Skip to main content
Log in

A Risk-Benefit Assessment of Anthracycline Antibiotics in Antineoplastic Therapy

  • Review Article
  • Risk-Benefit Assessment
  • Published:
Drug Safety Aims and scope Submit manuscript

Summary

The anthracycline antibiotics comprise a group of cytotoxic compounds with wide-ranging activity against human malignancies. They are used extensively for curative, adjuvant and palliative therapy, both as single agents and in combination regimens. They produce a number of adverse effects, some of which are shared by other cytotoxic drugs. The most important adverse effect is cardiotoxicity, which is unique to this class of compounds. Strategies have been devised to circumvent these adverse effects, including the development of less toxic analogues, alterations in scheduling, the addition of cardioprotectant agents and methods of monitoring for cardiac abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Young RC, Ozols RF, Myers CE. The anthracycline antineoplastic drugs. N Engl J Med 1981; 305(3): 139–53

    Article  PubMed  CAS  Google Scholar 

  2. Di Marco A, Gaetani F, Scarpinoto B. Adriamycin NSC-123, 127: a new antibiotic with antitumor activity. Cancer Chemother Rep 1969; 53: 33–7

    PubMed  Google Scholar 

  3. Dubost M, Gaetani M, Dorigotto L, et al. Un novel antibiotique a proprietes cytostatiques: la rudidomycin. CR Hebd Seances Acad Sci 1965; 257: 1813–5

    Google Scholar 

  4. Arcamone F, Cassinelli G, Fantini G, et al. Adriamycin: 14 hydroxydaunomycin, a new antitumor antibiotic from S. peucetius var. caesius. Biotechnol Bioeng 1969; 11: 1101–10

    Article  PubMed  CAS  Google Scholar 

  5. Giladaga AC, Manuel C, Tan CT, et al. The cardiotoxicity of adriamycin and daunomycin in children. Cancer 1976; 37: 1070–8

    Article  Google Scholar 

  6. Lefrak EA, Pitha J, Rosenheem S, et al. A clinico-pathological analysis of adriamycin cardiotoxicity. Cancer 1973: 32: 302–14

    Article  PubMed  CAS  Google Scholar 

  7. Muggia FM, Green MD. New anthracycline antitumour antibiotics. Crit Rev Oncol Hematol 1991; 11: 43–64

    Article  PubMed  CAS  Google Scholar 

  8. Loveless H, Arena E, Felstead RL, et al. Comparative mammalian metabolism of adriamycin and daunomycin. Cancer Res 1978; 38: 593–8

    PubMed  CAS  Google Scholar 

  9. Weenan H, Van Maanen JMS, De Planque MM, et al. Metabolism of 4′ modified analogs of doxorubicin’s unique glucuronidation pathway to 4 epidoxorubicin. Eur J Cancer Clin Oncol 1984; 20: 919–26

    Article  Google Scholar 

  10. De Valeriola D. Dose optimization of anthracyclines. Anticancer Res 1994, 14: 2307–14

    PubMed  Google Scholar 

  11. Robert J, Gianni L. Pharmacokinetics and metabolism of anthracyclines. Cancer Surv 1993: 17: 219–52

    PubMed  CAS  Google Scholar 

  12. Bronchud MH, Margison JM, Howell A, et al. Comparative pharmacokinetics of escalating doses of doxorubicin in patients with metastatic breast cancer. Cancer Chemother Pharmacol 1990; 25: 435–9

    Article  PubMed  CAS  Google Scholar 

  13. Robert J, Vrignaud P, Nguyen-Ngoc T, et al. Comparative pharmacokinetics and metabolism of doxorubicin and epirubicin in patients with metastatic breast cancer. Cancer Treat Rep 1985; 69: 633–40

    PubMed  CAS  Google Scholar 

  14. Weiss RB. The anthracyclines: will we ever find a better doxorubicin? Semin Oncol 1992; 19(6): 670–86

    PubMed  CAS  Google Scholar 

  15. Lu K, Savaraj N, Kavanagh J, et al. Clinical pharmacology of 4-demethoxydaunorubicin. Cancer Chemother Pharmacol 1986; 17: 143–6

    Article  PubMed  CAS  Google Scholar 

  16. Israel M, Pegge WJ, Wilkinson PM. Liquid chromatographic analysis of adriamycin and daunorubicin and their hydroxyl metabolites in biological fluids. Liquid Chromatog 1978; 1: 795–809

    Article  CAS  Google Scholar 

  17. Harris PA, Gross JF. Preliminary pharmacokinetics model for adriamycin. Cancer Chemother Rep 1975; 59: 819–27

    PubMed  CAS  Google Scholar 

  18. Pigram WJ, Fuller W, Hamilton LD. Stereochemistry of intercalation: interactions of daunomycin with DNA. Nature 1972; 235: 17–9

    Article  CAS  Google Scholar 

  19. Badley A, Liu LF, Israel M, et al. DNA topoisomerase II mediated interaction of doxorubicin and daunorubicin congeners with DNA. Cancer Res 1989; 49: 5969–78

    Google Scholar 

  20. Lai GM, Moscow JA, Alvarez MG, et al. Contribution of glutathione and glutathione dependant enzymes in the reversal of adriamycin resistance in colon carcinoma cell lines. Int J Cancer 1991: 49: 688–95

    Article  PubMed  CAS  Google Scholar 

  21. Sinha BK, Katki AG, Batist G, et al. Adriamycin-stimulated hydroxyl formation in human breast tumour cells. Biochem Pharmacol 1987; 36: 793–6

    Article  PubMed  CAS  Google Scholar 

  22. Doroshow JH, Locker GY, Myers CE. Enzymatic defences of the mouse heart against reactive oxygen metabolites. J Clin Invest 1980; 65: 128–35

    Article  PubMed  CAS  Google Scholar 

  23. Basser RL, Green MD. Strategies for prevention of anthracycline cardiotoxicity. Cancer Treat Symp 1993: 19: 57–77

    Article  CAS  Google Scholar 

  24. Myers CE, Gianna L, Simone CB, et al. Oxidative destruction of erythrocyte ghost membranes catalyzed by the doxorubicin-iron complex. Biochemistry 1982; 21: 1707–13

    Article  PubMed  CAS  Google Scholar 

  25. Myers CE, Gianna L, Zwerer JL, et al. The role of iron in adriamycin biochemistry. Fed Proc 1986; 45: 2792–7

    PubMed  CAS  Google Scholar 

  26. Demant EJ. Binding of adriamycin-Fe++complex to membrane phospholipids. Eur J Biochem 1984: 142; 571–5

    Article  PubMed  CAS  Google Scholar 

  27. Brenner DE, Wiernik PH, Wesley M, et al. Acute doxorubicin toxicity: relationship to pre-treatment liver function response and pharmacokinetics in patients with acute non-lymphocytic leukaemia. Cancer 1984; 53: 1042–8

