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Abstract: Peripheral nerve injury is an important clinical problem that can exert hazard-

ous effects on the health of patients. For this reason, there are more studies conducted on the 

regeneration of the peripheral nerves via the usage of the nerves belonging to various animals 

with different types of lesions, ages, and by using different methods of assessment with regular 

follow-up. Contrary to data obtained through experimentation and clinical observation, no 

ideal way of treatment was found to increase the regeneration of the peripheral nerves. Finally, 

the effects of melatonin in the protection of peripheral nerves against trauma, especially the 

protection of sciatic nerve from pathological conditions, have come into attention in a wide 

group of scientists as there are beneficial effects of melatonin after surgery. While numerous 

studies indicate the melatonin’s protective effects on the pathologies of nerves, there are also 

studies reporting its toxic effects on peripheral nerves. Melatonin is a widespread and crucial 

signaling molecule due to its features of free radical scavenging and anti-oxidation at both phar-

macological and physiological conditions in vivo. In this context, although there are numerous 

studies elaborating the effects of melatonin in various tissues, its effects on peripheral nerves 

was documented in only a limited number of studies. The aim of this article was to perform a 

review of the knowledge in the literature on the subject of mostly beneficial or hazardous effects 

of melatonin on the repair of the damaged peripheral nerves.
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What do we know about the peripheral nerve 
injury?
Peripheral nerve injury is an important clinical problem, which has only limited 

number of treatment options. It often occurs due to mechanical traumas and rarely as 

a result of surgical resection of tumors.1 These injuries result in the damage or loss of 

musculoskeletal system, blood vessel, nerves, and basal membrane.2,3 Although some 

of the damage regenerates spontaneously, some severe traumatic damages result in the 

loss of motor, auditory, and autonomic functions.2,3

Although there is no complete improvement in a majority of traumas, the amount 

of improvement may vary according to nerve type, grade of injury, and amount of 

fibrosis. Seddon6 and Sunderland5 demonstrated two basic classifications to scale 

the severity of the damage accepted today. Seddon6 classified the nerve injuries into 

three groups: neuropraxia, axonotmesis, and neurotmesis, and Sunderland5 further 

expanded the Seddon’s classification6 to five degrees according to the damage 

grades of the tissues and the type of trauma. Sunderland’s5 first- degree injury type 
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is equivalent to Seddon’s6 neuropraxia type injury, and only 

temporary transient loss of axonal integrity is not impaired. 

 Sunderland’s5 second-degree injury type is equivalent to 

Seddon’s6 axonotmesis type injury. In this type of injury, 

there is no axonal integrity, but the endoneurium remains 

intact. Axonal regeneration is easy due to the presence of 

the endoneurium. Sunderland’s5 third- degree injury type 

refers to injuries sustained in the axon, myelin sheath, and 

endoneurium but the perineum remains intact. Sunderland’s5 

fourth- degree injury type refers to injuries that occur in the 

axon, myelin sheath, endoneurium, and perineurium, and the 

nerve endurance is only provided by the epineurium. Spon-

taneous healing is not possible.  Sunderland’s5 fifth- degree 

injury type is equivalent to the neurotmesis type injury of 

Seddon’s classification,6 which means that the nerve has 

been completely cut off and a complete functional loss has 

occurred. Spontaneous healing is not possible and surgical 

intervention is required.4–6

Current treatment modalities for peripheral nerve 

injuries are autologous nerve transplantation from sural, 

saphenous, or medial cutaneous nerves.7 It has been 

reported that the autologous nerve transplantation has fully 

recovered sensory restorations, whereas motor functions 

are recovered at a maximum of 40% level. Complications 

related to autograft include loss of function (motor and/or 

sensory), insufficient donor nerve tissue, and donor site 

morbidity.8,9 It is important to understand how nerve tis-

sue repairs itself spontaneously, partly, to develop a repair 

strategy for greater damage.

