# **REVIEW**

# Biological and clinical aspects of ABO blood group system

Eiji Hosoi

Department of Cells and Immunity Analytics, Institute of Health Biosciences, the University of Tokushima Graduate School, Tokushima, Japan

Abstract: The ABO blood group was discovered in 1900 by Austrian scientist, Karl Landsteiner. At present, the International Society of Blood Transfusion (ISBT) approves as 29 human blood group systems. The ABO blood group system consists of four antigens (A, B, O and AB). These antigens are known as oligosaccharide antigens, and widely expressed on the membranes of red cell and tissue cells as well as, in the saliva and body fluid.

The ABO blood group antigens are one of the most important issues in transfusion medicine to evaluate the adaptability of donor blood cells with bone marrow transplantations, and lifespan of the hemocytes.

This article reviews the serology, biochemistry and genetic characteristics, and clinical application of ABO antigens. J. Med. Invest. 55: 174-182, August, 2008

**Keywords**: ABO blood group, glycosyltransferase, ABO allele, cisAB allele, PASA: PCR amplification of specific alleles

## INTRODUCTION

The ABO blood group system was discovered by Austrian scientist, Karl Landsteiner, who found three different blood types (A, B and O) in 1900 from serological differences in blood called the Landsteiner Law (1). In 1902, DesCasterllo and Sturli discovered the fourth type, AB (2). The ABO blood group is most important among the 29 blood group systems (Table 1), and consists of four antigens (A, B, O and AB) (3, 4). In 1924, Felix Bernstein predicted by extensive family studies that the mechanism of inheritance involved in three alleles at the ABO locus (5). Furthermore, the structure and biochemical characteristics of the ABO antigens were elucidated by many investigators.

Received for publication June 16, 2008; accepted July 23, 2008.

Address correspondence and reprint requests to Eiji Hosoi, Ph.D., Department of Cells and Immunity Analytics, Institute of Health Biosciences, the University of Tokushima Graduate School, Kuramoto-cho, Tokushima 770-8509, Japan and Fax: +81-88-633-9070.

The genes of ABO blood group has been determined at chromosome locus 9 (6-9), and Yamamoto, *et al.* cloned and determined the structures. It has made it possible to analyze genetically ABO blood group antigens using molecular biology techniques (7, 10-18).

## SEROLOGY OF ABO BLOOD GROUP SYS-TEM

The ABO blood group is determined by the presence of A and B antigens on the surface of the red blood cells, and of anti-A or anti-B antibodies in the serum. Thus, the red blood cells of blood type A possess antigen A and the serum containing anti-B antibody. Similarly, blood type B has antigen B and anti-A antibody. Blood type AB contains both A and B antigens but no antibodies. Blood type O has no antigens but contains both anti-A and anti-B antibodies. Anti-A and anti-B antibodies are usually IgM type, and not present in newborns, but

| ISBT<br>No. | System name | ISBT<br>symbol | Locus | ISBT<br>No. | System<br>name         | ISBT<br>symbol | Locus | ISBT<br>No. | System<br>name       | ISBT<br>symbol | Locus |
|-------------|-------------|----------------|-------|-------------|------------------------|----------------|-------|-------------|----------------------|----------------|-------|
| 001         | ABO         | ABO            | 9     | 011         | Yt                     | YT             | 7     | 021         | Cromer               | CROM           | 1     |
| 002         | MNS         | MNS            | 4     | 012         | Xg                     | XG             | X     | 022         | Knops                | KN             | 1     |
| 003         | P           | P1             | 22    | 013         | Scianna                | SC             | 1     | 023         | Indian               | IN             | 11    |
| 004         | Rh          | RH             | 1     | 014         | Dombrock               | DO             | 12    | 024         | Ok                   | OK             | 19    |
| 005         | Lutheran    | LU             | 19    | 015         | Colton                 | CO             | 7     | 025         | Raph                 | RAPH           | 11    |
| 006         | Kell        | KEL            | 7     | 016         | Landsteiner-<br>Wiener | LW             | 19    | 026         | John Milton<br>Hagen | JMH            | 15    |
| 007         | Lewis       | LE             | 19    | 017         | Chido/Rodgers          | CH/RG          | 6     | 027         | I                    | I              | 6     |
| 008         | Duffy       | FY             | 1     | 018         | Н                      | Н              | 19    | 028         | Globoside            | GLOB           | 3     |
| 009         | Kidd        | JK             | 18    | 019         | Kx                     | XK             | X     | 029         | Gill                 | GIL            | 9     |
| 010         | Diego       | DI             | 17    | 020         | Gerbich                | GE             | 2     |             |                      |                |       |

Table 1 ISBT Human Blood Group Systems

appear in the first year of life. It is possible that the antibodies are produced against food and environmental antigens (bacterial, viral or plant antigens) (19, 20), which are similar in structure to A and B antigens. This is summarized in Table 2 (21).

