Skip to main content
Log in

Clinical Pharmacokinetics of Chloramphenicol and Chloramphenicol Succinate

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

In recent years there has been a renewal of interest in chloramphenicol, predominantly because of the emergence of ampicillin-resistant Haemophilus influenzae, the leading cause of bacterial meningitis in infants and children. Three preparations of chloramphenicol are most commonly used in clinical practice: a crystalline powder for oral administration, a palmitate ester for oral administration as a suspension, and a succinate ester for parenteral administration. Both esters are inactive, requiring hydrolysis to chloramphenicol for antibacterial activity. The palmitate ester is hydrolysed in the small intestine to active chloramphenicol prior to absorption. Chloramphenicol succinate acts as a prodrug, being converted to active chloramphenicol while it is circulating in the body.

Various assays have been developed to determine the concentration of chloramphenicol in biological fluids. Of these, high-performance liquid Chromatographic and radioenzymatic assays are accurate, precise, specific, and have excellent sensitivities for chloramphenicol. They are rapid and have made therapeutic drug monitoring practical for chloramphenicol.

The bioavailability of oral crystalline chloramphenicol and chloramphenicol palmitate is approximately 80%. The time for peak plasma concentrations is dependent on particle size and correlates with in vitro dissolution and deaggregation rates. The bioavailability of chloramphenicol after intravenous administration of the succinate ester averages approximately 70%, but the range is quite variable. Incomplete bioavailability is the result of renal excretion of unchanged chloramphenicol succinate prior to it being hydrolysed to active chloramphenicol. Plasma protein binding of chloramphenicol is approximately 60% in healthy adults. The drug is extensively distributed to many tissues and body fluids, including cerebrospinal fluid and breast milk, and it crosses the placenta. Reported mean values for the apparent volume of distribution range from 0.6 to 1.0 L/kg. Most of a chloramphenicol dose is metabolised by the liver to inactive products, the chief metabolite being a glucuronide conjugate; only 5 to 15% of chloramphenicol is excreted unchanged in the urine. The elimination half-life is approximately 4 hours. Inaccurate determinations of the pharmacokinetic parameters may result by incorrectly assuming rapid and complete hydrolysis of chloramphenicol succinate.

The pharmacokinetics of chloramphenicol succinate have been described by a 2-compartment model. The reported values for the apparent volume of distribution range from 0.2 to 3.1 L/kg. Chloramphenicol succinate is metabolised (hydrolysed) by esterases in the body to active chloramphenicol. Approximately 30% of the succinate ester is excreted unchanged in the urine, with a reported range of 6 to 80%.

Plasma protein binding and the clearance of chloramphenicol are reduced and the elimination half-life prolonged in patients with liver disease, but the elimination half-life is not significantly changed by renal dysfunction. Serum chloramphenicol concentrations are higher in patients with renal impairment after the administration of intravenous chloramphenicol succinate, but not oral chloramphenicol; this is due to a reduction in renal excretion of the succinate ester, resulting in increased bioavailability of active chloramphenicol. Plasma protein binding is decreased in uraemic patients, apparently due to displacement by unidentified substances. In premature and newborn infants, oral absorption of chloramphenicol after administration of the palmitate ester is slow and unreliable. The elimination of both chloramphenicol and chloramphenicol succinate is decreased in these infants as a result of immature hepatic and renal function. Plasma protein binding is also lower in newborn infants than in children and adults. The elimination of chloramphenicol may also be markedly impaired in patients in shock.

Chloramphenicol impairs the metabolism of tolbutamide, chlorpropamide, cyclophosphamide, Phenytoin, phenobarbitone and dicoumarol. Paracetamol (acetaminophen) has been reported to decrease the metabolism of chloramphenicol. Phenytoin and phenobarbitone hasten the elimination of chloramphenicol, most likely due to enzyme induction. Mannitol, ethacrynic acid, hydrochlorothiazide and clopamide increase the renal excretion of chloramphenicol, whereas frusemide (furosemide) decreases its renal excretion.

