Skip to main content
Log in

Predicting Cancer Therapy-Induced Cardiotoxicity

The Role of Troponins and Other Markers

  • Leading Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Several anticancer drugs have been associated with cardiac toxicity, especially the anthracyclines and trastuzumab. The pathogenesis of anthracycline-associated toxicity has been well described, whereas the mechanism of trastuzumab-associated toxicity is unknown. Although routine cardiac imaging studies (e.g. echocardiogram or multiple gated acquisition scans) may identify subclinical evidence of myocardial dysfunction, available data do not support their routine use for monitoring asymptomatic patients undergoing cancer therapy. Other modalities such as nuclear medicine scintigraphy with indium-111-antimyosin antibody and endomyocardial biopsy have been shown to be useful in identifying early cardiac damage, but their routine use is limited by practical considerations such as feasibility and cost. Consequently, there is significant interest in developing simple and reproducible methods for identifying patients at risk for treatment-induced myocardial damage. Available data suggest that circulating markers such as troponins and natriuretic peptides could potentially be useful for this purpose. Measurement of plasma troponin levels are commonly used in clinical practice in order to provide diagnostic and prognostic information in patients with myocardial ischaemia. Elevated levels may likewise correlate with anthracycline-induced cardiac damage, although plasma levels are only minimally elevated (well below that associated with ischaemia), and elevations may persist for weeks or months after anthracycline exposure. Clinical trials are currently evaluating the role of these markers in predicting both early and late, clinical and subclinical damage associated with anthracyclines and trastuzumab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III
Table IV

Similar content being viewed by others

References

  1. Early Breast Cancer Trialists’ Collaborative Group. Polychemotherapy for early breast cancer: an overview of the randomised trials. Lancet 1998; 352: 930–42

    Google Scholar 

  2. Levine MN, Bramwell VH, Pritchard KI, et al. Randomized trial of intensive cyclophosphamide, epirubicin, and fluorouracil chemotherapy compared with cyclophosphamide, methotrexate, and fluorouracil in premenopausal women with node-positive breast cancer. J Clin Oncol 1998; 16: 2651–8

    PubMed  CAS  Google Scholar 

  3. French Epirubicin Study Group. Benefit of a high-dose epirubicin regimen in adjuvant chemotherapy for node-positive breast cancer patients with poor prognostic factors: 5-year follow-up results of French Adjuvant Study Group 05 randomized trial. J Clin Oncol 2001; 19: 602–11

    Google Scholar 

  4. A’Hern RP, Smith IE, Ebbs SR. Chemotherapy and survival in advanced breast cancer: the inclusion of doxorubicin in Cooper type regimens. Br J Cancer 1993; 67: 801–5

    Article  PubMed  Google Scholar 

  5. Fossati R, Confalonieri C, Torri V, et al. Cytotoxic and hormonal treatment of metastatic breast cancer: a systematic review of published randomized trials involving 31 510 women. J Clin Oncol 1998; 16: 3439–60

    PubMed  CAS  Google Scholar 

  6. Myers C. The role of iron in doxorubicin-induced cardiomyopathy. Semin Oncol 1998; 25Suppl. 10: 10–4

    PubMed  CAS  Google Scholar 

  7. Shan K, Lincoff AM, Young JB. Anthracycline-induced cardiotoxicity. Ann Intern Med 1996; 125: 47–58

    PubMed  CAS  Google Scholar 

  8. Billingham ME, Mason JW, Bristow MR, et al. Anthracycline cardiomyopathy monitored by morphologic changes. Cancer Treat Rep 1978; 62: 865–72

    PubMed  CAS  Google Scholar 

  9. Doroshow JH, Locker GY, Myers CE. Enzymatic defences of the mouse heart against reactive oxygen metabolites: alterations produced by doxorubicin. J Clin Invest 1980; 65: 128–35