#### **BIOCHEMISTRY**

- 1) ABO blood group
- A) Model of antigen carrier proteins
  Blood group antigens are surface markers on the

red cell, and consist of proteins and carbohydrates attached to lipids or proteins. A model of the membrane components carrying blood group antigens is shown in Figure 1 (22).

B) The structure and biosynthesis of ABO antigens ABO antigens are one of the oligosaccharides antigens (23). These antigens are widely expressed on the membranes of red cell and tissue cell as well as, in the saliva and body fluid (24).

As shown in Figure 2, the first step in the biosynthesis of ABO antigens is the addition of a L-fucose in  $\alpha 1\rightarrow 2$  linkage on terminal galactose (Gal)

Table 2 Frequency of Japanese ABO blood groups

|           | Blood         | group      |                  | Red Blood Cell   |                  |  |  |
|-----------|---------------|------------|------------------|------------------|------------------|--|--|
| Phenotype | Frequency (%) | Genotype   | Frequency<br>(%) | Surface Antigens | Serum Antibodies |  |  |
| A         | 39.8          | A/A<br>A/O | 8<br>31          | A                | Anti-B           |  |  |
| 0         | 29.9          | 0/0        | 29               |                  | Anti-A, Anti-B   |  |  |
| В         | 19.9          | B/B<br>B/O | 3<br>19          | В                | Anti-A           |  |  |
| AB        | 9.9           | A/B        | 10               | A, B             | -                |  |  |

# **Model of Antigen Carrier Proteins**

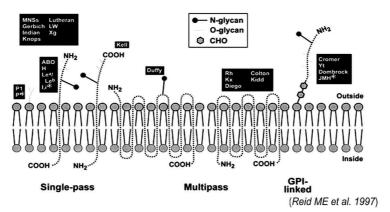
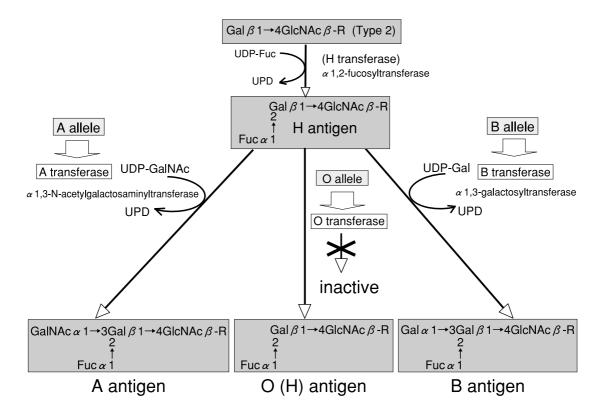




Figure 1. Model of RBC membrane components that carry blood group antigens.

<sup>\*:</sup> Blood group collections or high indence antigen. The Ch/Rg and Sciamma blood group system are not shown in this figure.



Fuc: L-fucose, Gal: D-galactose, GalNAc: N-acetylgalactosamine, GlcNAc: N-acetylglucosamine

Figure 2. Biosynthesis of ABO antigens.

of a common precursor attached to lipids or proteins by  $\alpha$ 1,2-fucosyltransferase (H transferase), resulting in the H antigen. Six different types of the common precursor structure are known (25); Type 1 (Gal $\beta$ 1 $\rightarrow$ 3GlcNAc $\beta$ -R) and Type 2 (Gal $\beta$ 1 $\rightarrow$ 4GlcNAcβ-R) sequences are the main structures. Type 1 is substance in secretions and tissues, and Type 2 is an antigen on the surface of the red blood cells. A, B and O (H) antigenic structures on the surface of red cells are defined as carbohydrate determinants, GalNAcα1→ (Fucα1→2)3Galβ1→4 GlcNAc $\beta$ -R, Gal $\alpha$ 1 $\rightarrow$  (Fuc $\alpha$ 1 $\rightarrow$ 2)3Gal $\beta$ 1 $\rightarrow$ 4GlcNAc $\beta$ -R, and  $(Fuc\alpha 1\rightarrow 2)Gal\beta 1\rightarrow 4GlcNAc\beta$ -R, respectively, which are synthesized from the H antigen structure by the action of specific glycosyltransferase products of ABO genes. The A and B alleles encode glycosyltransferase (α1,3-N-acetylgalactosaminyltransferase (A transferase) and α1,3-galactosyltransferase (B transferase)), which catalyze the addition of specific sugars, N-acetylgalactosamine (GalNAc) and galactose (Gal) residue, respectively, in a  $\alpha 1 \rightarrow 3$  linkage on terminal Gal of H antigen (6, 26-28). Since O allele encodes proteins without glycosyltransferase (O transferase) function, H antigen is the only ABO structure present in blood type O (29).