Peak chloramphenicol concentrations of 10 to 20 μg/ml and trough concentrations of 5 to 10 μg/ml are generally desirable for most infections. Therapeutic concentrations depend on the sensitivity of the specific offending organism, in addition to the type and severity of infection. Concentration-dependent bone marrow suppression has been associated with sustained peak serum concentrations ≥ 25 μg/ml and trough concentrations ≥ 10 μg/ml. The ‘grey syndrome’ has been associated with chloramphenicol concentrations of ≥ 40 μg/ml.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abraham, R.K. and Burnett, H.H.: Tetracycline and chloramphenicol studies on rabbit and human eyes. Archives of Ophthalmology 54: 641–659 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Aguiar, A.J.; Wheeler, L.M.; Fusari, S. and Zelmer, J.E.: Evaluation of physical and pharmaceutical factors involved in drug release and availability from chloramphenicol capsules. Journal of Pharmaceutical Sciences 57: 1844–1850 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Aravind, M.K.; Miceli, J.N.; Kauffman, R.E.; Strebel, L. and Done, A.K.: Simultaneous measurements of chloramphenicol and chloramphenicol succinate in body fluids utilizing HPLC. Journal of Chromatography 221: 176–181 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, J.R.; Cook, F.E. and Robison, J.R.: Concentration of antibiotic and chemotherapeutic agents in the ejaculum. Journal of Urology 100: 72–76 (1968).

    PubMed  CAS  Google Scholar 

  • Azzollini, F.; Gazzaniga, A.; Lodola, E. and Natangelo, R.: Elimination of chloramphenieol and thiamphenicol in subjects with cirrhosis of the liver. International Journal of Clinical Pharmacology. Therapy and Toxicology 6: 130–134 (1972).

    CAS  Google Scholar 

  • Ballek, R.E.; Reidenberg, M.M. and Orr, L.: Inhibition of diphenylhydantoin metabolism by chloramphenicol. Lancet 1: 150 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Barkin, R.M.; Greer, C.C.; Schumacher, C.J. and McIntosh, K.: Haemophilus influenzae meningitis: An evolving therapeutic regimen. American Journal of Diseases of Children 130: 1318–1321 (1976).

    PubMed  CAS  Google Scholar 

  • Barrett, F.F.; Taber, L.H.; Morris, C.R.; Stephenson, W.B.; Clark, D.J. and Yow, M.D.: A twelve year review of the antibiotic management of Hemophilus influenzae meningitis. Journal of Pediatrics 81: 370–377 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Bartz, Q.R.: Isolation and characterization of chloromycetin. Journal of Biological Chemistry 172: 445–450 (1948).

    PubMed  CAS  Google Scholar 

  • Black, S.B.; Levine, P. and Shinefield, H.R.: The necessity for monitoring chloramphenicol levels when treating neonatal meningitis. Journal of Pediatrics 92: 235–236 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Blouin, R.A.; Erwin, W.G.; Dutro, M.P.; Bustrack, J.A. and Rowse, K.L.: Chloramphenicol hemodialysis clearance. Therapeutic Drug Monitoring 2: 351–354 (1980).

    PubMed  CAS  Google Scholar 

  • Bloxham, R.A.; Durbin, G.M.; Johnson, T. and Winterborn, M.H.: Chloramphenicol and phenobarbitone — A drug interaction. Archives of Disease in Childhood 54: 76–77 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Borski, A.A.; Pulaski, E.J.; Kimrough, J.C. and Fusillo, M.H.: Prostatic fluid, semen, and proslatic tissue concentrations of the major antibiotics following intravenous administration. Antibiotics and Chemotherapy 4: 905–910 (1954).

    CAS  Google Scholar 

  • Bottiger, L.E.: Drug-induced aplastic anaemia in Sweden, with special reference to chloramphenicol. Postgraduate Medical Journal 50 (Suppl.): 127–131 (1974).

    PubMed  Google Scholar 

  • Brent, D.A.; Chandrasurin, P.; Ragonzeos, A.; Huribert, B.S. and Burke, J.T.: Rearrangement of chloramphenicol-3-monosuccinate. Journal of Pharmaceutical Sciences 69: 906–908 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Brock, T.D.: Chloramphenicol. Bacteriological Reviews 25: 32–48 (1961).

    PubMed  CAS  Google Scholar 

  • Brown, W.J. and Waatti, P.E.: Susceptibility testing of clinically isolated anaerobic bacteria by an agar dilution technique. Antimicrobial Agents and Chemotherapy 17: 629–635 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Brunova, E.; Slabochova, Z.; Platilova, H.; Pavlik, F.; Grafnetlerova, J. and Dvoracek, K.: Interaction of tolbutamide and chloramphenicol in diabetic patients. International Journal of Clinical Pharmacology 15: 7–12 (1977).