    Article  PubMed  CAS  Google Scholar 

  28. Benjamin RS, Wiernik PH, Bachur NR. Adriamycin chemotherapy-efficacy, safety and pharmacological basis of an intermittent single high dose schedule. Cancer 1974; 33: 19–25

    Article  PubMed  CAS  Google Scholar 

  29. Johnson PJ, Dobbs N, Kalayci C, et al. Clinical efficacy and toxicity of standard dose adriamycin in hyperbilirubinaemic patients with hepatocellular carcinoma; relation to liver tests and pharmacokinetic parameters. Br J Cancer 1992; 65: 751–5

    Article  PubMed  CAS  Google Scholar 

  30. Perry MC, Yarbro JN. Hepatotoxicity of chemotherapeutic agents. In: Perry MC, editor. Toxicity of chemotherapy. 1st ed. Orlando: Grune and Stratton, 1984: 297–315

    Google Scholar 

  31. Wiernik PH, Schimpff SC, Schiffer CA, et al. A randomised comparison of doxorubicin dose with a combination of daunorubicin (NSC 82151) alone, cytosine arabinoside (NSC 63878), thioguanine (NSC 752) and pyrimethamine (NSC 3061) for the treatment of acute non-lymphocytic leukaemia. Cancer Treat Rep 1976; 60: 41–53

    PubMed  CAS  Google Scholar 

  32. Wiernik PS, Glidewell WJ, Hoagland HL, et al. A comparative trial of daunomycin, ara-c, thioguanine and a combination of the three agents for the treatment of acute myelocytic leukaemia. Med Pediatr Oncol 1979: 6: 261–77

    Article  PubMed  CAS  Google Scholar 

  33. Yates JW, Wallace Jr MT, Ellison RR, et al. Cytosine arabinoside (NSC 63878) and daunorubicin (NSC 83142) in acute N.L.L. Cancer Chemother Rep 1973; 57: 485–7

    PubMed  CAS  Google Scholar 

  34. Yates JW, Glidewell OJ, Wiernik PH. Cytosine-arabinoside with daunorubicin or adriamycin for therapy of AML: a CALGB study. Blood 1982; 60: 454–62

    PubMed  CAS  Google Scholar 

  35. Gale RP, Foon AK. Therapy of acute myelogenous leukaemia. In: Gale RP, Golde DW, editors. Leukaemia: Recent advances in biology and treatment. New York: Liss, 1955: 609–649

    Google Scholar 

  36. Reiffers J, Maraninchi F, Rigal-Huguet M, et al. Does more intensive treatment cure more patients with AML? Semin Hematol 1991; 29(3) Suppl. 4: 90–92

    Google Scholar 

  37. Harousseau JL, Hurteloup P, Reiffers J, et al. Idarubicin in the treatment of relapsed or refractory AML [letter]. Cancer Treat Rep 1988; 7: 991–2

    Google Scholar 

  38. Pui CH, Seibold SN, de Graaf SS, et al. Phase I trial of orally administered 4-demethoxy-daunorubicin (idarubicin), with pharmacokinetic and in-vitro drug sensitivity testing in children with refractory leukaemia. Cancer Res 1988; 48: 5348–52

    PubMed  CAS  Google Scholar 

  39. Berman E, Heller G, Santorsa JA, et al. Results of a randomised trial comparing idarubicin and cytosine arabinoside with daunorubicin and cytosine arabinoside in adult patients with newly diagnosed acute myelogenous leukaemia. Blood 1991; 77: 1666–74

    PubMed  CAS  Google Scholar 

  40. Vogler WR, Velez-Garcia E, Weiner RS, et al. A phase III trial comparing idarubicin and daunorubicin in combination with cytarabine in acute myelogenous leukaemia: a South Eastern Cancer Study Group Study. J Clin Oncol 1992; 10: 1103–11

    PubMed  CAS  Google Scholar 

  41. Wiernik PH, Banks PLC, Case DC, et al. Cytarabine plus idarubicin or daunorubicin as induction and consolidation therapy for previously untreated adult patients with acute myeloid leukaemia. Blood 1992; 79: 313–9

    PubMed  CAS  Google Scholar 

  42. Sallon SE, Camitta BM, Cassady JR, et al. Intermittent combination chemotherapy with adriamycin for childhood acute lymphoblastic leukaemia: clinical results. Blood 1975: 51: 425–33

    Google Scholar 

  43. Hitchcock-Bryan S, Gelber R, Cassady JR, et al. The impact of induction anthracycline in long term failure free survival in childhood acute lymphoblastic leukaemia. Med Pediatr Oncol 1986; 14(4): 211–5

    Article  PubMed  CAS  Google Scholar 

  44. Hoelzer D. Current status of A.L.L./A.U.L. therapy in adults. Recent Results Cancer Res 1984; 93: 182–203

    Article  PubMed  CAS  Google Scholar 

  45. Stryckmans P, Debusscher L. Chemotherapy of adult acute lymphoblastic leukaemia. Baillieres Clin Haematol 1991; 4: 115–30

    Article  PubMed  CAS  Google Scholar 

  46. De Vita Jr VT, Hellman S, Rosenberg SA. Cancer: principles and practice of oncology. 4th ed. Philadelphia: JB Lippincott, 1993

    Google Scholar 

  47. McKelvey EM, Gottlieb JA, Wilson HE, et al. Hydroxyl-daunomycin (adriamycin) combination chemotherapy in malignant lymphoma. Cancer 1976; 38: 1484

    Article  PubMed  CAS  Google Scholar 

  48. Jones SE, Grozea PN, Metz EN, et al. Superiority of adriamycin containing combination chemotherapy in the treatment of diffuse lymphoma: a Southwest Oncology Group Study. Cancer 1979: 43: 417–25

    Article  PubMed  CAS  Google Scholar 

  49. Jones SE, Grozea PN, Muller TP. Chemotherapy with cyclophosphamide, doxorubicin, vincristine and prednisone alone or without levamisole plus BCG for malignant lymphoma: a Southwest Oncology Group Study [abstract]. J Clin Oncol 1985; 3: 1318

    PubMed  CAS  Google Scholar 

  50. Jones SE, Grozea PN, Metz EN. Improved complete remission rate and survival for patients with large cell lymphoma treated with chemo-immunotherapy: a Southwest Oncology Group study [abstract]. Cancer 1983; 51: 108

    Google Scholar 

  51. Zuckerman KS. Efficacy of intensive high dose anthracycline based therapy in intermediate and high grade lymphoma. Semin Oncol 1994; 21(1): 59–64