### C) Structure of the ABO gene locus

Human ABO genes are located in chromosome 9q34.1-q34.2(6-9) and consists of 7 exons distributed over 18 kb of genomic DNA. Exon 7 contains most of the largest coding sequence. Exon 6 contains the deletion found in most O alleles. The exons range in size from 28 to 691 bp (29).

The ABO locus has three main allele forms, A, B, and O. A and B alleles have seven nucleotide substitutions (297A>G, 526C>G, 657C>T, 703G> A, 796C>A, 803G>C and 930G>A). Four nucleotide substitutions (526C>G, 703G>A, 796C>A and 803G>C) are translated into different amino acid substitutions (Arg526Gly, Gly703Ser, Leu796Met and Gly803Ala). These substitutions determine the specificities of glycosyltransferases. The A allele encodes A transferase catalyzing the addition of GalNAc residue, and the B allele encodes B transferase catalyzing the addition of Gal residue, respectively, in a  $\alpha 1\rightarrow 3$  linkage on terminal Gal of the H antigen. On the other hand, the O allele differs from the A allele by a single nucleotide deletion of guanine (G) at position 261. This deletion causes a frame-shift and results in a loss of transferases activity (Figure 3) (29-31).

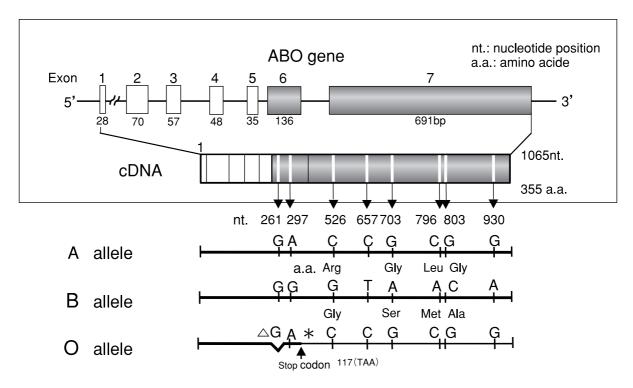



Figure 3. Structure of the ABO gene locus and nucleotide sequences of A, B and O alleles. Diagram of exon organization of the protein coding sequences (upper shaded). \*; Entirely different deduced amino acid sequence in O alleles due to frame-shifting caused by a single base deletion (lower).

## 2) Subgroups

#### A) Subgroups of A and B

An ABO blood group subtype is called a subgroup and/or variant. Subgroups of ABO are distinguished by decreased amounts of A, B or O (H) antigens on red blood cells. The most common are subgroups of A and B.

Blood type A appears to have the most variation in subgroups. Blood type A with a normal quantity of antigen is called A<sub>1</sub>, and is distinguished from subgroups. Subgroups are classified by the quantity of A antigen, and the amount of A antigen decreases in the order A<sub>1</sub>, A<sub>2</sub>, A<sub>3</sub>, A<sub>x</sub>, A<sub>end</sub>, A<sub>m</sub>, A<sub>el</sub>. In Europeans, approximately 80% of blood type A and AB belong to A<sub>1</sub>, the remaining 20% are either A<sub>2</sub> or A<sub>2</sub>B (in Japanese it is approximately 0.2%) (32, 33).

In general, serologic distinction between  $A_1$  and  $A_2$  is based on the agglutination of  $A_1$  red blood cells but not  $A_2$  cells with anti-  $A_1$  lectin (extract of Dolichos biflorus seeds) (34). Recently, the sequence of  $A_2$  allele coding blood type  $A_2$  has been molecular genetically analyzed, and shown to have a single base deletion near the carboxyl terminal. The deletion causes a frame-shift and results in a loss of  $A_2$  transferase activity. This deletion of  $A_2$  allele made it possible to analyze genetically blood

type  $A_2$  (35). Similarly, subtypes of blood type B are classified by the quantity of B antigen, and the amount of B antigen decreases in the order B,  $B_3$ ,  $B_m$ ,  $B_m$ ,  $B_{el}$ . The expression of A or B antigens is summarized in Table 3 (36, 37).

