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Abstract: Endogenous survivin expression has been related with cancer survival, drug 

resistance, and metastasis. Therapies targeting survivin have been shown to significantly inhibit 

tumor growth and recurrence. We found out that a cell-permeable dominant negative survivin 

(SurR9-C84A, referred to as SR9) competitively inhibited endogenous survivin and blocked 

the cell cycle at the G
1
/S phase. Nanoencapsulation in mucoadhesive chitosan nanoparticles 

(CHNP) substantially increased the bioavailability and serum stability of SR9. The mechanism 

of nanoparticle uptake was studied extensively in vitro and in ex vivo models. Our results 

confirmed that CHNP–SR9 protected primary cells from autophagy and successfully induced 

tumor-specific apoptosis via both extrinsic and intrinsic apoptotic pathways. CHNP–SR9 sig-

nificantly reduced the tumor spheroid size (three-dimensional model) by nearly 7-fold. Effects 

of SR9 and CHNP–SR9 were studied on 35 key molecules involved in the apoptotic pathway. 

Highly significant (4.26-fold, P#0.005) reduction in tumor volume was observed using an 

in vivo mouse xenograft colon cancer model. It was also observed that net apoptotic (6.25-fold, 

P#0.005) and necrotic indexes (3.5-fold, P#0.05) were comparatively higher in CHNP–SR9 

when compared to void CHNP and CHNP–SR9 internalized more in cancer stem cells (4.5-fold, 

P#0.005). We concluded that nanoformulation of SR9 did not reduce its therapeutic potential; 

however, nanoformulation provided SR9 with enhanced stability and better bioavailability. Our 

study presents a highly tumor-specific protein-based cancer therapy that has several advantages 

over the normally used chemotherapeutics.
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Introduction
Bowel cancer, also known as colorectal cancer (CRC), is the third largest cause of cancer 

deaths. About 1.23 million people worldwide are estimated to be suffering from colon 

cancer. If detected at an early stage, most patients have a chance to recover from colon 

cancer; however, most cases are detected at a later stage and in Australia, out of the 

274 new cases diagnosed every week, 78 people die from the disease.1 The treatment of 

CRC has not been very successful, especially in patients with metastatic tumors, despite 

understanding the CRC biology and availability of modern targeted therapeutics.2

Survivin belongs to the inhibitor of apoptosis (IAP) family of proteins encoded 

by the baculovirus IAP repeat (BIR) C5 gene that plays a key role in cell division and 

apoptosis.3,4 It is expressed during human embryonic and fetal development but is absent 

in most adult tissues.5 Survivin is present on β-tubulin during cell division and causes 

a mitotic progression once overexpressed in tumors of adults.6 Survivin expression 

has been observed to be 10-fold higher in the G
2
/M phase when compared to the G

2
 or 
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S phase.7 Apoptosis is inhibited by the BIR domain of sur-

