Skip to main content
Log in

Toxicity of Antiretroviral Nucleoside and Nucleotide Analogues

Is Mitochondrial Toxicity the Only Mechanism?

  • Current Opinion
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Nucleoside analogues represent the cornerstones of antiretroviral regimens. A range of drug- or tissue-specific toxicities, such as peripheral neuropathy, myopathy, pancreatitis and lactic acidosis with hepatic steatosis, has been documented with these agents. The fat atrophy seen on long term antiretroviral therapy may also be related to nucleoside analogues.

The mechanisms by which nucleoside analogues cause toxicity are not clearly established. In vitro, the triphosphates of these agents are weak to modest substrates for human DNA polymerases, showing the greatest affinity for mitochondrial DNA polymerase γ. Short term exposure in vitro to some nucleoside analogues has been demonstrated to cause increased lactate production or falls in mitochondrial DNA suggestive of mitochondrial toxicity. However, stavudine and to a lesser extent zidovudine are poor substrates for mitochondrial thymidine kinase type 2, the predominant form in cells that are not actively mitotic such as neurons, myocytes and adipocytes. These are the cell types where the proposed mitochondrial toxicities neuropathy, myopathy and lipoatrophy are observed. Thus, active concentrations of phosphorylated products of stavudine and zidovudine may not be present in mitochondria.

The familial mitochondrial diseases do not have identical presentations to nucleoside analogue toxicities. These disorders most commonly involve the CNS, typically with seizures or dementia, and occasionally the kidneys. Although nucleoside analogues are known to penetrate the CNS and are commonly renally excreted unchanged, mitochondrial toxicities at these sites have not been documented.

Furthermore, toxicity caused by nucleoside or nucleotide analogues does not always appear to arise through the mitochondrial route. Cidofovir appears to cause renal tubular dysfunction via a toxic intracellular metabolite, and zidovudine-related anaemia appears to be related to decreased globin RNA synthesis. In vitro or animal models suggest that zidovudine myopathy, stavudine-related (but not zalcitabine- or didanosine-related) neuropathy and didanosine-related pancreatitis may all be not related, or not exclusively related, to mitochondrial dysfunction.

The integration of nucleoside analogues into nuclear DNA, best documented with zidovudine but likely to occur with other agents, represents an alternative but potentially delayed pathway to cytotoxicity and cell apoptosis. This is the mechanism of cell death during therapy with antineoplastic nucleoside analogues, and may have contributed to the multisystem toxicities observed with the anti-hepatitis B drug fialuridine. New research evaluating the effects of long term exposure of cell lines is required to address the possibility that nuclear genotoxicity plays a role in long term nucleoside analogue toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II

Similar content being viewed by others

References

  1. Palella FJ, Delaney KM, Moorman AC, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. N Engl J Med 1998; 338: 853–60

    Article  PubMed  Google Scholar 

  2. Finzi D, Hermankova M, Pierson T, et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 1997; 278: 1295–300

    Article  PubMed  CAS  Google Scholar 

  3. Wong JK, Hazareh M, Gunthard HF, et al. Recovery of replication-competent HIV despite prolonged suppression of HIV viremia. Science 1997; 278: 1211–5

    Article  Google Scholar 

  4. Moyle GJ, Gazzard BG. A risk-benefit assessment of HIV protease inhibitors. Drug Saf 1999; 20: 299–321

    Article  PubMed  CAS  Google Scholar 

  5. Lewis W, Dalakas MC. Mitochondrial toxicity of antiviral drugs. Nat Med 1995; 1: 417–22

    Article  PubMed  CAS  Google Scholar 

  6. Brinkman K, ter Hofstede HJM, Burger DM, et al. Adverse effects of reverse transcriptase inhibitors: mitochondrial toxicity as common pathway. AIDS 1998; 12: 1735–44

    Article  PubMed  CAS  Google Scholar 

  7. Brinkman K, Kakuda TN. Mitochondrial toxicity of nucleoside analogue reverse transcriptase inhibitors: a looming obstacle for long-term anti-retroviral therapy? Curr Opin Infect Dis 2000; 13: 5–11