    CAS  Google Scholar 

  • Buchanan, N. and Moodley, G.P.: Interaction between chloramphenicol and paracetamol. British Medical Journal 2: 307–308 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Bulos, N.K.: Efficacy of intramuscular chloramphenicol in treatment of H. influenzae meningitis. Journal of Pediatrics 81: 416–417 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Burke, J.T.; Wargin, W.A. and Blum, M.R.: High-pressure liquid Chromatographie assay for chloramphenicol, chloramphenicol-3-monosuccinate, and chloramphenicol-1-monosuccinate. Journal of Pharmaceutical Sciences 69: 909–912 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Burke, J.T.; Wargin, W.A.; Sherertz, R.J.; Sanders, K.L.; Blum, M.R. and Sarubbi, F.A.: Pharmacokinctics of intravenous chloramphcnicol sodium succinatc in adult patients with normal renal and hepatic function. Journal of Pharmacokinetics and Biopharmaceutics 10: 601–614 (1982).

    PubMed  CAS  Google Scholar 

  • Burns, L.E.; Hodgman, J.E. and Cass, A.B.: Fatal circulatory collapse in premature infants receiving chloramphenicol. New England Journal of Medicine 261: 1318–1321 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Chiuenden, G.E.; Sharp, E.A.; Vonder Heide, E.C.; Bratton, A.C.; Glazko, A.J. and Stimpert, F.D.: The treatment of bacillary urinary infections with chloromycetin. Journal of Urology 62: 771–790 (1949).

    Google Scholar 

  • Christensen, L.K. and Skovsted, L.: Inhibition of drug metabolism by chloramphenicol. Lancet 2: 1397–1399 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Craft, A.W.; Brocklebank, J.T.; Hey, E.N. and Jackson, R.H.: The ‘grey toddler’: Chloramphenicol toxicity. Archives of Disease in Childhood 49: 235–236 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Daigneault, R. and Guitard, M.: An enzymatic assay for chloramphcnicol with partially purified chloramphenicol acetyltransferase. Journal of Infectious Diseases 133: 515–522 (1976).

    Article  PubMed  CAS  Google Scholar 

  • De Louvois, J.; Muhlall, A. and Hurley, R.: Comparison of methods available for assay of chloramphenicol in clinical specimens. Journal of Clinical Pathology 33: 575–580 (1980).

    Article  PubMed  Google Scholar 

  • Dill, W.A.; Thompson, E.M.; Fisken, R.A. and Glazko, A.J.: A new metabolite of chloramphenicol. Nature 185: 535–536 (1960).

    Article  PubMed  CAS  Google Scholar 

  • Dixon, R.L. and Fouts, J.R.: Inhibition of microsomal drug metabolic pathways by chloramphenicol. Biochemical Pharmacology 11: 715–720 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Dunkle, L.M.: Central nervous system chloramphenicol concentration in premature infants. Antimicrobial Agents and Chemotherapy 13: 427–429 (1978).

    Article  PubMed  CAS  Google Scholar 

  • DuPont, H.L.; Hornick, R.B.; Weiss, C.F.; Snyder, M.J. and Woodward, T.E.: Evaluation of chloramphenicol acid succinate therapy of induced typhoid fever and rocky mountain spotted fever. New Eng. J. Med. 282: 53–57 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich, J.; Bartz, Q.R.; Smith, R.M.; Joslyn, D.A.: Chloromycelin, a new antibiotic from a soil actinomycete. Science 106: 417 (1947).

    Article  PubMed  CAS  Google Scholar 

  • Faber, O.K.; Mouridsen, H.T. and Skovsted, L.: The effect of chloramphcnicol and sulphaphenazole on the biotransfor-mation of eyelophosphamide in man. British Journal of Clinical Pharmacology 2: 281–285 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Friedman, C.A.; Lovejoy, F.C. and Smith, A.L.: Chloramphenicol disposition in infants and children. Journal of Pediatrics 95: 1071–1077 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Glazer, J.P.; Danish, M.A.; Plotkin, S.A. and Yaffe, S.J.: Disposition of chloramphenicol in low birth weight infants. Pediatrics 66: 573–578 (1980).

    PubMed  CAS  Google Scholar 

  • Glazko, A.J.; Carnes, H.E.; Kazenko, A.; Wolf, L.M. and Reutner, T.F.: Succinic acid esters of chloramphenicol; in Welch and Marti-lbanez (Eds) Antibiotics Annual: 1957–1958. Proceedings of the Fifth Annual Symposium on Antibiotics, pp. 792–802 (Medical Encyclopedia Inc., New York 1958a).

    Google Scholar 

  • Glazko, A.J.; Dill, W.A.; Kazenko, A.; Wolf, L.M. and Carnes, H.E.: Physical factors affecting the rate of absorption of chloramphenicol esters. Antibiotics and Chemotherapy 8: 516–527 (1958b).

    CAS  Google Scholar 

  • Glazko, A.J.; Dill, W.A.; Kinkel, A.W.; Goulet, J.R.; Holloway, W.J. and Buchanan, R.A.: Absorption and excretion of parenteral doses of chloramphenicol sodium succinate (CMS) in comparison with peroral doses of chloramphenicol (CM). Clinical Pharmacology and Therapeutics 21: 104 (1977).