    PubMed  CAS  Google Scholar 

  52. Fisher RJ, Gaynor ER, Dahlberg S, et al. Comparison of a standard regimen (CHOP), with three dose intensive chemotherapy regimens for advanced NHL. N Engl J Med 1993; 328: 1002–6

    Article  PubMed  CAS  Google Scholar 

  53. Cooper IA, Wolf MW, Robertson TI, et al. Randomised comparison of MACOP-B with CHOP in patients with intermediate grade non-Hodgkin’s Lymphoma. J Clin Oncol 1994: 12(4): 769–78

    PubMed  CAS  Google Scholar 

  54. Gordon LI, Harrington D, Anderson J. Comparison of a second generation combination chemotherapeutic regimen (m-BACOD) with a standard regimen (CHOP) for advanced diffuse non-Hodgkins Lymphoma. N Engl J Med 1994; 327: 1342–9

    Article  Google Scholar 

  55. Salles G, Shipp MA, Coiffer B. Chemotherapy of non-Hodgkins aggressive lymphoma. Semin Hematol 1994; 31(1): 46–69

    PubMed  CAS  Google Scholar 

  56. Kwak L, Olshen RA, Halpern J, et al. Dose intensity (DI): relationship to prognostic factors for diffuse large cell lymphoma (DLCL) [abstract]. Proc Am Soc Clin Oncol 1988; 7: 226

    Google Scholar 

  57. Kwak LW, Halper J, Olshen RA, et al. Prognostic significance of actual dose intensity in diffuse large cell lymphoma: results of a tree-structured survival analysis. J Clin Oncol 1990; 8: 963–77

    PubMed  CAS  Google Scholar 

  58. O’Reilly SE, Klimo P, Connors, JM. Low dose ACOP-B and VABE: weekly chemotherapy for elderly patients with advanced stage DLCL. J Clin Oncol 1991; 9: 741–7

    PubMed  Google Scholar 

  59. Santoro A, Bonadonna G, Valagussa P, et al. Long term results of combined chemotherapy-radiotherapy approach in Hodgkin’s disease — superiority of ABVD plus radiotherapy versus MOPP plus radiotherapy. J Clin Oncol 1987; 5: 27–38

    PubMed  CAS  Google Scholar 

  60. Canellos GP, Anderson JR, Propert KJ, et al. Chemotherapy of advanced Hodgkin’s disease with MOPP/ABVD or MOPP alternating with ABVD. N Engl J Med 1992; 327: 1478–84

    Article  PubMed  CAS  Google Scholar 

  61. Lango DL, De Vita VT. Use of combination chemotherapy in the treatment of early stage Hodgkin’s disease. In: de Vita VT, Hellman S, Rosenberg SA, editors. Important advances in oncology. Philadelphia: JB Lippincott Co., 1992: 155–65

    Google Scholar 

  62. Lokhurst HM, Meuwissen OJ, Bast EJ, et al. VAD Chemotherapy for refractory multiple myeloma. Br J Haematol 1989; 71: 25–30

    Article  Google Scholar 

  63. Barlogie B, Smith L, Alexanian R. Effective treatment of advanced multiple myeloma refractory to alkylating agents. N Engl J Med 1987; 310: 1353–6

    Article  Google Scholar 

  64. Comis RL. Adriamycin: its expanding role in cancer treatment. Proceedings of the International Symposium on Adriamycin Excerpta Medicine; 1989: 166–81

    Google Scholar 

  65. Seifter EJ, Ihde DC. Therapy of small cell lung cancer: a perspective on two decades of clinical research. Semin Oncol 1988; 15: 278–99

    PubMed  CAS  Google Scholar 

  66. Fukuoka M, Furuse K, Saija N, et al. Randomised trial of cyclophosphamide, doxorubicin and vincristine versus cisplatin and etoposide versus alternation of these regimens in SCLC. J Natl Cancer Inst 1991; 83: 855–61

    Article  PubMed  CAS  Google Scholar 

  67. Roth BJ, Johnson DH, Einhorn LH, et al. Randomised study of cyclophosphamide plus doxorubicin plus vincristine versus etoposide plus cisplatin versus alternation of these two regimens in extensive small cell lung cancer: a phase III trial of the South Eastern Cancer Study Group. J Clin Oncol 1992; 10: 282–91

    PubMed  CAS  Google Scholar 

  68. Evans WK, Shepherd FA, Feld R, et al. VP-16 and cisplatin as first line therapy for SCLC. J Clin Oncol 1985; 3: 1471–7

    PubMed  CAS  Google Scholar 

  69. Wilke H, Achterrath W, Schmall H, et al. Etoposide and split dose cisplatin in small cell lung cancer. Am J Clin Oncol 1988; 11: 572–8

    Article  PubMed  CAS  Google Scholar 

  70. Lelieveld P, Scole MA, Brow JM, et al. The effect of treatment in fractionated schedules with the combination of X-irradiation and six cytotoxic drugs on the RIF-1 tumour and normal mouse skin. Int J Radiat Oncol Biol Phys 1985; 11: 111–21

    Article  PubMed  CAS  Google Scholar 

  71. Clark GM, Sledge GJ, Osborne CK, et al. Survival from first recurrences: relative importance of prognostic factors in 1015 breast cancer patients. J Clin Oncol 1987; 5: 55–61

    PubMed  CAS  Google Scholar 

  72. Mick R, Begg CP, Antman K, et al. Diverse prognosis in metastatic breast cancer: who should be offered alternative therapies? Breast Cancer Res Treat 1989; 13: 33–8

    Article  PubMed  CAS  Google Scholar 

  73. A’Hern RP, Smith IE, Ebbs SR. Chemotherapy and survival in advanced breast cancers; the inclusion of doxorubicin in Cooper type regimens. Br J Cancer 1993; 67: 801–5

    Article  PubMed  Google Scholar 

  74. Wils J, Coombes RC, Marty M, et al. Design and rationale of a randomised comparison of cyclophosphamide, methotrexate and 5-fluorouracil vs 5-fluorouracil, epirubicin and cyclophosphamide in node positive premenopausal women with operable breast cancer — a trial of the International Co-operative Cancer Group. Drugs 1993; 45Suppl. 12: 46–50

    Article  PubMed  Google Scholar 

  75. Hortobagyi GN, Buzdar AU. Present status of anthracyclines in the adjuvant treatment of breast cancer. Drugs 1993; 45Suppl. 2: 4–9

    Google Scholar 

  76. Mourisden H. Systemic therapy of advanced disease. Drugs 1992; 44Suppl. 4: 17–28

    Google Scholar 

  77. Aisner J, Weinberg V, Perloff M. Chemotherapy versus chemoimmunotherapy (CAF v CAFVP v CMF each +/− MER) for metastatic carcinoma of the breast: a CALGB study. J Clin Oncol 1987; 5: 1523–33

