Google Scholar 

  • Sudlow G, Birkett DJ, Wade DN. Further characterization of specific drug binding sites on human serum albumin. Molecular Pharmacology 12: 1052–1061, 1976

    PubMed  CAS  Google Scholar 

  • Tamassia V, Jannuzzo MG, Moro E, Stegnjaich S, Groppi W, et al. Pharmacokinetics of the enantiomers of indoprofen in man. International Journal of Clinical Pharmacology Research 4: 223–230, 1984

    Google Scholar 

  • Toon S, Trager WF. Pharmacokinetic implications of stereoselective changes in plasma-protein binding: warfarin / sulfinpyrazone. Journal of Pharmaceutical Sciences 73: 1671–1673, 1984

    Article  PubMed  CAS  Google Scholar 

  • Wanwimolruk S, Brooks PM, Birkett DJ. Protein binding of nonsteroidal anti-inflammatory drugs in plasma and synovial fluid of arthritic patients. British Journal of Clinical Pharmacology 15: 91–94, 1983

    Article  PubMed  CAS  Google Scholar 

  • Williams KM, Day RO. The contribution of enantiomers to variability in response to anti-inflammatory drugs. Agents Actions 24: 76–84, 1988

    CAS  Google Scholar 

  • Young MA, Aarons L, Toon S. The pharmacokinetics of the enantiomers of flurbiprofen in patients with rheumatoid arthritis. British Journal of Clinical Pharmacology 31: 102–104, 1991

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lapicque, F., Muller, N., Payan, E. et al. Protein Binding and Stereoselectivity of Nonsteroidal Anti-Inflammatory Drugs. Clin-Pharmacokinet 25, 115–125 (1993). https://doi.org/10.2165/00003088-199325020-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199325020-00004

Keywords

Navigation