Table 3 Expression of ABO antigens per red blood cell surface

|                  | •                | · .                    |  |  |  |  |  |
|------------------|------------------|------------------------|--|--|--|--|--|
|                  | Blood group type | Expression             |  |  |  |  |  |
| $\overline{A_1}$ | adult            | 810,000 ~ 1,170,000    |  |  |  |  |  |
| $A_1$            | newborn          | $250,000 \sim 370,000$ |  |  |  |  |  |
| $A_2$            | adult            | 240,000 ~ 290,000      |  |  |  |  |  |
| $A_2$            | newborn          | 140,000                |  |  |  |  |  |
| $A_1B$           | adult            | 460,000 ~ 850,000      |  |  |  |  |  |
| $A_1B$           | newborn          | $240,000 \sim 290,000$ |  |  |  |  |  |
| $A_2B$           | adult            | 120,000                |  |  |  |  |  |
| <b>A</b> 3       |                  | $7,000 \sim 100,000$   |  |  |  |  |  |
| $A_x$            |                  | $1,400 \sim 10,000$    |  |  |  |  |  |
| Aend             |                  | 1,100 ~ 4,400          |  |  |  |  |  |
| $A_{m}$          |                  | 200 ~ 1,900            |  |  |  |  |  |
| $A_{\rm el}$     |                  | 100 ~ 1,400            |  |  |  |  |  |
| В                | adult            | 610,000 ~ 830,000      |  |  |  |  |  |
| В                | newborn          | 200,000 ~ 320,000      |  |  |  |  |  |
| $A_1B$           | adult            | 310,000 ~ 560,000      |  |  |  |  |  |
|                  |                  |                        |  |  |  |  |  |

## B) Subgroups of AB

Blood type AB is classified into nine subtypes  $(A_xB, A_1B_x, A_mB, A_1B_m, A_elB, A_1B_el, cisA_2B_3, cisA_2B, cisA_1B_3)$  by the quantity of A or B antigen. In particular, cisAB is a very rare phenotype and has three blood types, cisA<sub>2</sub>B<sub>3</sub>  $(A_2B_3/O)$ , cisA<sub>2</sub>B  $(A_2B_3/A_1)$ . Detecting this AB variant is

very important, especially in blood transfusion and in dissolving a problem of paternity in the ABO blood group system.

In 1964, Seyfried, *et al.* reported a family consisting of a woman with AB, her husband with blood type O, and daughter with blood type AB. They described the strange inheritance of blood type A and B and suggested that these specificities might be coded by genes located on the same chromosome (38).

In 1966, Yamaguchi, *et al.* reported a family which consisted of three children with blood group A<sub>2</sub>B<sub>3</sub> born to a father (blood type O) and mother (blood group A<sub>2</sub>B<sub>3</sub>). This family lived in Tokushima Prefecture in Japan. This finding showed that the A and B genes were located on the same chromosome. They proposed the name "CisAB" to distinguish it from ordinary AB, namely "Trans AB" (39). It has been reported that the frequency of this phenotype is apparently higher in Tokushima, Ishikawa and Kagawa Prefectures than in other prefectures in Japan. For example, the frequency of the cisAB phenotype in Tokushima Prefecture (0.017% - 0.02%) is about 11 times as high as that in

Osaka Prefecture (0.0014% -0.0017%) (40, 41). Furthermore, it is interesting that some cisAB families in other prefectures had actually moved from Tokushima over the last several generations. These findings suggest that families with the cisAB blood phenotype might have common ancestors.

Recently, the nucleotide sequence of the coding region in the last two coding exons of ABO genes from cisAB individuals was determined. CisAB ( $A_2$   $B_3$ ) alleles were identical to one another while different from the  $A_1$  allele by two nucleotide substitutions (Figure 4). Both of these nucleotide substitutions result in amino acid substitutions (42). The first substitution is identical to that previously found in the  $A_2$  allele, corresponding to the cisAB ( $A_2$ B<sub>3</sub>) allele encoding a glycosyltransferase that is capable of synthesizing both A and B antigens (17, 18, 35).

Therefore, the phenotype of the ABO blood group system, such as subgroups of A, B and AB, have been realized by changes in the cDNA sequence, for example, base substitution or deletion. Comparison of the nucleotide sequences of alleles in A, B and AB subgroups is summarized in the Table 4 (43-45).

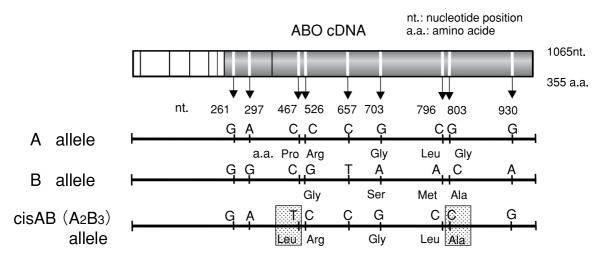



Figure 4. Structure of the ABO gene locus and nucleotide sequences of A, B and cisAB alleles. Diagram of exon organization of the protein coding sequences (upper shaded).