    Article  PubMed  CAS  Google Scholar 

  8. Saraste M. Oxidative phosphorylation at the fin de siecle. Science 1999; 283: 1488–93

    Article  PubMed  CAS  Google Scholar 

  9. Chinnery PF, Howell N, Andrews RM, et al. Clinical mitochondrial genetics. J Med Genet 1999; 36: 425–36

    PubMed  CAS  Google Scholar 

  10. Fromenty B, Pessayre D. Impaired mitochondrial function in microvesicular steatosis. Effects of drugs, ethanol, hormones and cytokines. J Hepatol 1997; 26Suppl. 2: S43–S53

    Article  Google Scholar 

  11. Treem WR, Sokol RJ. Disorders of the mitochondria. Semin Liver Dis 1998; 18: 237–53

    Article  PubMed  CAS  Google Scholar 

  12. Lombes A, Bonilla E, Dimauro S. Mitochondrial encephalomyopathies. Rev Neurol 1989; 145: 671–89

    PubMed  CAS  Google Scholar 

  13. Taylor RW, Chinnery PF, Clark KM, et al. Treatment of mitochondrial disease. J Bioenerg Biomembr 1997; 29: 195–205

    Article  PubMed  CAS  Google Scholar 

  14. Chen MS, Oshana SC. Inhibition of HIV reverse transcriptase by 2′,3′-dideoxycytidine triphosphate. Biochem Pharmacol 1987; 36: 4361–2

    Article  PubMed  CAS  Google Scholar 

  15. Chang C-N, Skalski V, Zhou JH, et al. Biochemical pharmacology of (+)- and (−)-2′,3′-dideoxythiacytidine as antihepatitis B agents. J Biol Chem 1992; 267: 22414–20

    PubMed  CAS  Google Scholar 

  16. Schuetz JD, Connelly MC, Sun D, et al. MRP4: a previously unidentified factor in resistance to nucleoside-based antiviral drugs. Nat Med 1999; 5: 1048–51

    Article  PubMed  CAS  Google Scholar 

  17. Martin JL, Brown CE, Matthews-Davis N, et al. Effects of antiviral nucleoside analogs on human DNA polymerases and mitochondrial DNA synthesis. Antimicrob Agents Chemother 1994; 38: 2743–9

    Article  PubMed  CAS  Google Scholar 

  18. Gao WY, Agbaria R, Driscoll JS, et al. Divergent anti-human immunodeficiency virus activity and anabolic phosphorylation of 2′,3′-dideoxynucleoside analogs in resting and activated human cells. J Biol Chem 1994; 269: 12633–8

    PubMed  CAS  Google Scholar 

  19. Faletto MB, Miller WH, Garvey EP, et al. Unique intracellular activation of the potent anti-human immunodeficiency virus agent 1592U89. Antimicrob Agents Chemother 1997; 41: 1099–107

    PubMed  CAS  Google Scholar 

  20. Lavie A, Schlichting I, Vetter IR, et al. The bottleneck in AZT activation. Nat Med 1997; 3: 922–4

    Article  PubMed  CAS  Google Scholar 

  21. Zhu Z, Hitchcock MJ, Sommadossi JP. Metabolism and DNA interaction of 2′,3′-didehydro-2′,3′-dideoxythymidine in human bone marrow cells. Mol Pharmacol 1991; 40: 838–45

    PubMed  CAS  Google Scholar 

  22. Arner ES, Spasokoukotskaja T, Eriksson S. Selective assays for thymidine kinase 1 and 2 and deoxycytidine kinase and their activities in extracts from human cells and tissues. Biochem Biophys Res Commun 1992; 188: 712–8

    Article  PubMed  CAS  Google Scholar 

  23. Munch-Petersen B, Cloos L, Tyrsted G, et al. Diverging substrate specificity of pure human thymidine kinases 1 and 2 against antiviral dideoxynucleosides. J Biol Chem 1991; 266 (14): 9032–8

    PubMed  CAS  Google Scholar 

  24. Wang J, Su C, Neuhard J, et al. Expression of human mitochondrial thymidine kinase in Escherichia coli: correlation between the enzymatic activity of pyrimidine nucleoside analogues and their inhibitory effect on bacterial growth. Biochem Pharmacol 2000; 59: 1583–8