Events after the injury
First studies on peripheral nerve damage are based on the 

experiments conducted by Augustus Waller in 1850 on the 

glossopharyngeal and hypoglossal nerves of frogs. Waller 

tried to observe the postdamage events on axons and tried 

to explain in his own words that a great number of small 

chambers were formed on the distal part of the peripheral 

nerve and Schwann cells lost their white substance (myelin 

sheaths).10 In this century, this process that we call “Wal-

lerian degeneration” corresponds to inflammatory response 

that occurs in the peripheral nerve as a result of rupture or 

damage. A great number of genes and proteins (neurotrophic 

factors, cytokines, and cell adhesion molecules) take charge 

in all stages of Wallerian degeneration in a coordinated 

way.11,12 The inflammatory process after the peripheral 

nerve damage influences nerve repair in a positive way. 

Immunocytochemical analyses have confirmed that after the 

sciatic nerve damage, T cells and macrophages migrate to 

the damage area in 2 days and they expand to the distal part 

in 4 days.11–15 First, Wallerian degeneration starts with the 

destruction and degeneration of axoplasm and axolemma, 

and it is completed within 24 hours in small nerves and 

within 48 hours in greater nerves. After damage, intracellular 

and extracellular calcium concentration increase directly 

proportionally with the severity of damage.16,17 In in vitro 

study, increased calcium concentration has been shown to be 

a significant suppressive factor for the survival of Schwann 

cells.18 Axon destruction that starts with the flow of axonal 

protease and calcium continues with the help of various 

intrinsic factors.

As an early period response to axonal destruction, 

myelin protein synthesis is downregulated by Schwann 

cells.19,20 Immunohistochemical and in situ hybridization 

studies have shown that Schwann cells are the main source 

of early cytokine response.15,21,22 Later, in their study, Lin 

et al23 have shown that inflammatory mediators such as 

TNF-ALFA–IL-6, IL-1BETA, MCP-1, Inos, and COX-2 

are released not only from Schwann cells but also from 

glia cells, and after the nerve damage, nitric oxide (NO) 

inhibitors and anti-inflammatory cytokines save retinal 

ganglion cells from apoptosis by inhibiting microbial 

activation. With the discovery of Wallerian degeneration 

slow (WLDs) mutant mice in 1989, an important step has 

been taken to enlighten the nature of Wallerian degenera-

tion.24 While axon degeneration is delayed for longer than 

2 weeks in WLDs mice, this process takes only 1.5 days 

in wild-type mice.25 Studies on WLDs have shown that 

NMNAT and SARM-1 have significant roles in Wallerian 

degeneration.26–28

The pathological changes that occur in most peripheral 

neuropathies show a great deal of similarity. After removal 

of the above-mentioned myelin and axon residues in any 

active neuropathy, the loss of myelinated axons and increased 

endogenous collagen are observed.29

Results of studies conducted in our laboratory show the 

remarkable decrease in myelin sheath thickness of axons and 

axon diameter (Figure 1).

In electron microscopic sections, newly formed myelin-

ated and unmyelinated axons are noted in damaged nerves 

(Figure 2).

In the light of all this information, it is known that 

 Wallerian degeneration is important for postdamage nerve 

repair and mediates protective response formation under 

damage. Axonal fragmentation, which initiates Wallerian 
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degeneration, starts with the mediation of first calcium flow 

and then calpain activation.30 After axonal fragmentation, 

inflammatory cells of the complement system, chemokines, 

cytokines and signaling pathways are activated. These fac-

tors participate in fragmentation and axonal regeneration, 

and there are a great number of studies conducted on the 

roles of these factors.31–42

Knowing the order of the events that take place after dam-

age and the effect mechanisms of the factors in charge and 

thus understanding Wallerian degeneration are important for 

clarifying the most suitable treatment methods.

Structure, synthesis, and 
characteristics of melatonin
Melatonin, also known as N-acetyl-5-methoxytryptamine, 

is synthesized by the pineal gland product, which has basic 

functions such as the regulation of immune system, regula-

tion of pituitary hormones, and photoperiod adaptation.43,44 

Melatonin is not synthesized in the fetal brain and maternal 

melatonin enters the fetal circulation through placenta.45 

Tryptophan acts as the initiator of melatonin biosynthesis, 

and it is taken from the circulation and turned into serotonin. 