    PubMed  CAS  Google Scholar 

  78. Bull JM, Tormey DC, Li SH, et al. A randomised comparative trial of adriamycin versus methotrexate in combination drug therapy. Cancer 1978; 41: 1649–57

    Article  PubMed  CAS  Google Scholar 

  79. Brincker H, Rose C, van der Maase H, et al. A randomised study of CAF + TAM (tamoxifen) versus CMF + TAM in metastatic breast cancer [abstract]. Proc Am Soc Clin Oncol 1984; 3: 113

    Google Scholar 

  80. Muss MB, White DR, Richards F, et al. Adriamycin versus methotrexate in five-drug combination chemotherapy for advanced breast cancer: a randomised clinical trial. Cancer 1978; 42: 2141–8

    Article  PubMed  CAS  Google Scholar 

  81. Tormey DC, Weinberg VE, Leone LA, et al. A comparison of intermittent vs continuous and of adriamycin vs MTX five drug chemotherapy for advanced breast cancer: a Cancer and Leukaemia Group B study. Am J Clin Oncol 1989; 7: 231–9

    Article  Google Scholar 

  82. Madsen EL, Andersson M, Mouridsen HT. A randomised study of CAF + TAM (tamoxifen) vs CMF + TAM in disseminated breast cancer. EORTC Breast Cancer Cooperative Group Fourth Breast Cancer Working Conference; 1987 Jun: London

  83. Colajori E, Ackland S, Anton A. IV FEC with epirubicin (E) 50mg/m2 D1, D8 prolongs time to progress with respect to IV CMF D1,D8 given at equi-myelosuppressive doses as first line chemotherapy of metastatic breast cancer (MBC): a randomised multinational multicentre phase III trial [abstract]. Proc Am Soc Clin Oncol 1995; 14: 114

    Google Scholar 

  84. Hayes DF, Henderson IC. CAF in metastatic breast cancer: standard therapy or another effective regimen. J Clin Oncol 1987; 5: 1497–9

    PubMed  CAS  Google Scholar 

  85. Coates A, Gebski V, Bishop JF, et al. Improving the quality of life during chemotherapy for advanced breast cancer: a comparison of intermittent and continuous treatment strategies. N Engl J Med 1987; 317: 1490–5

    Article  PubMed  CAS  Google Scholar 

  86. Baume M, Priestmon T, West RR, et al. A comparison of subjective responses in a trial comparing endocrine with cytotoxic treatment in advanced carcinoma of the breast. In: Mourisden BT, Palshof T, editors. Breast cancer: experimental and clinical aspects. London: Pergamon, 1979: 223–6

    Google Scholar 

  87. Muss HB, Case DL, Richards F, et al. Interrupted versus continuous chemotherapy in patients with metastatic breast cancer. N Engl J Med 1991; 325: 1342–8

    Article  PubMed  CAS  Google Scholar 

  88. Buzzoni R, Bonadonna G, Valagussa P, et al. Adjuvant chemotherapy with doxorubicin plus cyclophosphamide, methotrexate and fluorouracil in the treatment of resectable breast cancer with more than three positive axillary nodes. J Clin Oncol 1991; 9: 2134–40

    PubMed  CAS  Google Scholar 

  89. Schottenfeld D, Nash AG, Robbins GF, et al. Ten year results of the treatment of operable breast cancer. Cancer 1976; 38: 1001–7

    Article  PubMed  CAS  Google Scholar 

  90. Early Breast Cancer Triallists Collaborative Group. Systemic treatment of early breast cancer by hormonal, cytotoxic or immune therapy. Lancet 1992; 339: 1–15, 71-85

    Google Scholar 

  91. Misset JL, Gil Delgado M, Challet PH, et al. Ten year results of the French Trial comparing adriamycin, vincristine, 5-fluorouracil and cyclophosphamide to standard CMF as adjuvant therapy for node positive breast cancer [abstract]. Proc Am Soc Clin Oncol 1992; 11: 55

    Google Scholar 

  92. Buzdar AU, Hortobagyi GN, Kau SW, et al. Breast cancer adjuvant therapy trials of M.D. Anderson Hospital: results of three studies. In: Salmon SE, editor. Adjuvant therapy of cancer, 5th ed. Orlando: Grune and Stratton Inc., 1987: 411–8

    Google Scholar 

  93. Fisher B, Redmond C, Wickerham DL, et al. Doxorubicin containing regimens for the treatment of stage II breast cancer: the national surgical adjuvant breast and bowel project experience. J Clin Oncol 1989; 7: 572–82

    PubMed  CAS  Google Scholar 

  94. Beuzeboc P, Mosseri V, Dorval T, et al. Adriamycin based combination chemotherapy significantly improves overall survival in high risk pre-menopausal breast cancer patients [abstract]. Proceedings of the 4th International Conference on Adjuvant Therapy of Primary Breast Cancer; 1992 Feb 26–29; St Gallen, 72

  95. Fisher B, Brown AM, Dimitrov NV, et al. Two months of doxorubicin-cyclophosphamide with and without reinduction chemotherapy compared with 6 months of cyclophosphamide, methotrexate and fluorouracil in positive node breast cancer patients with tamoxifen-nonresponsive tumours: results from the National Surgical Adjuvant Breast and Bowel Project B-15. J Clin Oncol 1990; 8: 1483–96

    PubMed  CAS  Google Scholar 

  96. Carpenter JT, Valez-Garcia E, Aron BS, et al. Prospective randomised comparison of cyclophosphamide, doxorubicin (adriamycin) and fluorouracil (CAF) vs. cyclophosphamide, methotrexate and fluorouracil (CMF) for breast cancer with axillary nodes: southwestern cancer study group [abstract]. Proc Am Soc Clin Oncol 1991; 10: 45

    Google Scholar 

  97. Wils J, Bliss J, Marty M, et al. Second interim analysis of a randomised study comparing FEC with CMF in premenopausal patients with node positive resectable breast cancer [abstract]. Annal Oncol 1992; 3Suppl. 5: 202

    Google Scholar 

  98. Moliterni A, Bonadonna G, Valagussa P, et al. Cyclophosphamide, methotrexate and fluorouracil with and without doxorubicin in the adjuvant treatment of resectable breast cancer, with one to three positive axillary nodes. J Clin Oncol 1991: 9(7): 1124–30

    PubMed  CAS  Google Scholar 

  99. Bonadonna G, Zambetti MT, Valagussa P. Sequential or alternating doxorubicin and CMF regimens in breast cancer with more than three positive nodes: ten year results. JAMA 1995: 542–7

  100. Shapiro CL, Henderson IC. Late cardiac effects of adjuvant therapy: too soon to tell. Ann Oncol 1994: 5: 196–8

    PubMed  CAS  Google Scholar 

  101. Valagussa P, Zambetti M, Biasi S, et al. Cardiac effects following adjuvant chemotherapy and breast irradiation in operable breast cancer. Ann Oncol 1994; 5: 196–8