vivin by interfering with caspase-3 and caspase-7.8 It inhibits 

caspase-3, which is essential for suppression of apoptosis, 

and survivin’s affinity to associate with caspase-9 and second 

mitochondria-derived activator of caspases (Smac)/DIABLO9 

indicates that it inhibits apoptosis via the intrinsic pathway 

by interfering with the post-mitochondrial events.10 It is 

well established that endogenous survivin is highly over-

expressed in most cancer types including colon,11 liver,12 

skin,13 prostate,14 breast,15 ovarian,16 lung,17 pancreas,18 and 

neuronal19 cancers. Thus, survivin has proven to be the most 

important target for cancer cells (Figure 1), and various stud-

ies have targeted survivin in order to combat cancer.20–22

Previously, we injected tumors from mouse EL-4 thymic 

lymphoma with plasmids encoding dNSurC84A and the 

T-cell costimulator B7-1 and observed that the gene therapy 

by dNSurC84A plasmids suppressed survivin expression, 

rendering large tumors susceptible to B7-1-mediated 

immunotherapy.23 By incorporating a Cysteine to Alanine 

mutation at the 84th position a mutant-type dominant 

negative protein was formed (SurR9-C84A, hereafter referred 

to as SR9).24 The apoptotic effects of SR9 have been evalu-

ated in prostate cancer cells where it sensitized the cells to 

tumor necrosis factor alpha (TNF-α) and induced apoptosis.25 

Recently, we have shown that SR9 displays dual actions: it 

is cytotoxic to cancerous cells and helps in proliferation of 

normal non-cancerous cells. This is because tumor cells have 

a high endogenous survivin pool, and treatment with SR9 

leads to forceful survivin expression.26

Chitosan obtained from chitin is a naturally occur-

ring muco-polysaccharide present in the exoskeleton of 

crustaceans.27 It is biodegradable, thus ensuring its safe 

administration and degradation once applied and absorbed 

by cells.28 Ionotropic crosslinking or interpolymer linking of 

chitosan with sodium tripolyphosphate (STPP) was used more  

recently for formation of chitosan nanoparticles (CHNP).29 

The mechanism of interaction of chitosan with human cells 

has been studied elaborately, and it was proposed that chito-

san enters the target cells by a combination of bioadhesion 

and a transient widening of tight junctions.30 In Caco-2 cells, 

SR9
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Figure 1 Survivin as an important cancer target for cancer therapy. IAP member survivin is known to be present in the microtubules during cell division, thereby promoting 
cell proliferation; apart from stabilizing the microtubule network, survivin is known to dimerize and bind with the activated form of caspase-3 to inhibit apoptosis.
Abbreviations: DNA, deoxyribonucleic acid; IAP, inhibitor of apoptosis; INCENP, inner centromere protein; Smac, second mitochondria-derived activator of caspases; SR9, 
cell-permeable dominant negative survivin SurR9-C84A.
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it was observed that chitosan molecules were able to penetrate 

through the tight junctions between the epithelial cells to 

facilitate paracellular transport of large hydrophilic drugs.31

In this article, we have evaluated the anti-cancer effi-

cacy of dominant negative survivin for the first time in 

nano-free as well nano-encapsulated form using CHNP in 

two-dimensional (monolayer), and three-dimensional (3D) 

(tumor spheroid) models, along with a mouse xenograft 

colon cancer model.

Materials and methods
Cell lines and cell culture conditions
The Caco-2, SW480, FHs 74 Int, and MCF 10A cell lines 

were obtained from the American type culture collection 

(ATCC) and were grown in tissue culture flasks using 

Dulbecco’s Modified Eagle’s Medium or minimum essential 

medium containing high glucose, L-glutamine, and sodium 

pyruvate (Thermo Fisher Scientific, Waltham, MA, USA), 

supplemented with 20% heat-inactivated fetal bovine serum 

(FBS) (Interpath, Heidelberg West, VIC, Australia Penicillin/

streptomycin was added at a final concentration of 0.1 mg/mL 

to prevent growth of microorganisms, and the culture was 

maintained at 37°C in 5% CO
2
 to ensure a saturated humid 

atmosphere. Culture media were changed every 2–3 days.

Confocal microscopy
Cells were seeded in 8-well culture slides, and once confluent, 

the cells were treated with respective treatments for the fixed 

time interval and fixed using 4% paraformaldehyde (PF) for 

20 minutes at 37°C. Cells were permeabilized using 0.01% 

Triton-X100 for 2 minutes on ice. Cells were then blocked 

with 3% bovine serum albumin for 30 minutes. Following 

blocking, the cells were washed and incubated with primary 

antibody (1:100) for 1 hour at 37°C. After washing with 1× 

phosphate-buffered saline (PBS) three times, the cells were 

incubated with fluorescein isothiocyanate/tetramethylrhod-

amine isothiocyanate conjugated secondary antibody (1:100) 

for 1 hour at 37°C in the dark. The cells were washed and 

mounting media with 4′,6-diamidino-2-phenylindole was 

added to the slide. The slide was analyzed with a Leica TCS 

SP5 laser immunoconfocal microscope.

Flow cytometric analysis
Cells were seeded in 6-well plates, and once confluent, they 

were treated with respective treatments for a fixed time 

interval, trypsinized, and fixed using 4% PF for 20 minutes 

at 37°C. Cells were permeabilized using 0.01% Triton-X100 

for 5 minutes. Non-permeabilized cells were maintained 

as control. Cells were further blocked with 3% BSA for 

30 minutes. The cells were washed and incubated with 

primary antibody (1:100) for 1 hour at 37°C. After washing 

with 1× PBS thrice, the cells were incubated with secondary 

fluorescein isothiocyanate/tetramethylrhodamine isothiocya-

nate conjugated antibody (1:100) for 1 hour in the dark. The 

cells were then washed and acquired using BD FACSCanto™ 

II (BD Biosciences, San Jose, CA, USA).

Western blotting
Approximately 106 cells were seeded in 6-well plates and 

treated with desired treatments for the specific time interval. 

The lysates were collected and run on a 10%–12.5% gel. The 

proteins were then transferred from the gel onto the polyvi-

nylidene difluoride membrane using Bio-Rad (Bio-Rad Labora-

tories Inc., Hercules, CA, USA) Trans-blot® Turbo™ Transfer 

System. The membrane was blocked using 2% skimmed milk 

for 1 hour following washes with Tris-buffer saline with Tween 

20 and Tris-buffer saline (three times each). After washing, 

the membrane was incubated with primary antibody for 1 

hour at 37°C and washed again, after which it was incubated 

with horseradish peroxidase conjugated secondary antibody 

(1:40,000). The washing steps were repeated, and the mem-

brane was developed using horseradish peroxidase substrates 

(GE Healthcare, Silverwater, NSW, Australia). The membrane 

was visualized using a Bio-Rad ChemiDoc™ XRS camera.