Serotonin is later turned into N-acetylserotonin through 

AANAT enzyme, and N-acetylserotonin is further metabo-

lized to melatonin through HIOMT enzyme.46

Melatonin given intravenously is first hydroxylated in 

the liver by cytochrome P450 monooxygenases, and then it 

is conjugated with sulfate to form 6-sulfatoxymelatonin.47,48 

Melatonin is also metabolized to kinuramine derivatives 

with oxidative pyrrole ring separation.49 Primary separation 

product is either arylamine formamidase or N1-acetyl-

N2-formyl-5-methoxykynuramine (AFMK) deformalized 

to N1-acetyl-5-methoxykynuramine by hemoperoxidase.50,51 

Evidences have suggested that pyrrole ring separation con-

tributes to about one third of total melatonin catabolism; 

however, this rate can be much higher in some tissues. AFMK 

has been put forward to be the primary and major active 

metabolite of melatonin.51

Although melatonin is primarily known as an indole 

synthesized from the pineal gland, other organs have the 

feature to synthesize melatonin, which has local influences. 

In addition to its transducer effect on circadian rhythm, its 

other functions have been clarified in the past decades such 

as direct free radical scavenging and the regulation of the 

genes of antioxidant enzymes.52–56 Similar to the studies on 

the antioxidant properties of melatonin, its cell protective 

effect and potential disease-preventing characteristics have 

also been studied frequently.57–61 Currently, the “oxidant 

scavenger” effect of melatonin on radical and nonradical 

agents has been proven.58–62

In addition, current studies indicate that melatonin 

production can occur in several sites such as astrocytes, the 

neuron in the brain.63 In this context, melatonin synthesis is 

correlated with mitochondrial alterations. Mitochondria and 

chloroplasts can be considered the primary site of melatonin 

production in some cells such as neuron and glia.63,64

The promoting effect of melatonin 
on peripheral nerve injury: general 
overview
Peripheral nerve trauma is common and repair generally 

occurs with scar tissue formation around the injury area.65 

Scar tissue formation leads to a block in neural conduction 

by creating a mechanical barrier for axonal regeneration. 

If scar formation can be prevented, the development of 

axonal extensions and so the regeneration process will 

Figure 1 The light micrograph shows the Toluidine blue staining of the rat sciatic 
nerve in 500-nm resin-embedded sections.
Notes: (A) Normal peripheral nerve view with tightly packed nerves in normal 
axon diameter. (B) The view of the crushed nerve 30 days after injury. Abundant 
number of newly formed and small axons is observed in response to nerve damage. 
Wallerian degeneration and macrophage-mediated phagocytosis stages have been 
completed and nerve self-repair initiated. Arrow, myelinated axon; arrowhead, 
Schwann cell; asterisk, in some of the nerves, the myelin appears to consist of two 
separate rings. This is caused by the section passing through a Schmidt–Lanterman 
cleft.

Figure 2 The electron microscopic micrograph indicates the sciatic nerve distal to 
the nerve crush site from a crush-injured rat.
Notes: (A) Normal peripheral nerve. (B) The view of the crushed nerve 30 days 
after injury. Sections were stained with lead citrate and uranyl acetate. Arrow, 
myelinated axon; arrowhead, unmyelinated axon; asterisk, newly formed myelinated 
axons. Bar indicates 1 mm length.
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accelerate.66,67 Some agents have been used for previous in 

vivo experimental studies for this purpose.67–69 Although 

many experimental and clinical studies were performed to 

obtain the outcomes of peripheral nerve injury, the methods 

for improving peripheral nerve damage are limited in the 

literature.70–73

Microsurgery procedure is of great importance in periph-

eral nerve regeneration. In addition, regeneration procedure 

also depends on many factors such as location of injury 

and duration of the regeneration.74 Especially, current data 

obtained from experimental studies have shown that phar-

macological agents has a role in the repair mechanism.75–77 

In this context, it has been suggested that melatonin, hyal-

uronic acid, methylprednisolone, and tacrolimus (FK506) 