    Google Scholar 

  102. Marty M, Bliss J, Coombes R, et al. Cyclophosphamide, methotrexate, 5-fluorouracil (CMF), versus 5-fluorouracil, epirubicin, cyclophosphamide chemotherapy in pre-menopausal females with node positive breast cancer: results of a randomised trial [abstract]. Proc Am Soc Clin Oncol 1994; 13

    Google Scholar 

  103. Triozza PL, Rhoades C, Thornton DE. High dose chemotherapy for breast cancer. Cancer Treat Rev 1995; 21: 185–98

    Article  Google Scholar 

  104. Henderson IC, Hayes DF, Gelman R. Dose response in the treatment of breast cancer: a critical review. J Clin Oncol 1988; 6: 1501–15

    PubMed  CAS  Google Scholar 

  105. Frei E, Canellos GP. Dose, a critical factor in cancer chemotherapy. Am J Med 1980; 69: 585–94

    Article  PubMed  Google Scholar 

  106. Razak E, Valeriote F, Vietti T. Survival of haematopoietic and leukaemia colony forming cells in-vitro following the administration of daunorubicin or adriamycin. Cancer Res 1972; 32: 1496–500

    Google Scholar 

  107. Cortes EP, Holland JF, Glidewell O. Amputation and adriamycin in primary osteosarcoma: a five year report. Cancer Treat Rep 1978; 62: 271–7

    PubMed  CAS  Google Scholar 

  108. Yates JW, Glidewell O, Wiernik P, et al. Activity of daunorubicin vs adriamycin induction and monthly vs bimonthly maintenance in AML. Blood 1982; 60: 454–62

    PubMed  CAS  Google Scholar 

  109. Hryniuk W, Levine MN. Analysis of dose intensity for adjuvant chemotherapy trials in stage II breast cancer. J Clin Oncol 1986: 4: 1162–70

    PubMed  CAS  Google Scholar 

  110. Hryniuk W, Bush H. The importance of dose intensity in chemotherapy of metastatic breast cancer. J Clin Oncol 1984; 2: 1281–8

    PubMed  CAS  Google Scholar 

  111. Bastholt HL, Mourisden HT. How to improve cytotoxic therapy in advanced breast cancer. Acta Oncol 1990; 29: 349–55

    Article  PubMed  CAS  Google Scholar 

  112. Del Mastro L, Garrone O, Sertoli MR, et al. A pilot study of accelerated cyclophosphamide/epirubicin and 5-fluorouracil plus GCSF as adjuvant therapy in early breast cancer. Eur J Cancer 1994; 30A(5): 606–10

    Article  PubMed  Google Scholar 

  113. Ferguson JE, Dodwell DJ, Seymour AM, et al. High dose, dose intensive chemotherapy with doxorubicin and cyclophosphamide for the treatment of advanced breast cancer. Br J Cancer 1993; 67: 825–9

    Article  PubMed  CAS  Google Scholar 

  114. Somlo G, Doroshow JH, Forman SJ, et al. High-dose doxorubicin, etoposide and cyclophosphamide with stem cell re-infusion in patients with metastatic or high-risk primary breast cancer. Cancer 1994; 73: 1678–85

    Article  PubMed  CAS  Google Scholar 

  115. Neri B, Pacini P, Bartalucci S, et al. Epirubicin high dose therapy in advanced breast cancer: preliminary clinical data. Int J Clin Pharmacol Ther 1989; 27: 338–91

    Google Scholar 

  116. Carmo-Pereira J, Costa EO, Henriques E, et al. Epirubicin as first line chemotherapy in disseminated breast cancer. Cancer Invest 1993; 11: 106–12

    Article  Google Scholar 

  117. Marschner N, Kreinberg R, Souchan R, et al. Evaluation of the importance and relevance of dose intensity using epirubicin and cyclophosphamide in metastatic breast cancer: interim analysis of a prospective randomised trial. Semin Oncol 1994; 21: 10–6

    PubMed  CAS  Google Scholar 

  118. Levi JA, Beith JM, Snyder RD, et al. Phase II study of high dose epirubicin in combination with cyclophosphamide in patients with advanced breast cancer. Aust NZ J Med 1995; 25: 474–8

    Article  CAS  Google Scholar 

  119. Focan C, Andrien JM, Closon M, et al. Dose-response relationship of epirubicin-based first-line chemotherapy for advanced breast cancer: prospective randomised trial. J Clin Oncol 1993; 11: 1253–63

    PubMed  CAS  Google Scholar 

  120. Habeshaw T, Jones PR, Stallard S, et al. Epirubicin at two dose level with prednisolone as treatment for advanced breast cancer: the results of a randomised clinical trial. J Clin Oncol 1991; 9: 295–304

    PubMed  CAS  Google Scholar 

  121. Bezwoda WR, Seymour L, Dansey RD. High dose chemotherapy with haematopoietic rescue as primary treatment for metastatic breast cancer: a randomised trial. J Clin Oncol 1995; 13: 2483–9

    PubMed  CAS  Google Scholar 

  122. Wood WC, Budman DR, Karzun MS, et al. Dose and dose intensity of adjuvant chemotherapy for stage II node positive breast cancer. N Engl J Med 1994; 330(18): 1253–9

    Article  PubMed  CAS  Google Scholar 

  123. Van Hoel MEHM, Baumann I, Lange C, et al. Dose escalating induction chemotherapy supported by lenograstim preceding high dose consolidation chemotherapy for advanced breast cancer. Ann Oncol 1994; 5: 217–24

    Google Scholar 

  124. Basser RL, To LB, Begley G, et al. Adjuvant treatment of high risk breast cancer using multicycle high dose chemotherapy and filgrastim-mobilised peripheral blood progenitor cells. Clin Cancer Res 1995; 1: 715–21

    PubMed  CAS  Google Scholar 

  125. Muss HB, Thor AD, Berry DA, et al. C erb B-2 expression and response to adjuvant therapy in women with node positive early breast cancer. N Engl J Med 1994; 330: 1260–6

    Article  PubMed  CAS  Google Scholar 

  126. Green M. Dose intensive chemotherapy with cytokine support. Semin Oncol 1994; 21Suppl. 1: 1–6

    PubMed  CAS  Google Scholar 

  127. Holmes FA. Combination chemotherapy with taxol (pacli-taxel) in metastatic breast cancer. Ann Oncol 1994; 5Suppl. 6: 523–2

    Google Scholar 

  128. Gianni L, Munzone E, Capri G, et al. Paclitaxel by 3-hour infusion in combination with bolus doxorubicin in women with untreated metastatic breast cancer: high antitumour efficiency and cardiac effects in a dose-finding and sequence-finding study. J Clin Oncol 1995; 13(11): 2688–99