Preparation and characterization of  
SR9-loaded CHNP
Varying concentrations of chitosan was dissolved in an acetic 

aqueous solution (pH 5). A small amount of glacial acetic acid 

was added to bring the pH down to 4.5 to dissolve the chitosan. 

The entrapment method was used for loading the protein, and 

SR9 was added drop-wise in a known concentration to the 

chitosan suspension under constant magnetic stirring at 4°C. 

For ionotropic gelation of chitosan, varying concentrations of 

STPP were added to the chitosan–protein suspension. The solu-

tion was stirred for 24 hours at various stirring speeds at 4°C. 

After 24 hours, the nanoparticle suspension was centrifuged at 

2,000 rpm for 30 minutes at 4°C. The pellet obtained was fro-

zen at -80°C overnight and further subjected to lyophilization 

(FreeZone 2.5 Liter Benchtop Freeze Dryer; Labconco, Kansas 

City, MO, USA) for a period of 24 hours. The nanoparticle 

powder obtained after lyophilization was stored at 4°C.

Scanning electron microscopy (Supra 55vp; Zeiss, 

Oberkochen, Germany) was used to observe the surface 

morphology, size, and shape of the nanoparticles. Fourier 

transform infra-red spectroscopy and X-ray diffraction were 
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performed to study the chemical nature and complex struc-

ture of both void and CHNP–SR9. Protein release with and 

stability of nanoparticles with change at different pH values 

was studied by suspending the nanoparticles at pH 2, 3, 4, 

5, 6, 7, and 8 solutions. The protein release was calculated 

by Bradford Coomassie method at 0, 1, 2, 4, 6, 12, 24, 48, 

72, and 96 hours.

Using the following equations, the percentage load-

ing capacity and the percentage association efficiency for 

CHNP–SR9 was calculated:

	

% Loading

Capacity (LC)
 

Total protein Free protein
=

−
Nanoparticcle weight

×100
�(1)

	
% Association

Efficiency (AE)

Total protein Free protein

Tota
=

−
ll protein

×100 �(2)

Nanoparticle uptake studies
Cells were seeded in 6-well plates and treated with rhodamine-

labeled CHNP–SR9 and void CHNP at a concentration of 

5 mg/mL and 10 mg/mL for 1 hour. After treatment, cells 

were washed; lysates were obtained and checked for optical 

diffraction (OD) at 530 nm. The nanoparticle uptake was 

calculated (in milligrams) using a standard graph plotted 

using OD of various concentrations of rhodamine-labeled 

CHNP–SR9 and void CHNP.

To understand the mechanism of protein release and trans-

port of nanoparticles in a complete system, transepithelial 

electrical resistance (TEER) assay was performed. The TEER 

protocol was followed from our previous study.32 The ex vivo 

loop assay was performed by injecting rhodamine-labeled 

nanoparticles in rat intestinal loops (detailed methodology is 

described in the “Supplementary materials” section).

Gene expression analysis
RNA was isolated from cells treated with 50 µg/mL of 

SR9, CHNP–SR9 and equal weight of the void CHNP after 

6 hours of treatment, using TRIzol® reagent (Thermo Fisher 

Scientific, Waltham, MA, USA). The isolated RNA was 

immediately converted to complementary DNA (cDNA). 

The synthesized cDNA was stored at -80°C and was further 

used for quantitative real time polymerase chain reaction 

(qRT-PCR) (detailed methodology can be found in the 

“Supplementary materials” section).

Cytotoxicity studies
Lactate dehydrogenase assay was performed for cytotoxicity 

analysis as per the manufacturer’s instructions (Invitrogen). 

The OD was measured at 492 nm, and percentage cytotoxic-

ity was calculated.

Approximately 104 Caco-2 and 104 SW480 cells were 

plated in 6-well plates. Once confluent, the cells were treated 

with 50 and 100 µg/mL SR9, 50 and 100 µg/mL CHNP–SR9, 

and 50 µg/mL void CHNP for a period of 24 hours. The cells 

were then washed, trypsinized, and counted using a hemo-

cytometer. Two hundred cells per treatment were plated out 

in fresh 6-well plates and left until 7 days to grow in normal 

growth media. The media was removed, and the cells were 

fixed using 4% PF for 20 minutes. The cells were then washed 

using PBS, and stained with 0.1% crystal violet stain for 

3–5 minutes. The colony-forming units were washed again 

with PBS and counted, using a colony counter.

Apoptosis studies
The mitochondrial membrane potential assay kit (Sigma-

Aldrich Co., St Louis, MO, USA) was used to calculate the 

mitochondrial potential of SR9 and CHNP–SR9-treated 

Caco-2 and SW480 cells. The apoptotic array kit was used 

as per the manufacturer’s instructions (R&D Systems, Inc., 

Minneapolis, MN, USA), and the array was developed using 

gel-dock (Bio-Rad).