    Article  PubMed  CAS  Google Scholar 

  10. Sparano JA. Use of dexrazoxane and other strategies to prevent cardiomyopathy associated with doxorubicin-taxane combinations. Semin Oncol 1998; 25: 66–71

    PubMed  CAS  Google Scholar 

  11. Von Hoff DD, Layard MW, Basa P, et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med 1979; 91: 710–7

    Google Scholar 

  12. Swain SM. Adult multicenter trials using dexrazoxane to protect against cardiac toxicity. SeminOncol 1998; 25Suppl. 10: 43–7

    CAS  Google Scholar 

  13. Swain SM, Shaley FS, Gerber MC, et al. Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. J Clin Oncol 1997; 10: 117–27

    Google Scholar 

  14. Steinherz LJ, Steinherz PG, Tan CTC, et al. Cardiac toxicity 4 to 20 years after completing anthracycline therapy. JAMA 1991; 266: 1672–7

    Article  PubMed  CAS  Google Scholar 

  15. Zambetti M, Moliterni A, Materazzo C, et al. Long-term cardiac sequelae in operable breast cancer patients given adjuvant chemotherapy with or without doxorubicin and breast irradiation. J Clin Oncol 2001; 19: 37–43

    PubMed  CAS  Google Scholar 

  16. Carter P, Presta L, Gorman CM, et al. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci U S A 1992; 89: 4285–9

    Article  PubMed  CAS  Google Scholar 

  17. Hung MC, Lau YK. Basic science of HER-2/neu: a review. Semin Oncol 1999; 26: 51–9

    PubMed  CAS  Google Scholar 

  18. Tzahar E, Waterman H, Chen X, et al. A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol Cell Biol 1996; 16: 5276–87

    PubMed  CAS  Google Scholar 

  19. Karunagaran D, Tzahar E, Beerli RR, et al. ErbB-2 is a common auxiliary subunit of NDF and EGF receptors: implications for breast cancer. EMBO J 1996; 15: 254–64

    PubMed  CAS  Google Scholar 

  20. Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235: 177–82

    Article  PubMed  CAS  Google Scholar 

  21. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001; 344: 783–92

    Article  PubMed  CAS  Google Scholar 

  22. Sparano JA. Cardiac toxicity of trastuzumab (herceptin): implications for the design of adjuvant trials. Semin Oncol 2001; 28Suppl. 3: 20–7

    Article  PubMed  CAS  Google Scholar 

  23. Seidman A, Hudis C, Pierri MK, et al. Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol 2002; 20: 1215–21

    Article  PubMed  CAS  Google Scholar 

  24. Moreb JS, Oblon DJ. Outcome of clinical congestive heart failure induced by anthracycline chemotherapy. Cancer 1992; 70: 2637–41

    Article  PubMed  CAS  Google Scholar 

  25. Zhao YY, Sawyer DR, Baliga RR, et al. Neuregulins promote survival and growth of cardiac myocytes. Persistence of ERbB2 and ErbB4 expression in neonatal and adult ventricular myocytes. J Biol Chem 1998; 272: 10261–9

    Article  Google Scholar 

  26. Carraway KL. Involvement of the neuregulins and their receptors in cardiac and neural development. Bioessays 1996; 18: 263–6

    Article  PubMed  CAS  Google Scholar 

  27. Erickson SL, O’Shea KS, Ghaboosi N, et al. ErbB3 is required for normal cerebellar and cardiac development: a comparison with ErbB2- and heregulin-deficient mice. Development 1997; 124: 4999–5011

    PubMed  CAS  Google Scholar 

  28. Zhao YY, Feron O, Dessy C, et al. Neuregulin signaling in the heart. Dynamic targeting of erbB4 to caveolar microdomains in cardiac myocytes. Circ Res 1999; 84: 1380–7