are among the most used topical agents to accelerate the 

repair process by suppression of fibroblast proliferation in 

the damaged area. Hence, scar formation reduces in the nerve 

injury.75 Melatonin has many physiological roles in vivo 

such as pharmacological modulation of circadian rhythm, 

regulation of blood pressure, and free radicals scavenging 

as mentioned above. Especially, melatonin has an active 

role in healing nerve damage because of its broad-spectrum 

antioxidant properties and its ability to be a powerful inhibitor 

of apoptosis. Hence, it is an alternative agent to prevent the 

scar formation around the damage area.79,80 In the peripheral 

nervous system, melatonin is effective on axon sprouting 

after trauma.81 From another point of view, the regeneration 

process is associated with the balance between Schwann cell 

proliferation and scar tissue formation.82,83

Several studies showed that melatonin supplement 

decrease the scar formation in the nerve injury through inhib-

iting the collagen production.73,78,81,84 Similarly, Shokouhi 

et al85 reported that low-dose melatonin supplement could 

decrease the myelin damage and axonal alterations in the 

peripheral nerve. In addition, Stavisky et al86 pointed out that 

melatonin also plays a major role in the healing of a highly 

injured sciatic nerve by plasmalemma fusion. While studies 

on the effect of melatonin on the regeneration often deal with 

oxidative stress mechanisms, the effects of melatonin can be 

elaborated with molecular researches.

Antioxidant effects of melatonin 
on regeneration: key points for 
oxidative stress mechanisms
The role of antioxidants in the posttraumatic recovery of 

the damage in the peripheral and central nervous systems 

cannot be denied. After a neuronal trauma, it is believed 

that the primary cause of peripheral nerve injury is lipid 

peroxidation, which progresses along the nerve fibers and 

is induced by free radicals. Therefore, the primary target of 

antioxidants is thought to be the scavenging of free radicals in 

the repair of degeneration.87,88 Some researchers reported that 

melatonin, which is a pineal hormone, has an neuroprotective 

and free radical scavenging effect on the peripheral nervous 

 system.76,77,86,89,90 Because of the lipid solubility of melatonin, 

it easily penetrates the cell membrane and organelles. In addi-

tion, an antioxidant can penetrate the mitochondria of the 

cell. In this respect, it can also protect the mitochondria from 

oxidative damage.91 Melatonin supplementation is an effec-

tive antioxidant in the development of the peripheral nervous 

system. Especially, it has been proven to have an important 

role in the inhibition of axonal sprouting and collagen accu-

mulation.92,93 Qiu et al65 suggested that oxidative stress and free 

radical-induced lipid peroxidation negatively affect the repair 

of peripheral nerve damage. After peripheral nerve damage, 

melatonin provides oxidative action by stimulating superox-

ide dismutase enzyme, an important antioxidative enzyme. 

Superoxide dismutase enzyme acts as a redox  regulator.94 

Melatonin stimulates antioxidant enzymes by inhibiting the 

posttraumatic polymorphonuclear  infiltration.95,96 In addition, 

melatonin can reduce oxidative damage by preventing the 

levels of catalase, peroxidase, and ascorbate peroxidase such 

as superoxide dismutase (Figure 3).97–99

Nerve tissue does not contain highly oxidative defense 

mechanisms, and thus, lipid peroxidation negatively 

affects the integrity of the neuronal structure by disrupt-

ing membrane-binding receptors and enzymes. Melatonin 

can easily pass the physiological barriers in the lipid and 

aqueous environments.79 Melatonin can enter into nucleus, 

and therefore, it protects DNA, intracellular proteins, and 

Figure 3 The schema represents the receptor-dependent and receptor-
independent effects of melatonin.
Notes: This figure shows the effect of melatonin and its metabolites on scavenging 
the reactive oxygen products through nonreceptor-independent actions.
Abbreviations: MT1, metallothionein 1; SOD, superoxide dismutase.
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membranes lipids from oxidative stress.91 Melatonin reduces 