One hundred µL of 0.1% agarose solution was added in 

each well of 96-well plates. Once the agar was solidified, 10³ 

Caco-2 cells/well were added to the plate and incubated for 

7 days at 37°C with 5% CO
2
. After 7 days, cells had formed 

nearly uniform spheroids in all the wells; the spheroids were 

treated with two different concentrations of SR9 and CHNP-

SR9 (50 µg/ml, 100 µg/ml) and 100 µg/ml of void CHNP for 

24 hours. The surface area of tumor spheroids was measured 

using ImageJ software and plotted as a graph.

Cancer xenograft animal model of human 
colon cancer and in vivo studies
Caco-2 cells were used to establish the human colon cancer 

xenograft model by subcutaneously injecting 2×105 cells 

into the left flank of 5–6-week-old female nude mice (Mus 

musculus; BALB/c nu/nu). All the animal work was done 

according to institutions guidelines. The mice were fed with 

AIN93G diet supplemented with void CHNP or CHNP–SR9 

(1.2% of SR9 w/w). Regular checks were conducted for 

any sign of physiological or physical distress thrice a week. 

Vernier calipers were used to measure the tumor size every 

week. At the end of the experimental period, the mice were 

euthanized. Biodistribution studies of targeted and non-

targeted nanocarriers were conducted by injecting mice 

with fluorescence-tagged void CHNP and CHNP–SR9 and 
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obtaining the fluorescent signals from the various parts of the 

mice such as the ovary, muscles, bones, eyes, blood, liver, 

spleen, kidney, lung, heart, brain, stomach, small intestine, 

large intestine, spinal cord, leg muscles, arm muscles, mesen-

teric lymph nodes, tumor site, and tissues around the tumor, 

using confocal microscopy.

After 7 days of treatment, the tumors were excised, sec-

tioned and stained with annexin V (apoptosis marker), tunnel 

stain (apoptosis marker), and propidium iodide (necrosis 

marker). The respective indices were measured using a 40× 

objective from three tumor sections from the regions of tumor 

that consisted primarily of healthy proliferating cells, mainly 

found at the margins of the tumor. The necrotic index was mea-

sured by counting the cells present in the center of each tumor. 

For each tumor specimen, five to ten images were analyzed 

and the average cells positive for annexin V, tunnel stain, and 

propidium iodide were calculated. Only the cancer stem cells 

which were double positive for both CD44 and CD133 (cancer 

stem cell markers) were taken into account for calculating the 

number of cells that showed uptake of the nanocarriers.

Statistical analysis
All the results provided in the present study are expressed 

as the mean values ± standard error of at least three experi-

ments, unless otherwise stated. The Student’s t-test was used 

for evaluating the level of significance for statistical analysis 

of the numerical data. A value of P,0.05 denotes statisti-

cal significance, P,0.005 denotes a high level of statistical 

significance, and P,0.0005 denotes a very high level of 

statistical significance.

Results
Dominant negative protein inhibits 
survivin expression
Purified form of SR9 was obtained using affinity chromatog-

raphy, as shown in sodium dodecyl sulfate polyacrylamide 

gel electrophoresis and Western blotting (Figure S1). The 

confocal images revealed that the Texas Red®-SR9 was 

internalized in Caco-2 cells within 30 minutes of treatment 

(Figure 2A). The images obtained from Caco-2, HepG2, 

and MDA-MB231 cell lines showed a high level of colo-

calization (yellow color) and interaction between the two 

proteins (wild-type survivin and SR9) (Figure 2B). Flow 

cytometry analysis revealed that the maximum uptake of 

SR9 was observed in mimosine-fixed cells in the G
1
/S phase 

(Figure 2C). Confocal microscopy also confirmed that maxi-

mum co-localization of SR9 with β-tubulin was observed 

in mimosine (the G
1
/S phase)-fixed cells (Figure 2D).  

Western blotting results showed that even though 50 μg/mL 

of SR9 failed to reduce the survivin expression in 1 hour, 

100 μg/mL of SR9 led to a substantial decrease in the expres-

sion of wild-type (WT) survivin in Caco-2 cells along with 

an increase in Bax, caspase-9, and caspase-3 (Figure 2E). 

Bcl-2 was found to be downregulated with both 50 and 

100 μg/mL of SR9.

Preparation and characterization  
of SR9-loaded CHNP
The SR9 was encapsulated in low-molecular-weight CHNP 

using the ionotropic gelation procedure. The scanning 

electron microscopy images confirmed uniformity in shape 

and size of the synthesized CHNP (Figure 3A). Western 

blotting confirmed that SR9 was degraded in the presence 

of 1% FBS within 2 hours, whereas nano-encapsulated SR9 

(CHNP–SR9) was stable in 1% FBS for over a 24-hour period 

(Figure 3B). It was observed from the graph that the maxi-

mum protein release from the CHNP–SR9 was in between 

the 4–12 hour interval at pH 4 (Figure 3C). The percent-

age loading capacity for CHNP–SR9 was calculated to be 

15.36%, whereas the percentage association efficiency was 

found to be 92.192%. It was also observed that the Fourier 

transform infra-red spectroscopy spectra of void CHNP were 

almost similar to that of chitosan powder, whereas there were 

significant differences in the spectra of CHNP–SR9 nanopar-

ticles as expected, due to binding of the protein (Figure 3D). 