    Article  PubMed  CAS  Google Scholar 

  25. Arner ES, Valentin A, Eriksson S. Thymidine and 3′-azido-3′-deoxythymidine metabolism in human peripheral blood lymphocytes and monocyte-derived macrophages. A study of both anabolic and catabolic pathways. J Biol Chem 1992; 267 (16): 10968–75

    PubMed  CAS  Google Scholar 

  26. Turriziani O, Simeoni E, Dianzani F, et al. Anti-HIV antiviral activity of stavudine in a thymidine kinase-deficient cellular line. Antiviral Ther 1998; 3: 191–4

    CAS  Google Scholar 

  27. Zhu C, Johansson M, Karlsson A. Incorporation of nucleoside analogs into nuclear or mitochondrial DNA is determined by the intracellular phosphorylation site. J Biol Chem 2000; 275: 26727–31

    PubMed  CAS  Google Scholar 

  28. Arnaudo E, Dalakas M, Shanske S, et al. Depletion of muscle mitochondrial DNA in AIDS patients with zidovudine-induced myopathy. Lancet 1991; 337: 508–10

    Article  PubMed  CAS  Google Scholar 

  29. Chen CH, Vazquez Padua M, Cheng YC. Effect of anti-human immunodeficiency virus nucleoside analogs on mitochondrial DNA and its implication for delayed toxicity. Mol Pharmacol 1991; 39: 625–8

    PubMed  CAS  Google Scholar 

  30. Medina DJ, Tsai CH, Hsiung GD, et al. Comparison of mitochondrial morphology, mitochondrial DNA content, and cell viability in cultured cells treated with three anti-human immunodeficiency virus dideoxynucleosides. Antimicrob Agents Chemother 1994; 38: 1824–8

    Article  PubMed  CAS  Google Scholar 

  31. Benbrik E, Chariot P, Bonavaud S, et al. Cellular and mitochondrial toxicity of zidovudine (AZT), didanosine (ddI) and zalcitabine (ddC) on cultured human muscle cells. J Neurol Sci 1997; 149: 19–25

    Article  PubMed  CAS  Google Scholar 

  32. Parker WB, Shaddix SC, Vince R, et al. Lack of mitochondrial toxicity in CEM cells treated with carbovir. Antiviral Res 1997; 34: 131–6

    Article  PubMed  CAS  Google Scholar 

  33. McKenzie R, Fried MW, Sallie R, et al. Hepatic failure and lactic acidosis due to fialuridine (FIAU), an investigational NRTI for chronic hepatitis B. N Engl J Med 1995; 333: 1099–105

    Article  PubMed  CAS  Google Scholar 

  34. Wang J, Eriksson S. Phosphorylation of the anti-hepatitis B nucleoside analog 1-(2′-deoxy-2′-fluoro-1-beta-D-arabinofuranosyl)-5-iodouracil (FIAU) by human cytosolic and mitochondrial thymidine kinase and implications for cytotoxicity. Antimicrob Agents Chemother 1996; 40 (6): 1555–7

    PubMed  CAS  Google Scholar 

  35. Horn DM, Neeb LA, Colacino JM, et al. Fialuridine is phosphorylated and inhibits DNA synthesis in isolated rat hepatic mitochondria. Antiviral Res 1997; 34 (1): 71–4

    Article  PubMed  CAS  Google Scholar 

  36. Ahluwalia GS, Driscoll JS, Ford Jr H, et al. Comparison of the DNA incorporation in human MOLT-4 cells of two 2′-beta-fluoronucleosides, 2′-beta-fluoro-2,3′-dideoxyadenosine and fialuridine. J Pharm Sci 1996; 85 (4): 454–5

    Article  PubMed  CAS  Google Scholar 

  37. Lewis W, Levine ES, Griniuviene B, et al. Fialuridine and its metabolites inhibit DNA polymerase y at sites of multiple adjacent analog incorporation, decrease mtDNA abundance, and cause mitochondrial structural defects in cultured hepatoblasts. Proc Natl Acad Sci USA 1996; 93: 3592–7