    PubMed  CAS  Google Scholar 

  129. Fisherman JS, Cowan KH, Noone M, et al. Phase I/II study of 72 hour infusional paclitaxel and doxorubicin with granulocyte stimulating factor in patients with metastatic breast cancer. J Clin Oncol 1996; 14(3): 774–82

    PubMed  CAS  Google Scholar 

  130. Munzone E, Gianni L, Capri G, et al. Cardiac function in breast cancer patients given paclitaxel (Taxol) by 3 hour infusion, and previous or concomitant doxorubicin [abstract]. Proc Am Soc Clin Oncol 1995; 14: 128

    Google Scholar 

  131. Conte P, Michelotti A, Baldini E, et al. Activity and safety of epirubicin plus paclitaxel in advanced breast cancer. Semin Oncol 1996; 23Suppl. 1: 28–32

    Google Scholar 

  132. Lück HJ, Thomssen C, du Bois A. Phase II study of paclitaxel and 4.epi-doxorubicin (epirubicin) as first line therapy in patients with metastatic breast cancer [abstract]. Proc Am Soc Clin Oncol 1996; 15: 120

    Google Scholar 

  133. Pinede HM, Kenis Y. Chemotherapy of advanced soft-tissue sarcomas in adults. Cancer Treat Rev 1977; 4: 67–86

    Article  Google Scholar 

  134. Blum RH. An overview of studies of adriamycin (NSC-123127) in the United States. Cancer Chemother Rep 1975; 6: 247–51

    Google Scholar 

  135. Santoro A, Tursz T, Mourisden H, et al. Doxorubicin versus CYVADIC versus doxorubicin plus ifosfamide in first-line treatment of advanced soft tissue sarcomas: a randomised study of the European Organisation for the Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group. J Clin Oncol 1995; 13: 1537–45

    PubMed  CAS  Google Scholar 

  136. Elias A. Salvage therapy for soft tissue sarcomas. Semin Oncol 1994; 21 (4 Suppl. 7): 76–81

    PubMed  CAS  Google Scholar 

  137. Link MP, Goorin AM, Horowitz M. Adjuvant chemotherapy of high grade sarcoma of the extremity: reported results of the Multi-Institutional Osteosarcoma Study. Clin Orthop 1991; 270: 8–14

    PubMed  Google Scholar 

  138. Eilber F, Guilano A, Eckardt J. Adjuvant chemotherapy for osteosarcoma: a randomised prospective trial. J Clin Oncol 1987; 5: 21–6

    PubMed  CAS  Google Scholar 

  139. Macdonald JS, Gohmann JJ. Chemotherapy of advanced gastric cancer: present status, future prospects. Semin Oncol 1988; 15Suppl. 4: 42–9

    PubMed  CAS  Google Scholar 

  140. Macdonald JS, Scheers PS, Wadley PV, et al. 5-fluorouracil, doxorubicin and mitomycin (FAM) combination chemotherapy for advanced gastric cancer. Ann Intern Med 1980; 93: 533–6

    PubMed  CAS  Google Scholar 

  141. Kardinal CG, Moertel CG, Wieand HS, et al. Combined doxorubicin and alpha-interferon therapy of advanced hepatocellular carcinoma. Cancer 1993; 71(7): 2187–90

    Article  PubMed  CAS  Google Scholar 

  142. Fornasiera A, Danile O, Ghiotto C, et al. Chemotherapy for invasive thymoma: a thirteen year experience. Cancer 1991; 68: 30–3

    Article  Google Scholar 

  143. Horton J, Begg CB, Arsenault J, et al. Comparison of adriamycin with cyclophosphamide in patients with advanced endometrial cancer. Cancer Treat Rep 1978; 62: 159–61

    PubMed  CAS  Google Scholar 

  144. Thigpen JT, Buchsbaum HJ, Mangon C, et al. Phase II trial of advanced or recurrent endometrial cancer: a Gynaecologic Oncology Group Study. Cancer Treat Rep 1979; 63: 21–7

    PubMed  CAS  Google Scholar 

  145. Thigpen JT, Blessing J, Di Saia P, et al. A randomised comparison of adriamycin with or without cyclophosphamide in the treatment of advanced or recurrent endometrial cancer [abstract]. Proc Am Soc Clin Oncol 1985; 4: 15

    Google Scholar 

  146. Muggia FM, Chia G, Reed LJ, et al. Doxorubicin-cyclophosphamide: effective chemotherapy for advanced endometrial adenocarcinoma. Am J Obstet Gynecol 1977; 128: 314–9

    PubMed  CAS  Google Scholar 

  147. Campora E, Vidali A, Mammolitis S, et al. Treatment of advanced-recurrent adenocarcinoma of the endometrium with doxorubicin and cyclophosphamide. Eur J Gynaecol Oncol 1990; 11: 183–7

    Google Scholar 

  148. A’Hern RP, Gore ME. Impact of doxorubicin on survival in advanced ovarian cancer. J Clin Oncol 1995: 13: 726–32

    PubMed  Google Scholar 

  149. Blum RH, Carter SK. Adriamycin: a new anthracycline drug with significant clinical activity. Ann Intern Med 1974; 80: 249–59

    PubMed  CAS  Google Scholar 

  150. Buzdar A, Ivaniec J, Kau S, et al. Secondary leukaemia following adjuvant doxorubicin containing chemotherapy for stage II or III breast cancer [abstract]. Proc Am Soc Clin Oncol 1991; 10: 59

    Google Scholar 

  151. Pedersen-Bjergaard J, Sigsgoord T, Nielsen D, et al. Acute monocytic or myelomonocytic leukaemia with balanced chromosome translocations to band llq23 after therapy with 4 epi-doxorubicin and cisplatin or cyclophosphamide for breast cancer. J Clin Oncol 1992; 10: 1444–51

    PubMed  CAS  Google Scholar 

  152. Pederson-Bjergaard J. Acute promyelocytic leukaemia with t(15,17) following inhibitor of DNA topoisomerase II [editorial] Ann Oncol 1995; 6: 751–3

    Google Scholar 

  153. Tallman M, Gray B, Bennet J, et al. Leukaemogenic potential of adjuvant chemotherapy for early stage breast cancer: the Eastern Cooperative Oncology Group (ECOG) experience [abstract]. Blood 1993; 82Suppl. 10: 48a