Table 4 Comparison of the nucleotide sequences of alleles in A, B and AB subgroups

|                       |                                             |     |     |     |     |     | <u> </u> |     | • • | • • | 1.1 5 |     |      |           |     |
|-----------------------|---------------------------------------------|-----|-----|-----|-----|-----|----------|-----|-----|-----|-------|-----|------|-----------|-----|
|                       | Entire coding sequence determined with cDNA |     |     |     |     |     |          |     |     |     |       |     |      |           |     |
|                       | 261                                         | 297 | 467 | 526 | 646 | 657 | 703      | 796 | 802 | 803 | 871   | 930 | 1054 | 1059-1061 | nt. |
| A <sub>1</sub> allele | G                                           | A   | С   | С   | T   | С   | G        | С   | G   | G   | G     | G   | С    | С         |     |
| A <sub>2</sub> allele |                                             |     | T   |     |     |     |          |     |     |     |       |     |      | C-del     |     |
| A <sub>3</sub> allele |                                             |     |     |     |     |     |          |     |     |     | A     |     |      |           |     |
| A <sub>x</sub> allele |                                             |     |     |     | Α   |     |          |     |     |     |       |     |      |           |     |
| B allele              |                                             | G   |     | G   |     | T   | Α        | A   |     | С   |       | A   |      |           |     |
| B <sub>3</sub> allele |                                             | G   |     | G   |     | T   | A        | A   |     | C   |       | Α   | T    |           |     |
| cis AB allele         |                                             |     | T   |     |     |     |          |     |     | С   |       |     |      |           |     |

# GENETIC ANALYSES OF ABO BLOOD GROUPS AND THEIR APPLICATIONS FOR CLINICAL STUDIES

Gene technology using PCR has markedly advanced in recent years and has been introduced into clinical laboratories. Accordingly, genotypes of the ABO blood group have been analyzed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), PCR-direct sequencing, PCR-single strand conformation polymorphism (PCR-SSCP), and PCR-amplification of specific alleles (PASA). PCR-RFLP, PCR-direct sequencing and PCR-SSCP methods require 2-step procedures, and then not ease to be used in clinical laboratories. The PASA method is based on the fact that PCR amplification occurs only when the 3' endbase of the primer is matched to the nucleotide of No. 261, 526, 796 or 803 (the sites of amino acid substitutions) of ABO allelic cDNA, and three of five regions of allelic DNAs were co-amplified in single PCR (multiplex-PCR) in our study (8, 12-16). ABO and cisAB blood group genotypes were

directly determined, based on the molecular size of allele-specific amplification products. The PASA method requires only about 4 hours from the start of PCR to the end of analysis. Therefore, PASA method is rapid, simple and useful for detecting the genotype of ABO and cisAB blood groups in comparison with PCR-RFLP, PCR-direct sequencing and PCR-SSCP methods and used widely throughout the research and clinical laboratories.

The scheme of the method of amplification and the analysis of specific ABO and cisAB alleles using the PASA method are shown in Figure 5 (14).

## 1) ABO genotyping

As shown in Figure 6 (13), all genes of the six major ABO genotypes, A/O, A/A, B/O, B/B, O/O and A/B were amplified; three specific bands (379, 104 and 52bp) for A/O, two specific bands (379 and 52bp) for A/A, four specific bands (379, 224, 104 and 52 bp) for B/O, two specific bands (224 and 52bp) for B/B, two specific bands (379 and 104 bp) for O/O and three specific bands (379, 224 and 52bp) for A/B.

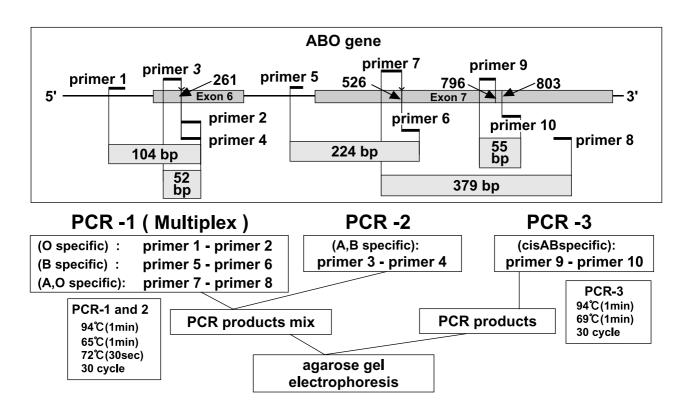



Figure 5. Scheme of method of amplification and analysis of specific ABO alleles using the PASA method. 3' endbase of primer 2, 3 and 4, 6, 7, 9 and 10 corresponded to the nucleotide sequences of O, A and B, B, A and O, and cisAB alleles, respectively. Primer 1, 5 and 8 corresponded to nucleotide sequences of the ABO allele. Allele-specific DNA fragments of O allele (104 bp), A and B allele (52 bp), B allele (224 bp), A and O allele (379 bp), and cisAB (55bp) were amplified by PCR with 5 pairs of primers (primer 1 and 2, primer 3 and 4, primer 5 and 6, primer 7 and 8, and primer 9 and 10), respectively. Three (104bp, 224bp and 379bp) of five fragments were co-amplified in a single PCR-1 (multiplex-PCR).