the oxidative stress by affecting NO and NO synthase after 

peripheral axotomy. It is known that melatonin exerts anti-

oxidant effects by mimicking the effects of calcium channel 

blockers.92 It is believed that melatonin is an electron donor 

for the detoxification of free radicals. Thus, it protects the 

sciatic nerve from ischemia via reducing lipid peroxida-

tion.100,101 In addition, according to the study by Atik et al,92 

melatonin has a direct effect on the independent receptors 

of toxic radicals. Therefore, it has high potential affinity for 

peroxyl and hydroxyl radicals via receptor for inactivation 

of free radicals. It has antioxidant properties with its affinity 

to receptors (Figure 4).102

Melatonin has antioxidant, circadian rhythm regulator, 

and immunoregulator properties as well as anti-inflamma-

tory properties.103–105 The anti-inflammatory effect of mela-

tonin reduces the formation of free radicals accompanying 

inflammatory response.105 Melatonin reduces inflammatory 

mediators and activates the antioxidant enzymes by signal 

transduction pathways. Especially, the nuclear factor 2 

(Nrf2) expression has an important role in the activation 

of antioxidant enzymes such as superoxide dismutase, 

catalase, and glutathione peroxidase, and it is believed 

that melatonin affects the antioxidant enzymes with Nrf2 

signaling  pathway (Figure 5).51,103,106 When the antioxidant 

effects of melatonin are examined in general, it can be 

seen that there is a fairly wide spectrum of antioxidants 

including reduction of synthesis of adhesion molecules and 

pro-inflammatory cytokines.107 Because melatonin has no 

pro-oxidative  activity, the melatonin molecule is not easily 

oxidized, does not undergo autooxidation, and does not enter 

the hydroxyl radical-generating reactions in the redox cycle. 

More importantly, unlike other antioxidants, melatonin does 

not show toxic effects at very high doses (300 mg/day) and 

even for as long as 5 years.108

Melatonin and Schwann cells: 
extracellular signal-regulated kinase 
(ERK) pathway
After injury, a number of endogenous factors have been 

identified that are effective in maintaining the vitality of 

axons and axonal growth.109,110 Schwann cells play a key 

role in peripheral nerve regeneration by regulating axonal 

proliferation.111 In addition, Schwann cells secrete various 

neurotrophic factors such as bFGF and nerve growth fac-

tor, which play a major role in regeneration of peripheral 

nervous system and development.112,113 In addition, bGFG 

and TGF-β are important for Schwann cell activity. Turgut 

et al114 studied the expression of these growth factors, which 

have  important role in the control of neuroma formation and 

collagen accumulation in rats that underwent pinealectomy. 

Also this study showed that melatonin supplementation 

suppressed proximal neuroma and contributed to repair 

mechanism.

Metallothionein 1 melatonin receptor, which depends on 

the phosphorylation of ERK1/2, plays a role in the prolifera-

tive effect of melatonin on Schwann cells (Figure 6).115–117 

Harrisingh et al118 suggested that Schwann cells stimulated by 

“ damage signals” could be considered as a regenerative cell 

type in response to peripheral nerve injury. In this context, 

Ras/Raf/mitogen-activated protein kinase/ERK signaling 

regulates the differentiation of Schwann cells.118 In addition, 

ERK/MAPK signaling activity stimulates Schwann cell 

differentiation. Syed et al119 studied the quantitative model 

of ERK/MAPK activity and found that lower levels induce 

myelination, whereas higher levels induce Schwann cell 

differentiation and proliferation. In addition, ERK/MAPK 

activity is needed at basal level for the differentiation of 

the  progenitors.119 Similarly, Seo et al120 suggested that an 

increase in the ERK1/2 activation promotes the Schwann 

cell proliferation, and thus, it is crucial in the repair of sciatic 

nerve. This point of view shows that exogenous melatonin 

administration can promote the Schwann cell proliferation 

and also increase the reinnervations.121
Figure 4 Melatonin is an endogenously synthesized and secreted hormone by the 
pineal gland and possesses intense antioxidant activity.