    Google Scholar 

  • Glazko, A.J.; Dill, W.A. and Rebstock, M.C.: Biochemical studies on chloramphenicol (Chloromycetin). III. Isolation and identification of metabolic products in urine. Journal of Biological Chemistry 183: 679–69 (1950).

    CAS  Google Scholar 

  • Glazko, A.J.; Edgerton, W.H.; Dill, W.A. and Lenz, W.R.: Chloromycetin palmitate — Synthetic ester of Chloromycetin. Antibiotics and Chemotherapy 2: 231–242 (1952).

    Google Scholar 

  • Glazko, A.J.; Kinkel, A.W.; Alegnani, W.C. and Holmes, E.L.: An evaluation of the absorption characteristics of different chloramphenicol preparations in normal human subjects. Clinical Pharmacology and Therapeutics 9: 472–483 (1968).

    PubMed  CAS  Google Scholar 

  • Glazko, A.J.; Wolf, L.M.; Dill, W.A.: Chemical studies on chloramphenicol. I. Colorimetric methods for determination of chloramphenicol and related nitro compounds. Archives of Biochemistry 23: 411–418 (1949a).

    PubMed  CAS  Google Scholar 

  • Glazko, A.J.; Wolf, L.M.; Dill, W.A. and Bratton Jr. A.C.: Biochemical studies on chloramphenicol (Chloromycetin). 11. Tissue distribution and excretion studies. Journal of Pharmacology and Experimental Therapeutics 96: 445–459 (1949b).

    PubMed  CAS  Google Scholar 

  • Gottlieb, D.; Bhattacharyya, P.K.; Anderson, H.W. and Carter, H.E.: Some properties of an antibiotic obtained from a species of streptomyces. Journal of Bacteriology 55: 409–417 (1948).

    CAS  Google Scholar 

  • Gray, J.D.: The concentration of chloramphenicol in human tissue. Canadian Medical Association Journal 72: 778–779 (1955).

    PubMed  CAS  Google Scholar 

  • Grcenberg, P.A. and Sanford, J.P.: Removal and absorption of antibiotics in patients with renal failure undergoing peritoneal dialysis: Tetracycline, chloramphenicol, kanamycin, and colistimethate. Annals of Internal Medicine 66: 465–479 (1967).

    Google Scholar 

  • Hahn, F.E.; Hayes, J.E.; Wisseman Jr. C.L.; Hopps, H.E. and Smadel, J.E.: Mode of action of chloramphenicol. VI. Relation between structure and activity in the chloramphenicol series. Antibiotics and Chemotherapy 6: 531–543 (1956).

    CAS  Google Scholar 

  • Hausman, K. and Skrandies, G.: Aplastic anaemia following chloramphenicol therapy in Hamburg and surrounding districts. Postgraduate Medical Journal 50 (Suppl.): 131–136 (1974).

    Google Scholar 

  • Havelka, J.; Hejzlar, M.; Popov, V.; Viktorinova. D. and Prochazka, J.: Excretion of chloramphenicol in human milk. Chemotherapy 13: 204–211 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Hodgman, J.E. and Burns, L.E.: Safe and effective chloramphenicol dosages for premature infants. American Journal of Diseases of Children 101: 140–148 (1961).

    PubMed  CAS  Google Scholar 

  • Joslyn, D.A. and Galbraith, M.: A turbidimetric method for the assay of antibiotics. Journal of Bacteriology 59: 711–716 (1950).

    PubMed  CAS  Google Scholar 

  • Kauffman, R.E.; Miceli, J.N.; Strebel, L.; Buckley, J.A.; Done, A.K. and Dajani, A.S.: Pharmacokinetics of chloramphenicol and chloramphenicol succinate in infants and children. Journal of Pediatrics 98: 315–320 (1981a).

    Article  PubMed  CAS  Google Scholar 

  • Kauffman, R.E.: Thirumoorthi, M.C.: Buckley, J.A.; Aravind, M.K. and Dajani, A.S.: Relative bioavailability of intravenous chloramphenicol succinate and oral chloramphenicol palmitate in infants and children. Journal of Pediatrics 99: 963–967 (1981b).

    Article  PubMed  CAS  Google Scholar 

  • Kelly, R.S.; Hunt Jr. A.D. and Tashman, S.G.: Studies on the absorption and distribution of chloramphenicol. Pediatrics 8: 362–367 (1951).