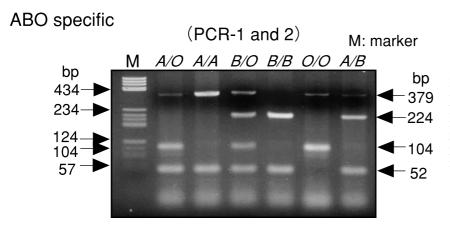



Figure 6. Electrophoretic patterns of PCR products in the six major ABO genotypes. Genomic DNA extracted from leukocytes was amplified by the PASA method using 4 primer sets (primer 1 and 2, primer 3 and 4, primer 5 and 6, and primer 7 and 8). M, Hae III digest of Plasmid pBR322 (marker).

## 2) cisAB genotyping

As shown in Figure 7 (13, 14), all genes of the three major cisAB genotypes,  $A_2B_3/O$ ,  $A_2B_3/A_1$  and  $A_2B_3/B$  were amplified; four specific bands (379, 104, 52 and 55 bp) for  $A_2B_3/O$ , three specific bands (379, 52 and 55 bp) for  $A_2B_3/A_1$  and four specific bands (379, 224, 52 and 55 bp) for  $A_2B_3/B$ .

Table 5 summarizes all possible specific band patterns of the ABO genotype obtained with the PASA method. ABO and cisAB blood group genotypes were directly determined, based on the molecular size of allele-specific amplification products. The analysis of nucleotide sequence in three major subjects in the cisAB blood group revealed chimeric structures of the A allele and B allele on the same gene.

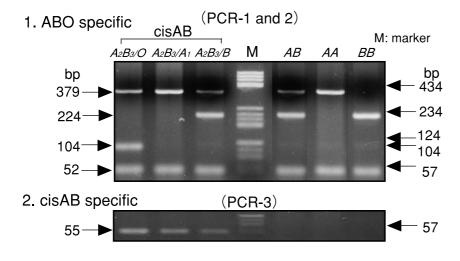



Figure 7. Electrophoretic patterns of PCR products in the three major cisAB genotypes. Genomic DNA extracted from leukocytes was amplified by PASA method using 5 primer sets (primer 1 and 2, primer 3 and 4, primer 5 and 6, primer 7 and 8, and primer 9 and 10). M, Hae III digest of Plasmid pBR322 (marker); upper panel: ABO allele specific; Lower panel: cisAB allele specific.

Table 5 Partterns of PASA method for all possible ABO genotypes

| bp (Allele specific band)  | A/O | A/A | В/О | B/B | 0/0 | A /D  | cisAB      |              |            |  |  |
|----------------------------|-----|-----|-----|-----|-----|-------|------------|--------------|------------|--|--|
| bp (Allele specific ballu) | A/O | A/A |     |     |     | A/B - | $A_2B_3/O$ | $A_2B_3/A_1$ | $A_2B_3/B$ |  |  |
| (a) 379 (A,O specific)     | +   | +   | +   | -   | +   | +     | +          | +            | +          |  |  |
| (b) 224 (B specific)       | -   | -   | +   | +   | _   | +     | -          |              | +          |  |  |
| (c) 104 (O specific)       | +   | -   | +   | -   | +   | -     | +          | -            | -          |  |  |
| (d) 52 (A,B specific)      | +   | +   | +   | +   | _   | +     | +          | +            | +          |  |  |
| (e) 55 (cisAB specific)    |     |     |     |     | _   | _     | +          | +            | +          |  |  |

<sup>+,</sup> Presence of the expected specific ABO gene type fragment. -, Absence of the expected specific ABO gene type fragment. (a), Specific band A and O alleles by using primers (7 and 8). (b), Specific band B allele by using primers (5 and 6). (c), Specific band of O allele by using primers (1 and 2). (d), Specific band of A and B alleles by using primers (3 and 4). (e), Specific band of cisAB allele by using primers (9 and 10).