Melatonin secretion

Scavenging of free radicals

Hydroxyl Peroxyl
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Controversies on dose-dependent 
effects of melatonin on 
regeneration
After trauma, an increase in lipid peroxidation occurs. Sig-

nificant increases in lipid peroxidation have been shown at 

1st, 24th, and 48th hours in studies performed.122 It was deter-

mined that the rate of peroxidation returned to its preinjury 

level, and melatonin had maximal chronic neuroprotective 

effect after 48 hours.123 In addition, it was suggested that 

melatonin is neuroprotective at doses of 1–50 mg/kg.85,114,122 

Especially, Shokouhi et al85 reported that melatonin at 

50 mg/kg dose has a potentially positive effect on preserving 

the neural fibers. Similarly, Kaya et al124,125 studied the effect 

of melatonin at 50 mg/kg dose on nerve injury.

In clinical studies, melatonin doses range from 0.1 to 

2,000 mg.92 More than 0.5 mg of melatonin dosage shows 

pharmacologically therapeutic effect.126,127 Rogerio et al128 

investigated the effect of melatonin on motor neuron death 

in the spinal cord after sciatic nerve injury in their study and 

compared the doses of 1, 5, 10, and 50 mg/kg of melatonin 

for this purpose. They reported that 1–50 mg/kg melatonin 

is effective in decreasing the neuronal death. In addition, the 

neuroprotective effect is fully active even at the lowest dose, 

although toxic effects may possibly occur at doses of 50–100 

mg/kg.128 In addition, Cunnane et al129 previously studied 

low doses (30 µg/100 g) of melatonin after the pinealectomy 

process. They reported that melatonin reduced the collagen 

in the injury area.129 However; Atik et al92 suggested that the 

physiological dose of melatonin could not be sufficient for 

its beneficial effects. Melatonin shows the receptor-mediated 

activity at physiological doses. However, pharmacological 

concentrations of melatonin are required for the receptor-

independent activity.130 Turgut et al131 reported the positive 

effect of melatonin on reducing the neuroma formation in 

the sciatic nerve injury by enhancing axonal regeneration.

Shokouhi et al85 compared the effects of low (10 mg/kg) 

and high dose (50 mg/kg) of melatonin on lipid peroxidation 

in the experimental sciatic nerve injury. In this study, they 

aimed to assess the dose-dependent neuroprotective and 

antioxidant activity of melatonin on injury. They found the 

beneficial effects of high-dose melatonin on axonal damage 

compared to that of low-dose melatonin.85 Contrarily, Gul 

et al132 reported no dose-dependent effect of melatonin in the 

decreasing of lipid peroxidation in the sciatic nerve-injured 

rat after spinal cord clamping. Rogerio et al128 investigated 

the effect of melatonin at doses of 1, 5, 10, and 50 mg/kg on 

Figure 5 Schematic representation shows the role of NF-kB and Nrf2 pathways on the effect of melatonin on the injury.
Notes: Melatonin induces the antioxidant protection. ROS increases the NF-kB transcription and cytokines. In addition, relationship between inflammation and lipid 
peroxidation is explained in the schema and the role of them on apoptosis.
Abbreviations: IL, interleukin; NF-kB, nuclear factor-κB; Nrf2, nuclear factor 2; ROS, reactive oxygen species; TNF, tumor necrosis factor; ICAM, intercellular adhesion 
molecule; SOD, superoxide dismutase; GST, glutathione S-transferase.
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sciatic nerve injury and observed the significant decrease in 

motor neuron death in the melatonin-treated groups. Accord-

ing to this study, administration of the low dose of melatonin 

is more effective for the neuronal survival rather than a high 

concentration of melatonin.128 At this point, it can be said that 

the high dose of melatonin causes the toxic effect. Another 

study conducted by Chang et al100 suggested that melatonin 

decreased the expression of NO synthase in the hypoglossal 

nerve injury and a dose-dependent neuroprotective effect of 

it is due to antioxidant properties.