    Article  PubMed  CAS  Google Scholar 

  29. McKillop JH, Bristow MR, Goris ML, et al. Sensitivity and specificity of radionuclide ejection fractions in doxorubicin cardiotoxicity. Am Heart J 1983; 106: 1048–56

    Article  PubMed  CAS  Google Scholar 

  30. Erselcan T, Kairemo KJ, Wiklund TA, et al. Subclinical cardiotoxicity following adjuvant dose-escalated FEC, high-dose chemotherapy, or CMF in breast cancer. Br J Cancer 2000; 82: 777–81

    Article  PubMed  CAS  Google Scholar 

  31. Kremer LC, Tiel-van Buul MM, Ubbink MC, et al. Indium-111-antimyosin scintigraphy in the early detection of heart damage after anthracycline therapy in children. J ClinOncol 1999; 17: 1208–11

    CAS  Google Scholar 

  32. Mackay B, Ewer MS, Carrasco CH, et al. Assessment of anthracycline cardiomyopathy by endomyocardial biopsy. Ultrastruct Pathol 1994; 18: 203–11

    Article  PubMed  CAS  Google Scholar 

  33. Billingham ME, Mason JW, Bristow MR, et al. Anthracycline cardiomyopathy monitored by morphologic changes. Cancer Treat Rep 1978; 62: 865–72

    PubMed  CAS  Google Scholar 

  34. Pegelow CH, Popper RW, de Wit SA, et al. Endomyocardial biopsy to monitor anthracycline therapy in children. J Clin Oncol 1984; 2: 443–6

    PubMed  CAS  Google Scholar 

  35. Perry SV. The regulation of contractile activity in muscle. Biochem Soc Trans 1979; 7: 593–617

    PubMed  CAS  Google Scholar 

  36. Hamm CW. New serum markers for acute myocardial infarction. N Engl J Med 1994; 331: 607–8

    Article  PubMed  CAS  Google Scholar 

  37. Goldmann BU, Christensen RH, Hamm CW, et al. Implications of troponin testing in clinical medicine. Curr Control Trials Cardiovasc Med 2001; 2: 75–84

    Article  PubMed  CAS  Google Scholar 

  38. Katus HA, Diederich KS, Schwarz F, et al. Influence of reperfusion on serum concentrations of cytosolic creatine kinase and structural myosin light chains in acute myocardial infarction. Am J Cardiol 1987; 60: 440–5

    Article  PubMed  CAS  Google Scholar 

  39. Katus HA, Remppis A, Scheffold T, et al. Intracellular compart-mentation of cardiac troponin T and its release kinetics in patients with reperfused and nonreperfused myocardial infarction. Am J Cardiol 1991; 67: 1360–7

    Article  PubMed  CAS  Google Scholar 

  40. Adams III JE, Schechtman KB, Landt Y, et al. Comparable detection of acute myocardial infarction by creatine kinase MB isoenzyme and cardiac troponin I. Clin Chem 1994; 40: 1291–5

    PubMed  CAS  Google Scholar 

  41. Wu AHB, Lane PL. Meta-analysis in clinical chemistry: validation of troponin T as a marker for ischemic heart disease. Clin Chem 1995; 41: 1228–33

    PubMed  CAS  Google Scholar 

  42. Falk E. Unstable angina with fatal outcome: dynamic coronary thrombosis leading to infarction and/or sudden death: autopsy evidence of recurrent mural thrombosis with peripheral embolization culminating in total vascular occlusion. Circulation 1985; 71: 699–708

    Article  PubMed  CAS  Google Scholar 

  43. Davies MJ, Thomas AC, Knapman PA, et al. Intramyocardial platelet aggregation in patients with unstable angina suffering ischemic cardiac death. Circulation 1986; 73: 418–27

    Article  PubMed  CAS  Google Scholar 

  44. The Joint European Society of Cardiology/American College of Cardiology Committee. Myocardial infarction redefined a consensus document of the Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol 2000; 36: 959–69