    Google Scholar 

  154. Riggi M, Riva M. Therapy related leukaemia: what is the role of 4 epi doxorubicin? J Clin Oncol 1993; 11: 1430–1

    PubMed  CAS  Google Scholar 

  155. Rhoden W, Hasleton P, Brooks N. Anthracyclines and the heart. Br Heart J 1993; 70: 499–502

    Article  PubMed  CAS  Google Scholar 

  156. Olson RD, Mushlin PS. Doxorubicin cardiotoxicity: analysis of prevailing hypotheses. FASEB J 1990; 4: 3076–86

    PubMed  CAS  Google Scholar 

  157. Gaudin PB, Hruban RH, Bescharner WE. Myocarditis associated with doxorubicin cardiotoxicity. Am J Clin Pathol 1993; 100: 158–63

    PubMed  CAS  Google Scholar 

  158. Von Hoff DD, Rozencweig M, Layard M. Daunomycin-induced cardiotoxicity in children and adults: a review of 110 cases. Am J Med 1977; 62: 200–8

    Article  Google Scholar 

  159. Bristow MR, Minobe WA, Billingham ME, et al. Anthracycline-associated cardiac and renal damage in rabbits: evidence for mediation by vasoactive substances. Lab Invest 1981; 45: 157–68

    PubMed  CAS  Google Scholar 

  160. Bristow MR, Thompson PD, Martin RP, et al. Early anthracycline cardiotoxicity. Am J Med 1978; 71: 823–32

    Article  Google Scholar 

  161. Von Hoff DD, Layard MW, Basa P, et al. Risk factors for doxorubicin-induced congestive cardiac failure. Ann Intern Med 1979; 91: 710–7

    Google Scholar 

  162. Buzdar AV, Marcus C, Smith TL, et al. Early and delayed clinical cardiotoxicity of doxorubicin. Cancer 1985; 55: 2761–5

    Article  PubMed  CAS  Google Scholar 

  163. Lipschultz SE, Sanders SP, Goorin AM. Monitoring for anthracycline cardiotoxicity. Pediatrics 1994; 93: 433–7

    Google Scholar 

  164. Steinherz LJ, Steinherz PG, Tan CT. Cardiac toxicity 4–20 years after completing anthracycline therapy. JAMA 1991; 266: 1672–7

    Article  PubMed  CAS  Google Scholar 

  165. Helleman K. Anthracycline cardiac toxicity by dexrazoxane: breakthrough of a barrier — sharpens anti-tumour profile and therapeutic index [editorial]. J Clin Oncol 1996; 14(2): 332–3

    Google Scholar 

  166. Lipshultz S, Lipsitz S, Mone SM. Female sex and higher drug dose as risk factors for late cardiotoxic effects of doxorubicin therapy for childhood cancer. N Engl J Med 1995; 332: 1738–43

    Article  PubMed  CAS  Google Scholar 

  167. Renzi RS, Straus KL, Glatstein E. Radiation induced myocardial changes. In: Muggia FM, Green MD, Speyer JL, editors. Cancer treatment and the heart. 1st ed. Baltimore: The John Hopkins University Press, 1992: 287–328

    Google Scholar 

  168. Hale JP, Lewis IJ. Anthracyclines: cardiotoxicity and its prevention. Arch Dis Child 1994; 71: 457–62

    Article  PubMed  CAS  Google Scholar 

  169. McKillop JH, Brista MR, Gorus ML, et al. Sensitivity and specificity of radionucleotide ejection fraction in doxorubicin cardiotoxicity. Am Heart J 1983; 106: 1048–56

    Article  PubMed  CAS  Google Scholar 

  170. Steinberg JS, Wasserman AG. Radionuclide ventriculography for the evaluation and prevention of doxorubicin cardiotoxicity. Clin Ther 1985; 7: 660–7

    PubMed  CAS  Google Scholar 

  171. Piver MS, Marchetti Dl, Parthasarathy KL, et al. Doxorubicin hydrochloride (adriamycin) cardiotoxicity evaluated by sequential radionucleotide angiocardiography. Cancer 1985; 56: 76–80

    Article  PubMed  CAS  Google Scholar 

  172. Henderson JC, Sloss LJ, Jaffe N. Serial studies of cardiac function in patients receiving adriamycin. Cancer Treat Rep 1978; 62: 923–9

    PubMed  CAS  Google Scholar 

  173. Ewer MS, Ali MK, Mackay B. A comparison of cardiac biopsy grades and ejection fraction estimation in patients receiving adriamycin. J Clin Oncol 1985: 2: 112–7

    Google Scholar 

  174. Weiss AJ, Metter GE, Fletcher WS. Studies on adriamycin using a weekly regimen demonstrating its clinical effectiveness and lack of cardiac toxicity. Cancer Treat Rep 1976; 60: 813–22

    PubMed  CAS  Google Scholar 

  175. Torti FM, Bristow MM, Howes AE. Reduced cardiotoxicity of doxorubicin on a weekly schedule: assessment by endomyocardial biopsy. Ann Intern Med 1985; 99: 745–9

    Google Scholar 

  176. Legha SS, Benjamin RS, Mackay B, et al. Reduction of cardiotoxicity by prolonged continuous intra-venous infusion. Ann Intern Med 1982; 96: 133–9

    PubMed  CAS  Google Scholar 

  177. Workman P. Infusional anthracyclines: is slower better? If so why? Ann Oncol 1992; 3: 591–4

    PubMed  CAS  Google Scholar 

  178. Hortobagyi GN, Frye RN, Buzdar AU. Decreased cardiac toxicity of doxorubicin administered by continuous intravenous infusion in combination chemotherapy for metastatic breast cancer. Cancer 1989; 63: 37–45

    Article  PubMed  CAS  Google Scholar 

  179. Herman EH, Mhatare RM, Lee IP. Prevention of cardiotoxic effects of adriamycin and daunomycin in the isolated dog heart. Proc Soc Exp Biol Med 1972: 140: 234–49

    PubMed  CAS  Google Scholar 

  180. Hasinoff BB, Reinders FX, Clark V. The enzymatic hydrolysis-activation of the adriamycin cardiomycin cardioprotective agent (+)-1,2-bis (3,5-dioxopiperazinyl-l-yl) propane. Drug Metab Dispos 1991; 19: 74–80

    PubMed  CAS  Google Scholar 

  181. Sobol MM, Amiet RG, Green MD. In vitro evidence for direct complexation of ADR-529/ICRF-187 [(+)-1,2-bis — (3,5-dioxopiperazin-1-yl) propane] onto an existing ferric-anthra-cycline complex. Mol Pharmacol 1992; 41: 8–17

    PubMed  CAS  Google Scholar 

  182. Speyer JL, Green MD, Kramer E, et al. Protective effect of the bispiperazinedione ICRF-187 against doxorubicin induced cardiotoxicity in women with advanced breast cancer. N Engl J Med 1988; 319(12): 745–52

    Article  PubMed  CAS  Google Scholar 

  183. Wexler LH, Berg S, Andrich M, et al. ICRF-187 reduces doxorubicin-induced cardiotoxicity with no impact on response to chemotherapy [abstract]. Proc Am Soc Clin Oncol 1993; 12: 418