It is important to determine the minimum dose of 

melatonin in peripheral nerve regeneration. Ulugol et al133 

demonstrated that high dose of melatonin prevented thermal 

hyperalgesia caused by nerve damage. In mice, intracerebro-

ventricular and intraperitoneal administration of melatonin 

prevented the hyperalgesia by l-arginine–NO and opioidergic 

pathways in the neuropathic pain. However, it had no effect 

on the mechanical allodynia.133 Opioidergic and gamma-

aminobutyric acid ergic systems have an important role in 

the effects of melatonin.134,135 Similarly, Mantovani et al135 

Figure 6 Schematic representation indicates the role of ErbB2 receptor on inducing the Schwann cell proliferation through Ras/Raf/MEK/ERK pathway.
Abbreviations: ERK, extracellular signal-regulated kinase; MEK, mitogen-activated protein kinase.
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showed the antidepressant effect of melatonin in the mouse 

through l-arginine–NO pathway and N-methyl d-aspartate 

receptors. Also it can be concluded that useful doses of 

melatonin contribute to the repair of peripheral nerve injury 

by attenuating the oxidative stress mechanisms.

Comparison of beneficial effects 
of melatonin and some agents on 
nerve repair: summary of current 
studies
In recent years, several experimental studies focusing on 

the effect of melatonin on peripheral nerve injury have been 

performed. In addition, many studies have compared the 

regenerative effect of melatonin with other antioxidants 

and have introduced new combinations of treatments. The 

formation of collagen scar tissue in peripheral nerve injury 

is a clinically important problem. Scar formation blocks 

the axons from sprouting into the appropriate distal fas-

cicles, thus delaying the regeneration process. Control of 

the collagen accumulation in the neuroma formation was 

experimented using various chemical and physiological 

methods, but a functional success could not be achieved.131 

In another study by Turgut et al,81 the effect of exogenous 

melatonin administration on scar formation was examined 

in the damaged nerves. After pinealectomy, they observed 

fibroblast proliferation by using stereological techniques. 

In addition, after melatonin administration, regenerating 

axons were observed at the proximal nerve ends. They 

demonstrated the inhibitory effect of melatonin on col-

lagen accumulation. Furthermore, they suggested that 

surgical pinealectomy causes an increase in the collagen 

accumulation. However, melatonin administration sup-

presses this accumulation after pinealectomy.81 The role 

of TGF-β and bFGF collagen production and thus scar 

formation is known. In this regard, another study by Turgut 

et al114 on pinealectomized rats revealed that expression 

of TGF-β1 and bFGF was suppressed by melatonin using 

immunohistochemical methods. In a study of pinealecto-

mized chickens, Turgut et al136 also examined the neuro-

protective effects of melatonin. Neonatal pinealectomized 

chickens suggested negative effects on sciatic nerves. They 

showed that melatonin has a regulatory effect on collagen 

content.136

Stavisky et al86 investigated the effects of cyclosporine 

A, glial-derived neurotrophic factor, and methylpredniso-

lone, as well as the effects of melatonin on polyethylene 

glycol-induced repair in the sciatic damage. They measured 

conduction of compound action potentials in the lesion area 

after polyethylene glycol fusion. In in vivo and in vitro 

preparations, a significant increase in the improvement for 

melatonin-administrated group was determined compared 

to control Krebs saline. They suggested that in combination 

with polyethylene glycol fusion, melatonin provides rapid 

repair of crush-type injuries of the spinal cord.86 Similarly, 

Daglioglu et al137 designed a study on beneficial effects of 

melatonin at appropriate doses on peripheral nerve injury. 

They suggested that melatonin administration could be 

successful in the treatment of peripheral nerve injury.137 

Moreover, Zencirci et al138 examined the functional effects 

of melatonin on sciatic nerve crush injury. The researchers 

applied melatonin at doses of 5 and 20 mg/kg for 21 days. In 

this study, melatonin showed a positive effect on the sciatic 

function index. In addition, while melatonin increases the 

conduction velocities, it decreases latency according to the 

study by Zencirci et al,138 and the regenerative effect of the 

melatonin has been shown to be dose independent. Possibly 

the application of melatonin at 5 and 20 mg/kg intraperi-

toneally may show similar antioxidant effect.138 However, 

Atik et al92 suggested that beneficial effects of melatonin 

in nerve regeneration could be seen at physiological doses. 