#### **REFERENCES**

- 1. Landsteiner K: Zur Kenntnis der antifermentativen, lytischen und agglutinierenden Wirkungen des Blutserums und der Lymphe. Zentralbl Bakteriol 27: 357-362, 1900
- von Decastello A, Sturli A: "Ueber die Isoagglutinine im Serum gesunder und kranker Menschen". Mfinch med Wschr 49: 1090-1095, 1902
- 3. Lewis M, Anstee DJ, Bird GWG, Brodheim E, Cartron JP, Contreras M, Crookston MC, Dahr W, Daniels GL, Engelfriet CP, Giles CM, Issitt PD, Jørgensen J, Kornstad L, Lubenko A, Marsh WL, McCreary J, Moore BPL, Morel P, Moulds JJ, Nevanlinna H, Nordhagen R, Okubo Y, Rosenfield RE, Rouger Ph, Rubinstein P, Salmon Ch, Seidl S, Sistonen P, Tippett P, Warker RH, Woodfield G, Young S: Blood group terminology 1990. The ISBT Working Party on Terminology for Red Cell Surface Antigens. Vox Sang 58(2): 152-69, 1990
- 4. Daniels GL, Fletcher A, Garratty G, Henry S, Jørgensen J, Judd WJ, Levene C, Lomas-Francis C, Moulds JJ, Moulds JM, Moulds M, Overbeeke M, Reid ME, Rouger P, Scott M, Sistonen P, Smart E, Tani Y, Wendel S, Zelinski T: International Society of Blood Transfusion. Blood group terminology 2004: from the International Society of Blood Transfusion committee on terminology for red cell surface antigens. Vox Sang 87: 304-316, 2004
- 5. Bernstein F: Ergebnisse einer biostatistischen zusammenfassenden Betrachtung, ber die erblichen Blutstrukturen des Menschen. Klin Wochenschr 3: 1495-1497, 1924
- 6. Watkins WM: Biochemistry and genetics of the ABO, Lewis, and P blood group systems, In: Advances in Human Genetics (Harris H & Hirschhorn K eds.). Plenum Press, New York, 1980, pp.136-136
- Larsen RD, Ernst LK, Nair RP, Lowe JB: Molecular cloning, sequence, and expression of a human GDP-L-fucose: β-D-galactoside 2-alpha-L-fucosyltransferase cDNA that can form the H blood group antigen. Proc Natl Acad Sci USA: 87(17): 6674-6678, 1990
- 8. Yamamoto F, Hakomori S: Sugar-nucleotide donor specificity of histo-blood group A and B transferases is based on amino acid substitution. J Biol Chem 265 (31): 19257-19262, 1990
- 9. Bennett EP, Steffensen R, Clausen H, weghuis

- DO, Geurts van kessel A: Genomic cloning of the human histo-blood group and locus. Biochem Biophys Res Commun 206 (1): 318-325, 1995
- 10. Ferguson-Smith MA, Aitken DA, Grouchy J: Localization of the human ABO: Np-1 linkage group by relational assignment of AK-1 to 9q34. Hum Genet 34 (1): 35-43, 1976
- 11. Yamamoto F, Clausen H, White T, Marken J, Hakomori S: Molecular genetic basis of the histo-blood group ABO system, Nature 345: 229-233, 1990
- 12. Hosoi E, Yoshimoto K: Genetic analysis of the genotype of ABO and cisAB blood group. Jpn J Clin Pathol 41 (10): 1133-1140, 1993
- 13. Hosoi E: Direct determination of ABO and cisAB blood group genotypes using polymerase chain reaction amplification of specific alleles (PASA)-method. Jpn J Clin Pathol 44 (8): 783-790, 1996
- 14. Hosoi E: Genetic analyses of the ABO blood groups and application of the clinical laboratories. Jpn J Clin Pathol 45(2): 148-156, 1997
- 15. Hosoi E, Hirose M, Hamano S, Kuroda Y: Detection of histo-blood group ABO mRNA in human chronic myeloid leukemia cell lines using reverse transcription-polymerase chain reaction (RT-PCR). Cancer Lett 133(2): 191-196, 1998
- 16. Yamamoto F, Hakomori S: Sugar-nucleotide donor specificity of histo-blood group A and B transferases is based on amino acid substitution. J Biol Chem 265 (31): 19257-19262, 1990
- 17. Ogasawara K, Yabe R, Uchikawa M, Saitou N, Bannai M, Nakata K, Takenaka M, Fujisawa K, Ishikawa Y, Juji T, Tokunaga K: Molecular genetic analysis of variant phenotypes of the ABO blood group system. Blood 88 (7): 2732-2737, 1996
- 18. Ogasawara K, Yabe R, Uchikawa M, Bannai M, Nakata K, Takenaka M, Takahashi Y, Juji T, Tokunaga K: Different alleles cause an imbalance in A2 and A2B phenotypes of the ABO blood group.Vox Sang 74(4): 242-247, 1998
- 19. Andersson M, Carlin N, Leontein K, Lindquist U, Slettengren K: Structural studies of the O-antigenic polysaccharide of Escherichia coli O86, which possesses blood-group B activity. Carbohydr Res 185: 211-223, 1989
- 20. Aspinall, G. O., Monteiro, M. A: Lipopolysaccharides of Helicobacter pylori strains P466