    Google Scholar 

  45. Olatidoye AG, Wu AH, Feng YJ, et al. Prognostic role of troponin T versus troponin I in unstable angina pectoris for cardiac events with meta-analysis comparing published studies. Am J Cardiol 1998; 98: 1853–9

    Google Scholar 

  46. Polanczyk CA, Lee TH, Cook EF, et al. Cardiac troponin I as a predictor of major cardiac events in emergency department patients with acute chest pain. J Am Coll Cardiol 1998; 32: 8–14

    Article  PubMed  CAS  Google Scholar 

  47. Greenson N, Macoviak J, Krishnaswamy P, et al. Usefulness of cardiac troponin I inpatients undergoing open heart surgery. Am Heart J 2001; 141: 447–55

    Article  PubMed  CAS  Google Scholar 

  48. Saadeddin SM, Habbab MA, Sobki SH, et al. Minor myocardial injury after elective uncomplicated successful PTCA with or without stenting: detection by cardiac troponins. Catheter Cardiovasc Interv 2001; 53: 188–92

    Article  PubMed  CAS  Google Scholar 

  49. Schluter T, Baum H, Plewan A, et al. Effects of implantable cardioverter defibrillator implantation and shock application on biochemical markers of myocardial damage. Clin Chem 2001; 47: 459–63

    PubMed  CAS  Google Scholar 

  50. Manolis AS, Vassilikos V, Maounis T, et al. Detection of myocardial injury during radiofrequency catheter ablation by measuring cardiac troponin I levels: procedural correlates. J Am Coll Cardiol 1999; 34: 1099–105

    Article  PubMed  CAS  Google Scholar 

  51. Salim A, Velmahos GC, Jindal A, et al. Clinically significant blunt cardiac trauma: role of serum troponin levels combined with electrocardiographic findings. J Trauma 2001; 50: 237–43

    Article  PubMed  CAS  Google Scholar 

  52. Del Carlo CH, O’Connor CM. Cardiac troponins in congestive heart failure. Am Heart J 1999; 138: 646–53

    Article  PubMed  CAS  Google Scholar 

  53. Meyer T, Binder L, Hruska N, et al. Cardiac troponin I elevation in acute pulmonary embolism is associated with right ventricular dysfunction. J Am Coll Cardiol 2000; 36: 1632–6

    Article  PubMed  CAS  Google Scholar 

  54. Lauer B, Niederau C, Kuhl U, et al. Cardiac troponin T in patients with clinically suspected myocarditis. J Am Coll Cardiol 1997; 30: 1354–9

    Article  PubMed  CAS  Google Scholar 

  55. Dengler TJ, Zimmermann R, Braun K, et al. Elevated serum concentrations of cardiac troponin in acute allograft rejection after human heart transplantation. J Am Coll Cardiol 1998; 32: 405–12

    Article  PubMed  CAS  Google Scholar 

  56. Ver Elst KM, Spapen HD, Nguyen DN, et al. Cardiac troponins I and T are biological markers of left ventricular dysfunction in septic shock. Clin Chem 2000; 46: 650–7

    Google Scholar 

  57. Venugopal J. Cardiac natriuretic peptides - hope or hype? J Clin Pharm Ther 2001; 26: 15–31

    Article  PubMed  CAS  Google Scholar 

  58. Hama N, Itoh H, Shirakami G, et al. Rapid ventricular induction of brain natriuretic peptide gene expression in experimental acute myocardial infarction. Circulation 1995; 92: 1558–64

    Article  PubMed  CAS  Google Scholar 

  59. Fleming SM, O’Gorman T, O’Byrne L, et al. Cardiac troponin I and N-terminal pro-brain natriuretic peptide in relation to fetal heart rate abnormalities during labor. Pediatr Cardiol 2001; 22: 393–6