Kaplan et al83 studied the effects of intraperitoneal melato-

nin administration after intraoperative platelet gel on sciatic 

nerve regeneration. Platelet gel application had a positive 

effect on nerve regeneration, but platelet gel application did 

not show the same effect when combined with melatonin. 

Administration of melatonin alone or in combination with 

platelet gel did not show any positive effect on nerve regen-

eration. This failure of regeneration reveals that melatonin 

does not play a role in inhibiting collagen formation.83 In 

other respects, 30 µg/100 g melatonin was used in this 

study.81 This dose may be inadequate to show antioxidant 

activity of melatonin. However, Kaya et al71 suggested that 

administration of 50 mg/kg melatonin showed improvement 

effects on nerve injury reducing oxidative stress.

Yanilmaz et al73 suggest that some agents may have a 

positive effect on recovery after nerve palsy. In this respect, 

they examined the effect of melatonin, aminoguanidine, and 

methylprednisolone on facial nerve damage. They observed 

a decrease in the myelin debris of melatonin-administrated 

group. This study showed an increase in regeneration of the 

facial nerve in aminoguanidine- and melatonin-administrated 

groups; however, methylprednisolone was insufficient to pre-

vent myelin degeneration. In particular, most efficient agent 

was aminoguanidine on reducing the collagen accumulation 

and preventing degeneration.73 In this context, the appropriate 

dose may not have been administered for the neuroprotective 
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effect of melatonin on the facial nerve. Onger et al76 investi-

gated the effects of 50 mg/kg melatonin on sciatic nerve dam-

age compared to the effects of acetyl-l-carnitine (50 mg/kg) 

and leptin (1 mg/kg). On the other hand, Onger et al77 studied 

the peripheral nerve damage in the obese rats using the same 

antioxidant agents. According to their data, melatonin has no 

regenerative effect on obese rats. Contrarily, leptin and acetyl-

l-carnitine could stimulate the myelination and regeneration 

in the sciatic nerve injury. Melatonin has anti-obesity effect. 

In this context, they claimed that melatonin led to decrease 

in the white adipose tissue mass and increase in the activity 

of brown adipose, thus energy requirement could not meet 

for regeneration. In addition, adequate stem cells cannot be 

obtained from the white fat tissue. However, acetyl-l-carnitine 

accelerates the pass of long-chain fatty acids through the inner 

membrane of mitochondria and has a function in the requiring 

neuronal energy after nerve injury.77

In a recent study, Salehi et al139 aimed to increase the 

efficiency of regeneration by allogenic Schwann cell trans-

plantation using a biologic transporter. In this study, a conduit 

made of polyurethane and gelatin nanofibers was prepared 

and filled in with platelet-rich plasma and melatonin. They 

observed that this conduit enhanced the regeneration of the 

damaged site. However, functional success has not been 

achieved in this method as far as autograft is applied.139

As a result, studies in recent years have focused on 

introducing new methods, including the local application of 

antioxidants, rather than the systemic application of them 

to accelerate the regeneration process in nerve crush injury.

Conclusion
Peripheral nerve injuries are still among the vital clinical 

issues, and thus, the research for advanced knowledge about 

this condition and its treatment still continues.92 Regarding 

this, some studies demonstrate that pineal neurohormone 

melatonin has effects on the physiological and histological 

properties of the nerve tissue, hinting at its effects of antioxida-

tion, analgesia, and free radical scavenging in the degenerative 

peripheral nerve disorders. It is acknowledged that melatonin 

has beneficial effects on the length of the axons, the sprouting 

after the damage to peripheral nerves.93,96,140 Nevertheless, 

some studies indicate the hazardous effects of melatonin on 

peripheral nerves.141,142 To shed light on the beneficial or det-

rimental effects of melatonin treatment in low and high doses, 

further clinical and experimental studies should be performed.
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