X-ray diffraction analysis showed the characteristic peaks of 

chitosan powder at 10° (2θ) and at 20° (2θ). Decreases in the 

peak intensities was observed in the case of void and CHNP-

SR9 nanoparticles, which was due to the cross-linking of 

CHNP–SR9 with STPP and encapsulation of protein (Figure 

3E). The differential scanning colorimetry was also used to 

characterize the nanoparticles (Figure S2).

Nanoformulated-SR9 internalized within 
2 hours using mucin-1 (Muc-1) receptors
The rhodamine-labeled SR9-loaded CHNP (red color) were 

best internalized in Caco-2 cells (blue color) in 2 hours 

(Figure 4A). A high expression of Muc-1 was seen in the 

case of both Caco-2 and SW480 (Figure S3), and a clear 

interaction between the Muc-1 (green color) and CHNP–SR9 

(red color) was observed in the confocal images in both the 

cell lines (Figure 4B). It was observed that both Caco-2 

(0.5 mg/mL) and SW480 cells showed (0.74 mg/mL) sig-

nificantly (P#0.05; 2.63-fold and 3.89-fold, respectively) 

higher uptake of CHNP–SR9 when compared to FHs-74 Int 

cells (0.19 mg/mL) (Figures 4C and S4). The TEER values 
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of CHNP–SR9, on the other hand, showed a significant 

time-dependent decrease when compared to the untreated 

cells and the void CHNP treated cells (Figure 4D). It was 

observed that the maximum absorption of CHNP–SR9 took 

place in the jejunum at 24 hours (Figure 4E). It was clear 

that the CHNP–SR9 did not cause any damage to the intes-

tinal tissues and was efficiently absorbed within 2 hours 

(Figures S5 and 4F).

Cytotoxicity studies using SR9  
and CHNP–SR9
It was observed that the expression of pro-apoptotic 

molecules (Bad and Bax) was upregulated with SR9 and 

CHNP–SR9 treatments. FAS, TRAIL, caspases-3, -7, -8, 

and -9, and cytochrome-C were significantly upregulated 

by both SR9 and CHNP–SR9; however, pro-caspase 7 

was only upregulated by CHNP–SR9 (Figure 5A and B; 

Figure S6). In the case of FHs 74 Int cells treated with 

SR9, a dose-dependent decrease in the protein expression 

of LC3-II (autophagosomal marker) was observed. In the 

case of Caco-2, the SR9 treatments significantly reduced 

the expression of LC3-II (Figure 5C). The level of lactose 

dehydrogenase released in primary cells FHs 74 Int and 

MCF-10A was nearly 2–3-folds less than in the Caco-2 

and SW480 cells (Figure5D). CyQUANT® (Thermo Fisher 

Scientific, Waltham, MA, USA). cell proliferation studies 

were also conducted in order to determine effects of SR9 

on cancer and normal cell proliferation (Figure S7).

CHNP–SR9 and SR9 induce apoptosis  
in colon cancer cells
More than 2-fold reduction in colony-forming ability was 

observed in both Caco-2 and SW480 cells with treatments of 

SR9 (50 µg/mL) (Figure S8). The CHNP–SR9, on the other 

hand, significantly reduced the clonogenic potential by 5-fold in 

Caco-2, and 3-fold in SW480 cells (Figure 6A). In healthy cells, 
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Figure 2 SR9 competitively inhibits wild type survivin.
Notes: (A) SR9 was able to internalize in Caco-2 cells within a period of 30 minutes. (B) Colocalization (yellow) of SR9 (red) with endogenous survivin (green) was observed 
in three different cell lines (Caco-2, MDA-MB231, and HepG2). (C) Flow cytometric analysis confirmed that even though survivin was majorly expressed during the G2/M 
phase (nocodazole-fixed), the maximum uptake of SR9 was observed (mimosine-fixed cells) in the G1/S phase. (D) It was confirmed using confocal that the majority of SR9 
was bound to β-tubulin in the G1/S phase. (E) Western blotting confirmed that 100 µg/mL of SR9 competitively inhibited wild-type survivin expression and led to an increase 
in Bax, caspase-9 and -3 expression within 1 hour.
Abbreviations: min, minutes; h, hours; SR9, cell-permeable dominant negative survivin SurR9-C84A; DAPI, 4′,6-diamidino-2-phenylindole; Caco-2, colorectal adenocarcinoma 
cells; MDA-MB 231, Homo sapiens mammary gland/breast cancer cells; HepG2, human hepatocellular carcinoma cells.
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the JC1 dye (mitochondrial membrane potential probe) accu-