    PubMed  CAS  Google Scholar 

  60. Hammerer-Lercher A, Neubauer E, Muller S, et al. Head-to-head comparison of N-terminal pro-brain natriuretic peptide, brain natriuretic peptide and N-terminal pro-atrial natriuretic peptide in diagnosing left ventricular dysfunction. Clin Chim Acta 2001; 310: 193–7

    Article  PubMed  CAS  Google Scholar 

  61. Hammerer-Lercher A, Puschendorf B, Mair J. Cardiac natriuretic peptides: new laboratory parameters in heart failure patients. Clin Lab 2001; 47: 265–77

    PubMed  CAS  Google Scholar 

  62. Darbar D, Davidson NC, Gillespie N, et al. Diagnostic value of B-type natriuretic peptide concentrations in patients with acute myocardial infarction. Am J Cardiol 1996; 78: 284–7

    Article  PubMed  CAS  Google Scholar 

  63. McDonagh TA, Cunningham AD, Morrison CE, et al. Left ventricular dysfunction, natriuretic peptides, and mortality in an urban population. Heart 2001; 86: 21–6

    Article  PubMed  CAS  Google Scholar 

  64. Fleischer D, Espiner EA, Yandle TG, et al. Rapid assay of plasma brain natriuretic peptide in the assessment of acute dyspnoea. N Z Med J 1997; 110: 71–4

    PubMed  CAS  Google Scholar 

  65. Cowie MR, Struthers AD, Wood DA, et al. Value of natriuretic peptides in assessment of patients with possible new heart failure in primary care. Lancet 1997; 350: 1349–53

    Article  PubMed  CAS  Google Scholar 

  66. Richards AM, Doughty R, Nicholls MG, et al. Neurohumoral prediction of benefit from carvedilol in ischaemic left ventricular dysfunction. Australia-New Zealand Heart Failure Group. Circulation 1999; 99: 786–92

    Article  PubMed  CAS  Google Scholar 

  67. Richards AM, Doughty R, Nicholls MG, et al. Plasma N-terminal pro-brain natriuretic peptide and adrenomedullin: prognostic utility and prediction of benefit from carvedilol in chronic ischaemic left ventricular dysfunction. Australia- New Zealand Heart Failure Group. J Am Coll Cardiol 2001; 37: 1781–7

    Article  PubMed  CAS  Google Scholar 

  68. Stanek B, Frey B, Hulsmann M, et al. Prognostic evaluation of neurohumoral plasma levels before and during beta-blocker therapy in advanced left ventricular dysfunction. J Am Coll Cardiol 2001; 38: 436–42

    Article  PubMed  CAS  Google Scholar 

  69. Herman EH, Lipshultz SE, Rifai N, et al. Use of cardiac troponin T levels as an indicator of doxorubicin-induced cardiotoxicity. Cancer Res 1998; 58: 195–7

    PubMed  CAS  Google Scholar 

  70. Fink FM, Genser N, Fink C, et al. Cardiac troponin T and creatine kinase MB mass concentrations in children receiving anthracycline chemotherapy. Med Pediatr Oncol 1995; 25: 185–9

    Article  PubMed  CAS  Google Scholar 

  71. Lipshultz SE, Rifai N, Sallan SE, et al. Predictive value of cardiac troponin T in pediatric patients at risk for myocardial injury. Circulation 1997; 96: 2641–8

    Article  PubMed  CAS  Google Scholar 

  72. Lipshultz S, Sallan S, Dalton V, et al. Elevated serum cardiac troponin-T as a marker for active cardiac injury during therapy for childhood acute lymphoblastic leukemia (ALL) [abstract no. 2191]. Proc Am Soc Clin Oncol 1999; 18: 568a

    Google Scholar 

  73. Hughes-Davies L, Sacks D, Rescigno J, et al. Serum cardiac troponin T levels during treatment of early-stage breast cancer. J Clin Oncol 1995; 13: 2582–4