    Article  PubMed  CAS  Google Scholar 

  38. Lewis W, Meyer RR, Simpson JF, et al. Mammalian DNA polymerases alpha, beta, gamma, delta, and epsilon incorporate fialuridine (FIAU) monophosphate into DNA and are inhibited competitively by FIAU triphosphate. Biochemistry 1994; 33 (48): 14620–4

    Article  PubMed  CAS  Google Scholar 

  39. Richardson FC, Engelhardt JA, Bowsher RR. Fialuridine accumulates in DNA of dogs, monkeys, and rats following longterm oral administration. Proc Natl Acad Sci USA 1994; 91 (25): 12003–7

    Article  PubMed  CAS  Google Scholar 

  40. Cui L, Yoon S, Schinazi RF, et al. Cellular and molecular events leading to mitochondrial toxicity of 1-(2-deoxy-2-fluoro-1-beta-D-arabinofuranosyl)-5-iodouracil in human livercells. J Clin Invest 1995 Feb; 95: 555–63

    Article  PubMed  CAS  Google Scholar 

  41. Tennant BC, Baldwin BH, Graham LA, et al. Antiviral activity and toxicity of fialuridine in the woodchuck model of hepatitis B virus infection. Hepatology 1998; 28(1): 179–91

    Article  PubMed  CAS  Google Scholar 

  42. Pan-Zhou XR, Cui L, Zhou XJ, et al. Differential effects of antiretroviral nucleoside analogs on mitochondrial function in HepG2 cells. Antimicrob Agents Chemother 2000 Mar; 44 (3): 496–503

    Article  PubMed  CAS  Google Scholar 

  43. Masini A, Scotti C, Calligaro A, et al. Zidovudine-induced experimental myopathy: dual mechanism of mitochondrial damage. J Neurol Sci 1999; 166 (2): 131–40

    Article  PubMed  CAS  Google Scholar 

  44. Boxwell DE, Styrt BA. Lactic acidosis (LA) in patients receiving nucleoside reverse transcriptase inhibitors (NRTIs) [abstract 1284]. 39th Interscience Conference on Antimicrobal Agents and Chemotherapy, 1999 Sep; San Francisco

    Google Scholar 

  45. Boxwell DE, Scalfaro P, Chesaux JJ, et al. Severe transient neonatal lactic acidosis during prophylactic zidovudine treatment. Intensive Care Med 1998; 24: 247–50

    Article  Google Scholar 

  46. Sundar K, Suarez M, Banogon PE, et al. Zidovudine-induced fatal lactic acidosis and hepatic failure in patients with acquired immunodeficiency syndrome: report of two patients and review of the literature. Crit Care Med 1997; 25: 1425–30

    Article  PubMed  CAS  Google Scholar 

  47. Brinkman K, ter Hofstede HJ. Mitochondrial toxicity of nucleoside analogue reverse transcriptase inhibitors: lactic acidosis, risk factors and therapeutic options. AIDS Rev 1999; 1: 141–8

    Google Scholar 

  48. Olano JP, Boruki MJ, Wen JW, et al. Massive hepatic steatosis and lactic acidosis in a patient with AIDS who was receiving zidovudine. Clin Infect Dis 1995; 21: 973–6

    Article  PubMed  CAS  Google Scholar 

  49. Barbaro G, Lorenzo G, Asti A, et al. Hepatocellular mitochondrial alterations in patients with chronic hepatitis C: ultrastructural and biochemical findings. Am J Gastroenterol 1999; 94: 2198–205

    Article  PubMed  CAS  Google Scholar 

  50. Morgello S, Wolfe D, Gadfrey E, et al. Mitochondrial abnormalities in human immunodeficiency virus-associated myopathy. Acta Neuropathol (Berl) 1995; 90: 366–74

    Article  CAS  Google Scholar 

  51. Hayakawa M, Ogawa T, Sugiyama S, et al. Massive conversion of guanosine to 8-hydroxy-guanosine in mouse liver mitochondrial DNA by administration of azidothymidine. Biochem Biophys Res Commun 1991; 29: 606–14