    PubMed  CAS  Google Scholar 

  • Kessler Jr. D.L.; Smith, A.L. and Woodrum, D.E.: Chloramphenicol toxicity in a neonate treated with exchange transfusion. Journal of Pediatrics 96: 140–141 (1980).

    Article  PubMed  Google Scholar 

  • Koch-Weser, J. and Sellers, E.M.: Binding of drugs to serum albumin (Pan 1). New England Journal of Medicine 294: 311 316 (1976a).

    PubMed  Google Scholar 

  • Koch-Wescr, J. and Sellers, E.M.: Binding of drugs to serum albumin (Part 2). New England Journal of Medicine 294: 526–531 (1976b).

    Article  Google Scholar 

  • Koup, J.R.; Brodsky, B.; Lau, A. and Beam Jr. T.R.: High-performance liquid Chromatographie assay of chloramphenicol in scrum. Antimicrobial Agents and Chemotherapy 14: 439–443 (1978a).

    Article  PubMed  CAS  Google Scholar 

  • Koup, J.R.; Gibaldi, M.; McNamara, P.; Hilligoss, D.M.; Colburn, W.A. and Bruck, E.: Interaction of chloramphenicol with Phenytoin: Case report. Clinical Pharmacology and Therapeutics 2: 571–575 (1978b).

    Google Scholar 

  • Koup, J.R.; Lau, A.H.; Brodsky, B. and Slaughter, R.L.: Chioramphenicol pharmacokinetics in hospitalized patients. Antimicrobial Agents and Chemotherapy 15: 651–657 (1979a).

    Article  PubMed  CAS  Google Scholar 

  • Koup, J.R.; Lau, A.H.; Brodsky, B. and Slaughter, R.L.: Relationship between serum and saliva chloramphenicol concentrations. Antimicrobial Agents and Chemotherapy 15: 658–661 (1979b).

    Article  PubMed  CAS  Google Scholar 

  • Kramer, P.W.; Griffith, R.S. and Campbell, R.L.: Antibiotic penetration of the brain: A comparative study. Journal of Neurosurgcry 31: 295–302 (1969).

    Article  CAS  Google Scholar 

  • Krasinski, K.; Kusmiesz, H. and Nelson, J.D.: Pharmacologic interactions among chloramphenicol. Phenytoin and phenobarbital. Pcdialric Infectious Disease 1: 232–235 (1982).

    Article  CAS  Google Scholar 

  • Kucers, A. and Bennell, N.M.: The Use of Antibiotics: A Comprehensive Review with Clinical Emphasis. 3rd Edition, pp. 420–456 (William Heinemann Medical Books, London 1979).

    Google Scholar 

  • Kunin, C.M.; Glazko, A.J. and Finland, M.: Persistence of antibiotics in blood of patients with acute renal failure. II. Chloramphenicol and its metabolic products in the blood of patients with severe renal disease or hepatic cirrhosis. Journal of Clinical Investigation 38: 1948–1508 (1959).

    Google Scholar 

  • Kurz, H.; Mauser-Ganshorn, A. and Stickel, H.H.: Differences in the binding of drugs to plasma proteins from newborn and adult man. I. European Journal of Clinical Pharmacology 11: 163–467 (1977).

    Article  Google Scholar 

  • Leopold, I.H.: Clinical trial with chloramphcnicol in ocular infections. Archives of Ophthalmology 45: 44–52 (1951).

    Article  PubMed  CAS  Google Scholar 

  • Levine, J. and Fischbaeh, H.: The chemical determination of chloramphcnicol in biological materials. Antibiotics and Chemotherapy 1: 59–62 (1951).

    CAS  Google Scholar 

  • Lietman, P.S.: Chloramphenicol and the neonate — 1979 view. Clinics in Pharmacology 6: 151–162 (1979).

    CAS  Google Scholar 

  • Lietman, P.S.; White, T.J. and Shaw, W.V.: Chloramphenicol: An enzymological microassay. Antimicrobial Agents and Chemotherapy 10: 347–353 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Lindberg, A.A.; Nilsson, L.H.; Bucht, H. and Kallings, L.O.: Concentration of chloramphenicol in the urine and blood in relation to renal function. British Medical Journal 2: 724–728 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Martelo, O.J.; Manyan, D.R.; Smith, U.S. and Yunis, A.A.: Chloramphenicol and bone marrow mitochondria. Journal of Laboratory and Clinical Medicine 74: 927–940 (1969).

    PubMed  CAS  Google Scholar 

  • Martin, C.M.; Rubin, M.; O’Malley, W.E.; Garagusi, V.F. and McCauley, C.E.: Medical news: Brand, generie drugs differ in man. Journal of the American Medical Association 205: 23–30 (1968a).