    PubMed  CAS  Google Scholar 

  74. Auner HW, Tinchon C, Sill H, et al. Serum troponin T as an indicator of anthracycline cardiotoxicity in adults [abstract no. 1552]. Proc Am Soc Clin Oncol 2001; 20: 389a

    Google Scholar 

  75. Nag SM, Briscoe K, Desouza P. A pilot study of troponin T as a prognostic marker in patients treated with 5-flurouracil [abstract no. 3126]. Proc Am Soc Clin Oncol 2001; 20: 344b

    Google Scholar 

  76. Hirsch R, Landt Y, Porter S, et al. Cardiac troponin I in pediatrics: normal values and potential use in the assessment of cardiac injury. J Pediatr 1997; 130: 872–87

    Article  PubMed  CAS  Google Scholar 

  77. Mathew P, Suarez W, Kip K, et al. Is there a potential role for serum cardiac troponin I as a marker for myocardial dysfunction in pediatric patients receiving anthracycline-based therapy? A pilot study. Cancer Invest 2001; 19: 352–9

    Article  PubMed  CAS  Google Scholar 

  78. Sedky LM, Hamada E, Selim H, et al. The value of troponin-I measurement in assessment of anthracycline induced cardiotoxicity among breast cancer patients [abstract 1772]. Proc Am Soc Clin Oncol 2001; 20: 6b

    Google Scholar 

  79. Cardinale D, Sandri MT, Martinoni A, et al. Left ventricular dysfunction predicted by early troponin I release after high-dose chemotherapy. J Am Coll Cardiol 2000; 36: 517–22

    Article  PubMed  CAS  Google Scholar 

  80. Benvenuto GM, La Vecchia L, Morandi P, et al. Assessment of cardiotoxicity of high dose cyclophosphamide with electrocardiographic, echocardiographic, and troponin I monitoring in patients with breast tumors. Ital Heart J 2000; 1: 1457–63

    CAS  Google Scholar 

  81. Nousiainen T, Jantunen E, Vanninen E, et al. Acute neurohumoral and cardiovascular effects of idarubicin in leukemia patients. Eur J Haematol 1998; 61: 347–53

    Article  PubMed  CAS  Google Scholar 

  82. Nousiainen T, Jantunen E, Vanninen E, et al. Natriuretic peptides as markers of cardiotoxicity during doxorubicin treatment for non-Hodgkin’s lymphoma. Eur J Haematol 1999; 62: 135–41

    Article  PubMed  CAS  Google Scholar 

  83. Suzuki T, Hayashi D, Yamazaki T, et al. Elevated B-type natriuretic peptide levels after anthracycline administration. Am Heart J 1998; 136: 362–3

    Article  PubMed  CAS  Google Scholar 

  84. Okumura H, Iuchi K, Yoshida T, et al. Brain natriuretic peptide is a predictor of anthracycline-induced cardiotoxicity. Acta Haematol 2000; 104: 158–63

    Article  PubMed  CAS  Google Scholar 

  85. Hayakawa H, Komada Y, Hirayama M, et al. Plasma levels of natriuretic peptides in relation to doxorubicin-induced cardiotoxicity and cardiac function in children with cancer. Med Pediatr Oncol 2001; 37: 4–9

    Article  PubMed  CAS  Google Scholar 

  86. Berry G, Billingham M, Alderman E, et al. The use of cardiac biopsy to demonstrate reduced cardiotoxicity in AIDS Kaposi’s sarcoma patients treated with pegylated liposomal doxorubicin. Ann Oncol 1998; 9: 711–6

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors have received no funding for the preparation of this manuscript, nor have any conflicts of interest directly relevant to the contents of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Sparano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sparano, J.A., Brown, D.L. & Wolff, A.C. Predicting Cancer Therapy-Induced Cardiotoxicity. Drug-Safety 25, 301–311 (2002). https://doi.org/10.2165/00002018-200225050-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-200225050-00001

Keywords

Navigation