    Google Scholar 

  52. de la Asuncion JG, del Olmo ML, Sastre J, et al. Zidovudine (AZT) causes an oxidation of mitochondrial DNA in mouse liver. Hepatology 1999; 29: 985–7

    Article  PubMed  Google Scholar 

  53. Barile M, Valenti D, Hobbs GA, et al. Mechanisms of toxicity of 3′-azido-3′-deoxythymidine. Its interaction with adenylate kinase. Biochem Pharmacol 1994; 48: 1405–12

    Article  PubMed  CAS  Google Scholar 

  54. Skuta G, Fischer GM, Janaky T, et al. Molecular mechanism of the short-term cardiotoxicity caused by 2′,3′-dideoxycytidine (ddC): modulation of reactive species levels and ADP-ribosylation reactions. Biochem Pharmacol 1999; 58: 1915–25

    Article  PubMed  CAS  Google Scholar 

  55. Modica-Napolitano JS. AZT causes tissue specific inhibition of mitochondrial bioenergetic function. Biochem Biophys Res Commun 1993; 194: 170–7

    Article  PubMed  CAS  Google Scholar 

  56. Wei YH, Lu CY, Lee HC, et al. Oxidative damage and mutation in mitochondrial DNA and age dependent decline in mitochondrial respiratory function. Ann NY Acad Sci 1998; 854: 155–70

    Article  PubMed  CAS  Google Scholar 

  57. Viora M, Di Genova G, Rivabene R, et al. Interference with cell cycle progression and induction of apoptosis by dideoxynucleoside analogs. Int J Immunopharmacol 1997; 19 (6): 311–21

    Article  PubMed  CAS  Google Scholar 

  58. Huang P, Plunkett W. Fludarabine- and gemcitabine-induced apoptosis: incorporation of analogs into DNA is a critical event. Cancer Chemother Pharmacol 1995; 36: 181–8

    Article  PubMed  CAS  Google Scholar 

  59. Hashimoto KI, Tsunoda R, Okamoto M, et al. Stavudine selectively induces apoptosis in HIV type 1 infected cells. AIDS Res Hum Retrovir 1997; 13: 193–9

    Article  PubMed  CAS  Google Scholar 

  60. Olivero OA, Shearer GM, Chougnet CA, et al. Incorporation of zidovudine into leukocyte DNA from HIV-1-positive adults and pregnant women, and cord blood from infants exposed in utero. AIDS 1999; 13 (8): 919–25

    Article  PubMed  CAS  Google Scholar 

  61. Olivero OA, Poirier MC. Preferential incorporation of 3′-azido-2′,3 ‘-dideoxythymidine into telomeric DNA and Z-DNA-containing regions of Chinese hamster ovary cells. Mol Carcinog 1993; 8: 81–8

    Article  PubMed  CAS  Google Scholar 

  62. Strahl C, Blackburn EH. Effects of reverse transcriptase inhibitors on telomere length and telomerase activity in two immortalized human cell lines. Mol Cell Biol 1996; 16: 53–65

    PubMed  CAS  Google Scholar 

  63. Gomez DE, Tejera AM, Olivera OA. Irreversible telomere shortening by 3′-azido-2′,3′-dideoxythymidine (AZT) treatment. Biochem Biophys Res Commun 1998; 246: 107–10

    Article  PubMed  CAS  Google Scholar 

  64. Agarwal RP, Olivero OA. Genotoxicity and mitochondrial damage in human lymphocytic cells chronically exposed to 3′-azido-2′,3′-dideoxythymidine. Mutat Res 1997; 390 (3): 223–31

    Article  PubMed  CAS  Google Scholar 

  65. Copeland WC, Chen MS, Wang TS. Human DNA polymerases alpha and beta are able to incorporate anti-HIV deoxynucleotides into DNA. J Biol Chem 1992; 267 (30): 21459–64