    Google Scholar 

  • Martin, C.M.; Rubin, M.; O’Malley, W.E.; Garagusi, V.F. and McCauley, C.E.: Comparative physiological availability of ‘brand’ and ‘generic’ drugs in man: Chloramphenicol, sulfisoxazole, and diphenylhydantoin. Pharmacologist 10: 167 (1968b).

    Google Scholar 

  • Martin, E.; Tozer, T.N.; Sheiner, L.B. and Riegelman, S.: The clinical pharmacokinetics of Phenytoin. Journal of Pharmacokinctics and Biopharmaceutics 5: 579–596 (1977).

    CAS  Google Scholar 

  • Mauer, S.M.; Chavers, B.M. and Kjellstrand, C.M.: Treatment of an infant with severe chloramphenicol intoxication using charcoal-column hemoperfusion. Journal of Pediatrics 96: 136–139 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Maxwell, R.E. and Nickel, V.S.: The antibacterial activity of the isomers of chloramphenicol. Antibiotics and Chemotherapy 4: 289–295 (1954).

    CAS  Google Scholar 

  • McCrumb Jr. F.R.; Snyder, M.J. and Hieken, W.J.: The use of chloramphnicol acid succinate in the treatment of acute infections; in Welch and Marti-lbanez (Eds) Antibiotics Annual: 1957–1958. Procedings of the Fifth Annual Symposium on Antibiotics, pp. 837–841 (Medical Encyclopedia Inc., New York 1958).

    Google Scholar 

  • McCurdy, P.R.: Plasma concentration of chloramphcnicol and bone marrow suppression. Blood 21: 363–372 (1963).

    Google Scholar 

  • Nagao, T. and Mauer, A.M.: Concordance for drug-induced aplastic anemia in identical twins. New England Journal of Medicine 281: 7–11 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Nahata, M.C. and Powell, D.A.: Bioavailability and clearance of chloramphenicol after intravenous chloramphenicol succinate. Clinical Pharmacology and Therapeutics 30: 368–372 (1981a).

    Article  PubMed  CAS  Google Scholar 

  • Nahata, M.C. and Powell, D.A.: Simultaneous determination of chloramphcnicol and its sodium succinate ester by HPLC. Journal of Chromatography 223: 247–251 (1981b).

    Article  PubMed  CAS  Google Scholar 

  • Nahata, M.C. and Powell, D.A.: Chloramphenicol serum concentration falls during chloramphcnicol succinate dosing. Clinical Pharmacology and Therapeutics 33: 308–313 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Nahata, M.C.; Powell, D.A.; Glazer, J.P. and Hilty, M.D.: Effect of intravenous flow rate and injection site on in ivtro delivery of chloramphenicol succinale and in vivo kinetics. Journal of Pediatrics 99: 463–466 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Oski, F.A.: Hematologic consequences of chloramphcnicol therapy. Journal of Pediatrics 94: 515–516 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Paul, H.E.; Hayes, K.J.; Paul, M.F. and Borgmann, A.R.: Laboratory studies with nitrofurantoin: Relationship between crystal size, urinary excretion in the rat and man, and emesis in dogs. Journal of Pharmaceutical Sciences 56: 882–885 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Peterson, L.R.; Hall, W.H.; Zinneman, H.H. and Gerding, D.N.: Standardization of a preparative ultracentrifugc method for quantitative determination of protein binding of seven antibiotics. Journal of Infectious Diseases 136: 778–783 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Petitpierre, B. and Fabre, J.: Chlorpropamide and chloramphenicol. Lancet 1: 789 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Pickering, L.K.; Hoecker, J.L.; Kramer, W.G.; Kohl, S. and Cleary, T.G.: Clinical pharmacology of two chloramphenicol preparations in children: Sodium succinate (iv) and palmitate (oral) esters. Journal of Pediatrics 96: 757–761 (1980). Pickering, L.K.; Hoecker, J.L.; Kramer, W.G.; Liehr, J.G. and Caprioli, R.M.: Assays for chloramphcnicol compared: Radioenzymatic, gas Chromatographie with electron capture, and gas chromatographic-mass spectrometric. Clinical Chemistry 25: 300–305 (1979).

    PubMed  CAS  Google Scholar 

  • Powell, D.A.; Nahata, M.C.; Durrell, D.C.; Glazer, J.P. and Hilty, M.D.: Interactions among chloramphenicol. Phenytoin, and phcnobarbital in a pediatric patient. Journal of Pediatrics 98: 1001–1003 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Rebstock, M.C.: Crooks Jr. H.M.; Controulis, J. and Bartz, Q.R.: Chloramphenicol (Chloromycetin), IV. Chemical studies. Journal of the American Chemical Society 71: 2458–2462 (1949).