mulated and formed a red-colored complex in mitochondria, 

whereas in the apoptotic cells due to lowering of mitochondrial 

membrane potential, the JC1 was retained as a monomer-emit-

ting green fluorescence (Figure S9), and was spread throughout 

the cells. It was evident that the cytochrome-C was released 

from mitochondria after treatment with SR9 and CHNP–SR9 

nanoparticle treatments (Figure S10). Caspase-3 was upregu-

lated (Figures S11 and S12) when the Caco-2 cells were treated 

with SR9, and an enhanced upregulation was observed with 

the higher-dose treatments. However, there was no caspase-3 

upregulation observed with the treatments of void CHNP 

(Figure 6B). It was observed that Caco-2 cells were capable 

of forming a tumor spheroid (Figure S13) (three-dimensional 

model) on agar base (Figure 6C). On treatment with SR9, the 

tumor volume reduced significantly by 3-fold, thus confirming 

the anti-cancer property of SR9. CHNP–SR9 also showed a 

similar reduction in the tumor spheroid volume when compared 

to the void nanoparticles. The void CHNP also showed signifi-

cant reduction in the tumor spheroid surface area, thus proving 

in vitro the anti-cancer activity of chitosan. The key molecules 

which showed significant upregulation in their expression due 

to treatments of SR9 were Bax, claspin, clusterin, phospho-

rylated p53 TNFRSF1A, cytochrome-C, caspase-3, Smac/

Diablo, and TRAIL (Figure 6D). The molecules that showed 

increased expression post-treatment with CHNP–SR9 were 

Bax, claspin, cytochrome-C, caspase-3, Smac/Diablo, FADD, 

and FAS. The void nanoparticles did not cause any significant 

changes other than in the expression of caspase-3, TRAIL, and 

FAS. Other important molecules in the array (Figure S14A) 

were Heat shock proteins heme oxygenases (HO-1 and HO-2; 

Figure S14B), forms of p53 (Figure S14C), and anti-apoptotic 

molecules such as Bcl-2, Bcl-xL, HIF-1α, Livin, survivin, 

PON2, XIAP, and Catalase.
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In vivo anti-cancer efficacy of SR9
It was observed that the tumor regression was highly 

sustained in mice treated with CHNP–SR9 (4.26-fold 

reduction at the 70th day). The mice fed with the void 

nanocarrier-supplemented diet showed increased tumor 

volume with time (Figure 7A). The CHNP–SR9 showed 

significant (P#0.005) in vivo internalization in CD44- 

and CD133-positive cancer stem cells (4.5-fold) when 

compared to the void nanoparticles. The CHNP–SR9 

also showed a significantly high apoptotic (6.25-fold, 

P#0.005) and necrotic index (3.5-fold, P#0.05) in the 

tumor cells when compared to void nanoparticles treat-

ment (Figure 7B). The apoptotic index obtained by both 

annexin V and tunnel staining showed a similar pattern 

with treatments. The biodistribution studies confirmed that 

CHNP–SR9 was majorly present in the tumor when com-

pared to other organs of the mice, and showed a compara-

tively better tumor-specific internalization when compared 

to void nanoparticles (Figure 7C), showing significantly 

(P#0.005) higher uptake in tumor when compared to other 

organs of the mice.

Discussion
Studies have shown that it is possible to prevent the dimeriza-

tion of survivin by inducing a point mutation in the BIR 

domain at the 84th position (Cysteine to Alanine) that can 

produce a dominant negative form of survivin (SR9) that 

interferes with the anti-apoptotic function of WT survivin.23 
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Although studies have been conducted with the C84A form 