    Google Scholar 

  184. Weisberg SR, Rosenfeld CS, York RN, et al. Dexrazoxane (ADR-529, ICRF-187, Zinecard™) protects against doxorubicin-induced chronic cardiotoxicity [abstract]. Proc Am Soc Clin Oncol 1992; 11: 91

    Google Scholar 

  185. York RM, Rosenfeld CS, Weisberg SR, et al. Prevention of adriamycin cardiomyopathy with dexrazoxane (ADR-529, ICRF- 87) [abstract]. Proc Am Soc Clin Oncol 1992; 11: 62

    Google Scholar 

  186. Mailliard JA, Speyer JL, Hanson K, et al. Prevention of chronic adriamycin cardiotoxicity with the bisdioxopiperazine dexrazoxane (ICRF-187, ADR-529, Zinecard™) in patients with advanced or metastatic breast cancer [abstract]. Proc Am Soc Clin Oncol 1992; 11: 91

    Google Scholar 

  187. Michelotti A, Venturini M, Conte PS, et al. Cardioxone (ICRF-187) protects against epirubicin (Epi) induced cardiomyopathy in advanced breast cancer (ABC) patients: a phase III study [abstract]. Proc Am Soc Clin Oncol 1995; 14: 98

    Google Scholar 

  188. Liesmann J, Belt R, Haas C, et al. Phase I evaluation of ICRF-187 in patients with advanced malignancy. Cancer 1981; 47: 1959–62

    Article  PubMed  CAS  Google Scholar 

  189. Wexler LH, Andrich MP, Venzon D. Randomised trial of the Cardioprotective agent ICRF-187 in pediatric sarcoma patients treated with doxorubicin. J Clin Oncol 1996; 14(2): 362–72

    PubMed  CAS  Google Scholar 

  190. Herman EH, Rahman A, Ferrans VJ, et al. Prevention of chronic doxorubicin cardiotoxicity in beagles by liposomal encapsulation. Cancer Res 1983: 43: 5427–32

    PubMed  CAS  Google Scholar 

  191. Ranson M, O’Byrne K, Carmichael J, et al. Phase II dose finding trial of Dox-SL (Stealth Liposomal Doxorubicin HCL) in the treatment of advanced breast cancer [abstract]. Proc Am Soc Clin Oncol 1996; 15: 161

    Google Scholar 

  192. Fonseca GA, Valero A, Buzdar R. Decreased cardiac toxicity by TLC D-9 (liposomal doxorubicin) in the treatment of metastatic breast cancer (MBC) [abstract]. Proc Am Soc Clin Oncol 1995; 14: 99

    Google Scholar 

  193. Ganzina F. 4′ Epi-doxorubicin, a new analogue of doxorubicin: a preliminary overview of pre-clinical and clinical data. Cancer Treat Symp 1983; 10: 1–22

    Article  CAS  Google Scholar 

  194. Jain KK, Casper ES, Geller NL, et al. A prospective randomised comparison of epirubicin and doxorubicin in patients with advanced breast cancer. J Clin Oncol 1985; 3: 818–26

    PubMed  CAS  Google Scholar 

  195. Nielsen D, Jensen P, Dobernowski O, et al. Epirubicin Cardiotoxicity: study of 135 patients with advanced breast cancer. J Clin Oncol 1990; 8: 1806–10

    PubMed  CAS  Google Scholar 

  196. Mross K. New anthracycline derivatives: what for? Eur J Cancer 1991; 27: 1542–4

    Article  PubMed  CAS  Google Scholar 

  197. Mourisden HT. New cytotoxic drugs in the treatment of breast cancer. Acta Oncol 1990; 29: 343–7

    Article  Google Scholar 

  198. Plosker GL, Faulds D. Epirubicin: a review of its pharmacodynamic and pharmacokinetics properties and therapeutic use in cancer chemotherapy. Drugs 1993; 45(5): 788–856

    Article  PubMed  CAS  Google Scholar 

  199. McVie JG. Anthracycline analogues and carriers. In: Muggia FM, Green MD, Speyer JL, editors. Cancer treatment and the heart. 1st ed. Baltimore, Maryland: The Johns Hopkins University Press, 1992: 217–45

    Google Scholar 

  200. Bennett JM, Muss HS, Doroshow JH, et al. A randomised multi-center trial comparing mitoxantrone, cyclophosphamide and fluorouracil with doxorubicin, cyclophosphamide and fluorouracil in the therapy of metastatic breast carcinoma. J Clin Oncol 1988; 6: 1611–20

    PubMed  CAS  Google Scholar 

  201. Gams RA, Wesler MJ. Mitoxantrone cardiotoxicity: results from the South-Eastern cancer study group. Cancer Treat Symp 1984; 3: 31–7

    Google Scholar 

  202. Posner LE, Dukart G, Goldberg J, et al. Mitoxantrone: an overview of safety and toxicity. Invest New Drugs 1985; 3: 123–32

    Article  PubMed  CAS  Google Scholar 

  203. Henderson IC, Allegro JC, Woodcock T. Randomised clinical trial comparing mitoxantrone with doxorubicin in previously treated patients with metastatic breast cancer. J Clin Oncol 1989; 7(5): 560–71

    PubMed  CAS  Google Scholar 

  204. Pavloski M, Santorelli MT, Erazo A, et al. Results of a randomised study of previously untreated intermediate and high grade lymphomas using CHOP versus CNOP. Ann Oncol 1992; 3: 205–9

    Google Scholar 

  205. Tabata T, Ogawa M, Horikoshi N, et al. Phase 1 study of KRN 8602 (MX2), a new morpholino anthracycline. Jpn J Cancer Chemother 1989; 16(7): 2361–6

    CAS  Google Scholar 

  206. Streeter DG, Johl JS, Gordon GR. Uptake and retention of morphinyl anthracyclines by adriamycin sensitive and resistant P388 cells. Cancer Chemother Pharmacol 1992; 16: 247–52

    Article  Google Scholar 

  207. Clarke K, Green MD, Mitchell P, et al. MX2 (KRN 8602): an active new agent in patients with high grade malignant glioma [abstract]. Proc Am Soc Clin Oncol 1996; 15: 29

    Google Scholar 

  208. de Vries EGE, Zijlstra JG. Morpholinyl anthracyclines: option for reversal of anthracycline resistance. Eur J Cancer 1990; 26(6): 659–60

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abraham, R., Basser, R.L. & Green, M.D. A Risk-Benefit Assessment of Anthracycline Antibiotics in Antineoplastic Therapy. Drug-Safety 15, 406–429 (1996). https://doi.org/10.2165/00002018-199615060-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-199615060-00005

Keywords

Navigation