    Article  CAS  Google Scholar 

  • Remmer, H.: The inhibition and stimulation of chloramphenicol conjugation by drugs. Postgraduate Medical Journal 50 (Suppl.): 28–32 (Oct 1974).

    PubMed  CAS  Google Scholar 

  • Rensimer, E.R.; Pickering, L.K.: Ericsson, C.D. and Kramer, W.G.: Sequential CSF concentration of chloramphenicol after administration of oral chloramphenicol palmitate. Lancet 1: 165 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Resnick, G.L.; Corbin, D. and Sandberg, D.H.: Determination of serum chloramphenicol utilizing gas-liquid chromatography and electron capture spectrometry. Annals of Chemistry 38: 582–585 (1966).

    Article  CAS  Google Scholar 

  • Rich, M.L.; Ritterhoff, R.J. and Hoffmann, R.J.: A fatal case of aplastic anemia following chloramphenicol (Chloromycetin) therapy. Annals of Internal Medicine 33: 1459–1467 (1950).

    PubMed  CAS  Google Scholar 

  • Rose, J.Q.; Choi, H.K.; Schentag, J.J.; Kinkel, W.R. and Jusko, W.J.: Intoxication caused by interaction of chloramphenicol and phenytoin. Journal of the American Medical Association 237: 2630–2631 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Ross, S.; Burke, F.G. and Rice, E.C.: The use of Chloromycetin palmitatc in infants and children: A preliminary report. Antibiotics and Chemotherapy 2: 199–207 (1952).

    CAS  Google Scholar 

  • Ross, S.; Burke, F.G.; Sites, J.; Rice, E.C. and Washington, J.A.: Placental transmission of ehloramphenicol (Chloromycetin). Journal of the American Medical Association 142: 1361 (1950).

    Article  PubMed  CAS  Google Scholar 

  • Sack, C.M.; Koup, J.; Opheim, K.; Neely, N. and Smith, A.L.: Pharmacokinetics of chloramphenicol-succinate after intravenous administration. Pediatric Research 14: 472 (1980a).

    Google Scholar 

  • Sack, C.M.; Koup, J. and Smith, A.L.: Chloramphenicol pharmacokinclics in infants and young children. Pediatrics 66: 579–584 (1980b).

    PubMed  CAS  Google Scholar 

  • Schmidt, F.H. and Vomel, W.: Uber die Spaltung von Chloramphenicol succinat durch tierische un menschliche Gewebe. Klinische Wochenschrift 43: 535–539 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Schuck, O.; Nadvornikova, H. and Grafnetterova, J.: The influence of ethacrynic acid, hydrochlorothiazide and clopamidc on the renal excretion of chloramphenicol and its metabolites. International Journal of Clinical Pharmacology 16: 217–219 (1978).

    CAS  Google Scholar 

  • Scott, J.L.; Finegold, S.M.; Belkin, G.A. and Lawrence, J.S.: A controlled double-blind study of the hematologic toxicity of chloramphenicol. New England Journal of Medicine 272: 1137–1142 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Scott, W.C. and Warner, R.F.: Placcnlal transfer of chloramphenicol (Chloromycetin). Journal of the American Medical Association 142: 1331–1332 (1950).

    Article  PubMed  CAS  Google Scholar 

  • Shah, P.N.; D’souza, J. and Dattani, K.K.: Absorption of chloramphenicol by various routes of administration. Indian Journal of Medical Research 65: 549–553 (1977).

    PubMed  CAS  Google Scholar 

  • Slaughter, R.L.; Cerra, F.B. and Koup, J.R.: Effect of hemodialysis on total body clearance of chloramphenicol. American Journal of Hospital Pharmacy 37: 1083–1086 (1980a).

    PubMed  CAS  Google Scholar 

  • Slaughter, R.L.; Pieper, J.A.; Cerra, F.B.; Brodsky, B. and Koup, J.R.: Chloramphenicol sodium succinate kinetics in critically ill patients. Clin. Pharmacol. Therap. 28: 69–77 (1980b).

    Article  CAS  Google Scholar 

  • Smith, A.L. and Smith, D.H.: Improved enzymatic assay of chloramphenicol. Clinical Chemistry 24: 1452–1457 (1978).

    PubMed  CAS  Google Scholar 

  • Smith, D.G.; Landers, C.G. and Forgacs, J.: A cylinder plate assay for Chloromycetin in body fluids and tissue extracts. Journal of Laboratory and Clinical Medicine 36: 154–157 (1950).