of dominant negative survivin in both gene therapy23 and 

protein therapy,25 no interaction between the two forms of 

protein has been demonstrated. This is the first report that 

has showed interaction of dominant negative survivin pro-

tein SR9 with WT survivin in colon, liver, and breast cancer 

cells, and was further confirmed by Western blotting. It has 

been proposed that this protein competitively inhibits the 

WT survivin by dimerizing with WT survivin, inhibiting the 

ability of WT survivin to interact with the activated form of 

caspases. It has been reported that a potential dimerization 

of survivin-C84A with WT survivin promoted accelerated 

degradation of the complex, thus reducing survivin levels 

below a crucial anti-apoptotic threshold.33 The half-life of 

survivin was estimated in 293 cells by cycloheximide, and it 

was reported that half the quantity of protein was degraded 

within 30 minutes.33

Therefore, due to poor serum stability and low half-life 

of SR9, it was essential to ensure its protection and increase 

its bioavailability. Owing to its mucoadhesive nature, 

chitosan was the apparent choice for targeting colorectal 

cancer. Apart from being non-toxic and biocompatible, 

chitosan is also biodegradable (in the intestine) due to the 

presence of pancreatic enzymes and the enzymes secreted 

by healthy bacteria in the gut.34 Chitosan reversibly opens 

the tight junctions in epithelial cells by interacting with 

the protein kinase C system, and internalizes via the 

paracellular transport.35 Several standard techniques have 

been established to synthesize chitosan/STPP particles, 

including by Bhumkar and Pokharkar,36 Wu et al,37 and 

Bowman and Leong.35

A study using ten patients suffering with colon cancer 

showed that all patients showed high expression of Muc-1 

receptors.39 Our results confirmed that both SW480 and 

Caco-2 expressed high amounts of Muc-1 receptors, and 

a clear colocalization of SR9-loaded CHNP was observed 

with the Muc-1 receptors, proving the mucoadhesive nature 

of the particles. The confluent Caco-2 monolayer acts as the 
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most suitable model for measuring intestinal permeability, 

because its polarity, tight junctions, and transport systems 

are the same as that of the human small intestine.40 Thus, the 

TEER assay was performed to mimic the intestinal epithelial 

barrier, in order to understand the transport of nanoparticles 

across it with respect to time. Another approach to study the 

drug and particle transport across the small intestine is the 

rat intestinal loop model.41 Therefore, the ex vivo loop assay 

using rat intestinal segments was performed to mimic the 

absorption of the nanoparticles by the intestinal cells.

A previous study has shown that YM155 (inhibitor of 

survivin) was capable of inducing both apoptosis as well 

as autophagy by conversion of cytosolic light chain protein 

(LC3-I) to LC3-II, which is autophagosome-associated.42 

It has been reported that survivin plays an important role 

in control of autophagy.43 However, we observed that both 

SR9 and CHNP–SR9 failed to induce autophagy in Caco-2, 

whereas a dose-dependent decrease in expression of LC3-II 

was observed in FHs 74 Int cells, which confirmed that SR9 

prevented autophagy in healthy intestinal cells. Using qRT-

PCR, flow cytometry, and apoptotic array studies, the over-

expression of FAS, TRAIL and caspase-8 were observed with 

treatments of CHNP–SR9. It is known that the stimulation 

of death receptors of TNF family, such as FAS and TRAIL, 

results in activation of caspase-8, which further propagates 

apoptosis by activating caspase-3, and this pathway is termed 
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Figure 8 Anti-cancer mechanism of SurR9C84A (SR9).
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Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2015:10submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1030

Roy et al

the extrinsic apoptotic pathway.44 Interestingly, the apop-

totic array of expression analysis for 35 key proteins in the 

apoptotic pathway showed that along with DIABLO, Bax, 

cleaved caspase-3, and cytochrome-C were the essential 

proteins that were significantly upregulated with treatments 

of SR9 and CHNP–SR9. Therefore, our results confirmed 

that SR9 and CHNP–SR9 worked through both extrinsic and 

intrinsic apoptotic pathways to induce apoptosis in colon 

cancer cells (Figure 8).

The current in vivo studies also proved that the apoptotic 

index in CHNP–SR9-treated cells was comparatively higher 

when compared to void nanocarriers. The CHNP–SR9 was 

majorly taken up by the cancer stem cells, which overexpress 

survivin. Therefore, SR9 on its own is a cancer-specific 

approach and can be proven to specifically target cancer cells 

and cancer stem cells as they overexpress survivin.

Conclusion
Targeting survivin in cancer cells reduces the chances of 

non-specific cytotoxic effects of SR9, as survivin is widely 

expressed in most cancers and is scarcely present in healthy 

cells. Dominant negative protein isolated in our laboratory 

is a perfect example of a tumor-specific approach, as it 

protects the healthy cells and causes apoptosis in cancer 

cells. Nanoformulation of proteins that are susceptible to 

degradation is an efficient method to provide stability and 

increase their bioavailability. We have successfully shown 

that nano-formulated survivin mutant protein not only tar-

gets cancer cells but also has the potential to target cancer 

stem cells. However, further in vivo studies and pre-clinical 

studies need to be conducted to validate the therapeutic 

potential of SR9.
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Supplementary materials
Trans-epithelial endodermal resistance 
and nanoparticle transport
Caco-2 cells were seeded in trans-well plates and were 

allowed to grow and differentiate for a period of 21 days. 

The media was changed every third day in the plates. Once 

the cell monolayer was found to be intact in all spaces, the 

cells were treated with rhodamine-labeled chitosan nano-

particles/cell-permeable dominant negative survivin SurR9-

C84A (CHNP–SR9) and void CHNP (an untreated well was 

maintained as a control). The resistance of each trans-well 

was measured using Millicell® cell culture inserts (Merck 

Millipore, Billerica, MA, USA) without disturbing the cell 

monolayer. Equal amount of media was collected from the 

base of the trans-well at regular time intervals of 0 minutes, 

30 minutes, and 1, 4, 6, 24, 48, 72, and 96 hours, and replaced 

with fresh media. The optical density (OD) of the collected 

sample was measured and a graph was plotted between OD 

and time. The OD of rhodamine-labeled nanoparticles was 

measured and used as a control.