    PubMed  CAS  Google Scholar 

  66. Tornevik Y, Ullman B, Balzarini J, et al. Cytotoxicity of 3′-azido-3′-deoxythymidine correlates with 3′-azidothymidine-5′-monophosphate (AZTMP) levels, whereas anti-human immunodeficiency virus (HIV) activity correlates with 3′-azidothymidine-5′-triphosphate (AZTTP) levels in cultured CEM T-lymphoblastoid cells. Biochem Pharmacol 1995; 49 (6): 829–37

    Article  PubMed  CAS  Google Scholar 

  67. Sommadossi JP, Carlisle R, Zhou Z. Cellular pharmacology of 3′-azido-3′-deoxythymidine with evidence of incorporation into DNA of human bone marrow cells. Mol Pharmacol 1989; 36 (1): 9–14

    PubMed  CAS  Google Scholar 

  68. Sussman HE, Olivero OA, Meng Q, et al. Genotoxicity of 3′-azido-3′-deoxythymidine in the human lymphoblastoid cell line, TK6: relationships between DNA incorporation, mutant frequency, and spectrum of deletion mutations in HPRT. Mutat Res 1999; 429: 249–59

    Article  PubMed  CAS  Google Scholar 

  69. Lucarelli M, Palitti F, Carotti D, et al. AZT-induced hypermethylation of human thymidine kinase gene in the absence of total DNA hypermethylation. FEBS Lett 1996; 396: 323–6

    Article  PubMed  CAS  Google Scholar 

  70. Cretton EM, Xie MY, Bevan RJ, et al. Catabolism of 3′-azido-3′-deoxythymidine in hepatocytes and liver microsomes, with evidence of formation of 3′-amino-3′-deoxythymidine, a highly toxic catabolite for human bone marrow cells. Mol Pharmacol 1991; 39: 258–66

    PubMed  CAS  Google Scholar 

  71. Morris AA. Mitochondrial respiratory chain disorders and the liver. Liver 1999; 19: 357–68

    Article  PubMed  CAS  Google Scholar 

  72. Brown GK, Squier MV. Neuropathology and pathogenesis of mitochondrial diseases. J Inherit Metab Dis 1996; 19: 553–72

    Article  PubMed  CAS  Google Scholar 

  73. Naviaux RK, Nyhan WL, Barshop BA, et al. Mitochondrial DNA polymerase gamma deficiency and mtDNA depletion in a child with Alper’s syndrome. Ann Neurol 1999; 45: 54–8

    Article  PubMed  CAS  Google Scholar 

  74. Blanche S, Tardieu M, Rustin P, et al. Persistent mitochondrial dysfunction and perinatal exposure to antiretroviral nucleoside analogues. Lancet 1999; 354: 1084–9

    Article  PubMed  CAS  Google Scholar 

  75. Morris AA et al. Neonatal Fanconi syndrome due to deficiency of complex III of respiratory chain. Pediatr Nephrol 1995; 9: 407–11

    Article  PubMed  CAS  Google Scholar 

  76. Lacy SA, Hitchcock MJ, Lee WA, et al. Effect of oral probenecid coadministration on the chronic toxicity and pharmaco-kinetics of intravenous cidofovir in cynomolgus monkeys. Toxicol Sci 1998; 44: 97–106

    Article  PubMed  CAS  Google Scholar 

  77. Ho ES, Lin DC, Mendel DB, et al. Cytotoxicity of antiviral nucleotides adefovir and cidofovir is induced by the expression of human renal organic anion transporter 1. J Am Soc Nephrol 2000; 11: 383–93

    PubMed  CAS  Google Scholar 

  78. Cihlar T, Lin DC, Pritchard JB, et al. The antiviral nucleotide analogs cidofovir and adefovir are novel substrates for human and rat renal organic anion transporter 1. Mol Pharmacol 1999; 56 (3): 570–80

    PubMed  CAS  Google Scholar 

  79. Wada 5, Tsuda M, Sekine T, et al. Tat multispecific organic anion transported 1(rOAT1) transports zidovudine acyclovir and other antiviral nucleoside analogs. J Pharmaclo Exp Ther 2000; 294: 844–9

    CAS  Google Scholar 

  80. Weidner DA, Bridges EG, Cretton EM, et al. Comparative effects of 3′-azido-3′-deoxythymidine and its metabolite 3′-amino-3′-deoxythymidine on hemoglobin synthesis in K-562 human leukemia cells. Mol Pharmacol 1992; 41 (2): 252–8