    PubMed  CAS  Google Scholar 

  • Summa, A.F.: Polarographic determination of chloramphenicol preparations. J. Pharmaceut. Sciences 54; 442–444 (1965).

    Article  CAS  Google Scholar 

  • Sutherland, J.M.: Fatal cardiovascular collapse of infants receiving large amounts of chloramphenicol. American Journal of Diseases of Children 97: 761–767 (1959).

    CAS  Google Scholar 

  • Thompson, W.L.; Anderson, S.E.; Lipsky, J.L. and Lietman, P.S.: Overdoses of chioramphenicol. Journal of the American Medical Association 234: 149–150 (1975).

    PubMed  CAS  Google Scholar 

  • Tuomanen, E.I.; Powell, K.R.; Marks, M.I.; Laferriere, C.I.; Altmiller, D.H.; Sack, C.M. and Smith, A.L.: Oral chloramphenicol in the treatment of Haemophilus influenzae meningitis. Journal of Pediatrics 99: 968–974 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Van Beers, D.; Schoutens, E.; Vanderlinden, M.P. and Yourassowsky, E.: Comparative in vitro activity of chloramphenicol and thiamphenieol on common aerobic and anaerobic Gramnegative bacilli (salmonella and Shigella excluded). Chemotherapy 21: 73–81 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Vincent, F.M.; Mills, L. and Sullivan, J.K.; Chloramphenicol-induced Phenytoin intoxication. Annals of Neurology 3: 469 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Vodrazka, Z.; Jandova, D.; Grafnetterova, J.; Shuck, O.; Kalousck, I.; Tomasek. R. and Lachmanova, J.: The binding of chloramphenicol to albumin of normal and uremic sera. Biochemical Pharmacology 27: 1717–1720 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Wallerstein, R.O.; Condit, P.K.; Kasper, C.K.; Brown, J.W. and Morrison, F.R.: Statewide study of chloramphenicol therapy and fatal aplastic anemia. Journal of the American Medical Association 208: 2045–2050 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Weber, A.F.; Opheim, K.E.; Koup, J.R. and Smith, A.L.; Comparison of enzymatic and liquid Chromatographie chloramphenicol assays. Antimicrobial Agents and Chemotherapy 19: 323–325 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Weiss, C.F.; Glazko, A.J. and Weston, J.K.: Chloramphenicol in the newborn infants: A physiologic explanation of its toxicity when given in excessive doses. New England Journal of Medicine 262: 787–794 (1960).

    Article  PubMed  CAS  Google Scholar 

  • Williams, R. and Dart, R.M.: Chloramphenicol (Chloromycetin) concentration in cerebrospinal, ascitic, and pleural fluids. Boston Medical Quarterly 1: 710 (1950).

    Google Scholar 

  • Windorfer Jr. A. and Pringsheim, W.: Studies on the concentrations of chloramphenicol in the serum and cerebrospinal fluid of neonates, infants, and small children. European Journal of Pediatrics 124: 129–138 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Yogev, R.; Kolling, W.M. and Williams, T.: Pharmacokinetic comparison of intravenous and oral chloramphenicol in patients with Haemophilus influenzae meningitis. Pediatrics 67: 656–660 (1981).

    PubMed  CAS  Google Scholar 

  • Yogev, R. and Williams, T.: Ventricular fluid levels of chloramphenicol in infants. Antimicrobial Agents and Chemotherapy 16: 7–8 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Yunis, A.A.: Chloramphenicol toxicity and the role of the p-NO2 in aplastic anemia; in Najean, Tognoni and Yunis (Eds) Safety Problems Related to Chloramphenicol and Thiamphenieol Therapy: A Comparative Risk-Benefit Analysis, pp. 17–29 (Monographs of the Mario Negri Institute of Pharmacological Research) [Raven Press, New York 1981].

    Google Scholar 

  • Yunis, A.A.; Miller, A.M.; Salem, Z. and Arimura, G.K.: Chloramphenicol loxicily: Pathogenetic mechanisms and the role of the P-NO2 in aplastic anemia. Clinical Toxicity 17: 359–373 (1980).

    Article  CAS  Google Scholar 

  • Yunis, A.A.; Smith, U.S. and Restrepo, A.: Reversible bone marrow suppression from chloramphenicol: A consequence of mitochondrial injury. Arch. Internal Med. 126: 272–275 (1970).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ambrose, P.J. Clinical Pharmacokinetics of Chloramphenicol and Chloramphenicol Succinate. Clin Pharmacokinet 9, 222–238 (1984). https://doi.org/10.2165/00003088-198409030-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-198409030-00004

Keywords

Navigation