- and MO19: structures of the O antigen and core oligosaccharide regions. Biochemistry 35 (7): 2498-504, 1996
- 21. Japanese Red Cross Society HP: http://www.jrc.or.jp/active/blood/knowledge/type.html.
- 22. Reid ME, Lomas-Francis C: The Blood Group Antigen: Facts Book, Academic Press, New York, 1997, p.5
- 23. Watkins WM: Molecular basis of antigenic specificity in the ABO, H and Lewis blood group systems; Montreuil H, Vliegenhart JFG, Schachter H(eds) Glycoproteins. Elsevier, Amsterdam, 1995, pp.313-390
- 24. Zmijewski CM : Immunohematology 3rd ed. : Appleton Century Crofts New York, 1978
- 25. Oriol R: Genetic control of the fucosylation of ABH precursor chains. Evidence for new epistatic interactions in different cells and tissues. J Immunogenet 17(4-5): 235-245, 1990
- 26. Hakomori S: Philip Levine award lecture: blood group glycolipid antigens and their modifications as human cancer antigens. Am J Clin Pathol 82(6): 635-648, 1984
- 27. Schachter H, Michaels MA, Tilley CA, Crookston MC, Crookston JH: Qualitative differences in the N-acetyl-D-galactosaminyl-transferases produced by human A<sub>1</sub> and A<sub>2</sub> genes. Proc Natl Acad Sci 70(1): 220-224, 1973
- 28. Poretz RD, Watkins WM: Galactosyltransferases in human suBmaxillary glands and stomach mucosa associated with the biosynthesis of blood group B specific glycoproteins. Eur J Biochem. 25(3): 455-462, 1972
- 29. Yamamoto F, McNeill PD, Hakomori S: Genomic organization of human histo-blood group ABO genes. Glycobiology 5(1): 51-58, 1995
- 30. Yamamoto F, Clausen H, White T, Marken J, Hakomori S: Molecular genetic basis of the histo-blood group ABO system. Nature 345: 229-233, 1990
- 31. Yamamoto F, Hakomori S.: Sugar-nucleotide donor specificity of histo-blood group A and B transferases is based on amino acid substitutions. J Biol Chem 265(31): 19257-19262, 1990
- 32. Sturgeon P, Moore BP, weiner W: Notations for two weak a variants: Aend and Ael. Vox Sang 9: 214-215, 1964
- 33. Reed TE, Moore BP: A new variant of blood group A. Vox Sang 9: 363-366, 1964

- 34. Bird GW: Relationship of the blood sub-groups A<sub>1</sub>, A<sub>2</sub> and A<sub>1</sub>B, A<sub>2</sub>B to haemagglutinins present in the seeds of Dolichos biflorus. Nature 170(4329): 674, 1952
- 35. Yamamoto F, McNeill PD, Hakomori S: Human histo-blood group A<sub>2</sub> transferase coded by A<sub>2</sub> allele, one of the A subtypes, is characterized by a single base deletion in the coding sequence, which results in an additional domain at the carboxyl terminal. Biochem Biophys Res Commun 187(1): 366-374, 1992
- 36. Economidou J, Hughes-Jones NC, Gardner B: Quantitative measurements concerning A and B antigen sites. Vox Sang 2(5): 321-328, 1967
- 37. Cartron JP, Gerbal A, Hughes-Jones NC, Salmon C: 'Weak A' phenotypes. Relationship between red cell agglutinability and antigen site density. I mmunology 27(4): 723-727, 1974
- 38. Seyfried H, Walewska I, Werblinska B: Unusual inheritance of ABO group in a family with weak B antigens. Vox Sang 9: 268-277, 1964
- 39. Yamaguchi H, Okubo Y, Hazama F: Another Japanese A<sub>2</sub>B<sub>3</sub> blood-group family with the propositus having O-group father. Proc Jpn Acad 42: 517-520, 1966
- 40. Okubo Y, Tomita T, Seno T, Yokoishi F, Fukui M, Bando K: Serological findings and distribution in Tokushima Prefecture of Cis AB. Jap J Med Technol 28: 66, 1979
- 41. Yamaguchi H : A review on ABO variants and rare bloods. Jap J Med Technol 34(1) : 3-10, 1985
- 42. Yamamoto F, McNeill PD, Kominato Y, Yamamoto M, Hakomori S, Ishimoto S, Nishida S, Shima M, Fujimura Y: Molecular genetic analysis of the ABO blood group system: 2. cis-AB alleles. Vox Sang 64(2): 120-123, 1993
- 43. Yamamoto F: Molecular genetics of the ABO histo-blood group system. Vox Sang 69(1): 1-7, 1995
- 44. Oriol, R: In molecular basis of human blood group antigens. (Cartron, J.-P. and Rouger, P. eds), Plenum Press, New York, 1995, pp.37-73
- 45. Lowe, JB: In molecular basis of human blood group antigens. (Cartron, J.-P. and Rouger, P. eds), Plenum Press, New York, 1995, pp.75-115