    PubMed  CAS  Google Scholar 

  81. Gogu SR, Beckman BS, Wilson RB, et al. Reversal with a combination of erythropoietin and interleukin-3. Biochem PharmacolBiochem Pharmacol 1995; 50 (3): 413–9

    Article  PubMed  CAS  Google Scholar 

  82. Cupler EJ, Danon MJ, Jay C, et al. Early features of zidovudine-associated myopathy: histopathological findings and clinical correlations. Acta Neuropathol (Berl) 1995; 90: 1–6

    Article  CAS  Google Scholar 

  83. Pezeshkpour G, Illa I, Dalakas MC. Ultrastructural characteristics and DNA immunocytochemistry in human immunodeficiency virus and zidovudine-associated myopathies. Hum Pathol 1991; 22: 1281–8

    Article  PubMed  CAS  Google Scholar 

  84. Simpson DM, Citak KA, Godfrey E, et al. Myopathies associated with human immunodeficiency virus and zidovudine: can their effects be distinguished? Neurology 1993; 43: 971–6

    Article  PubMed  CAS  Google Scholar 

  85. Pereira LF, Oliveira MB, Carnieri EG. Mitochondrial sensitivity to zidovudine. Cell Biochem Funct 1998; 16: 173–81

    Article  PubMed  CAS  Google Scholar 

  86. Keilbaugh SA, Prusoff WH, Simpson VMV. The PC12 cell as a model for studies of mechanism of induction of peripheral neuropathy by anti-HIV dideoxynucleoside analogs. Biochem Pharmacol 1991; 42 (1): R5–8

    Article  PubMed  CAS  Google Scholar 

  87. Cui L, Locatelli L, Xie MY, et al. Effect of nucleoside analogs on neurite regeneration and mitochondrial DNA synthesis in PC-12 cells. J Pharmacol Exp Ther 1997; 280: 1228–34

    PubMed  CAS  Google Scholar 

  88. Famularo G, Moretti S, Marcellini S, et al. Acetyl-carnitine deficiency in AIDS patients with neurotoxicity on treatment with antiretroviral NRTIs. AIDS 1997; 11: 185–90

    Article  PubMed  CAS  Google Scholar 

  89. Bremer J. The role of carnitine in intracellular metabolism. J Clin Chem Clin Biochem 1990; 28: 297–301

    PubMed  CAS  Google Scholar 

  90. Angelucci L, Ramacci MT, Taglialatela G, et al. Nerve growth factor binding in aged rat central nervous system: effect of acetyl-L-carnitine. J Neurosci Res 1988; 20: 491–6

    Article  PubMed  CAS  Google Scholar 

  91. Grady T, Saluja AK, Steer ML, et al. In vivo and in vitro effects of the azidothymidine analog dideoxyinosine on the exocrine pancreas of the rat. J Pharmacol Exp Ther 1992; 262 (1): 445–9

    PubMed  CAS  Google Scholar 

  92. Czako L, Takacs T, Varga IS, et al. Involvement of oxygen-derived free radicals in L-arginine-induced acute pancreatitis. Dig Dis Sci 1998; 43 (8): 1770–7

    Article  PubMed  CAS  Google Scholar 

  93. Tay LK, Papp EA, Timoszyk J. Metabolism of 14C-2′,3′-dideoxyinosine by the in situ perfused rat liver preparation. Biopharm Drug Dispos 1991 May; 12 (4): 285–97

    Article  PubMed  CAS  Google Scholar 

  94. Folch E, Gelpi E, Rosello-Catafau J, et al. Free radicals generated by xanthine oxidase mediate pancreatitis-associated organ failure. Dig Dis Sci 1998 Nov; 43 (11): 2405–10

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graeme Moyle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moyle, G. Toxicity of Antiretroviral Nucleoside and Nucleotide Analogues. Drug-Safety 23, 467–481 (2000). https://doi.org/10.2165/00002018-200023060-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-200023060-00001

Keywords

Navigation