The trans-well plate was then washed twice with 

phosphate-buffered saline and fixed with 4% paraformalde-

hyde. After washing again with phosphate-buffered saline, 

the trans-well was dehydrated in 70%, 90%, and 100% 

ethanol for 2 minutes each. The membrane was then cut from 

the trans-well, air dried on a scanning electron microscopy 

sample stub, and was coated with gold and viewed under 

scanning electron microscope.

Gene expression analysis
A ready-to-use TRIzol® reagent (Thermo Fisher Scientific, 

Waltham, MA, USA) was used to isolate the total ribonucleic 

acid (RNA) from both Caco-2 and SW480 cells plated in 6-well 

plates, treated with 50 µg/mL of SR9, CHNP–SR9, and equal 

weight of the void CHNP. Since the majority of the treated 

cells failed to survive after 12 and 24 hours, the RNA extrac-

tion had to be done after 6 hours of treatment. The concentra-

tion of RNA was determined by taking absorbance readings at 

260 nm, using a Corona SH-1000 lab absorbance microplate 

reader and further multiplying the absorbance values by 40 

µg/mL. The isolated RNA had to be immediately subjected 

to complementary deoxyribonucleic acid (cDNA) synthesis. 

The cDNA thus synthesized was stored at -80°C and was 

further used for quantitative real time polymerase chain reac-

tion (qRT-PCR). The purpose of qRT-PCR is to detect the 

amplified DNA during a real-time reaction, thus enabling its 

detection and quantification simultaneously. Depending on 

the annealing temperatures of each primer used, a suitable 

cycle was created in the qRT-PCR software, iQ5 (Bio-Rad 

Laboratories Inc., Hercules, CA, USA). The qRT-PCR reac-

tion mixture (7.5 µL SYBR® green premix (Bio-Rad), 0.4 µL 

forward primer, 0.4 µL reverse primer, 1 µL cDNA templet per 

sample, and RNase-free water to make the volume of reaction 

mixture up to 15 µL) was prepared in standard Bio-Rad PCR 

plates and further incubated in iQ5 optical system software for 

quantitative expression analysis. The cycles consisted of 95°C 

for 5 minutes followed by 60 repeats of 95°C for 30 seconds, 

then incubated at respective primer annealing temperatures 

for 45 seconds and at 72°C for 45 seconds. The iQ5 can detect 

and quantify the amplified DNA in each sample during real 

time followed by an extension of 10 minutes at 72°C. The 

2-^^ct (fold change gene expression) values were calculated 

by subtracting treatment values from untreated samples and 

comparing them with control values, and the graph was plotted 

with these values. The amplified DNA of each sample was run 

on 1% agarose gel, and the values from the iQ5 were further 

analyzed for gene expression. The experiment was done thrice 

to obtain consistency.
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Figure S1 Isolation and purification of SR9. 
Notes: (A) It was determined using SDS-PAGE that a 16 kDa band of SR9 was 
purified using the Profinia™ purification system. (B) Western blotting confirmed 
presence of SR9 in the purified protein samples.
Abbreviation: SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electro
phoresis; SR9, cell-permeable dominant negative survivin SurR9-C84A.
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Figure S4 Scanning electron microscopy (SEM) confirmed disruption in monolayer of CHNP–SR9-treated cells. The SEM images of the membranes confirmed a significant 
damage to the Caco-2 monolayer in CHNP–SR9-treated cells, whereas no damage was observed in untreated or void CHNP-treated cells. This illustrates that SR9 was highly 
cytotoxic to the cancerous cells, whereas the void CHNP showed no significant cytotoxicity on the Caco-2 cells.
Abbreviations: CHNP, chitosan nanoparticle; SEM, scanning electron microscopy; SR9, cell-permeable dominant negative survivin SurR9-C84A; EHT, extra high-tension 
electrical voltage; WD, working distance; Caco-2, colorectal adenocarcinoma cells.
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Figure S5 Analysis of absorption patterns of CHNP-SR9 in various parts of the intestine.
Notes: (A) There was much variation between the absorption of the nanoparticles in different parts of the rat intestine. (B) The initial absorption of nanoparticles was quite 
high in the duodenum but gradually decreased with time. The uptake of CHNP–SR9 was much higher in the duodenum when compared to void CHNP. (C) However, in 
the ileum, void CHNP were absorbed more when compared to CHNP–SR9 (D). A similar trend was followed in the jejunum, where absorption of CH NP–SR 9 was much 
higher when compared to void CH NP. The ex vivo loop assay confirmed that the maximum internalization of CHNP occurred in the jejunum at the 24-hour mark and the 
absorption pattern of void nanoparticles was significantly different than that of CHNP–SR9. The void CHNP were absorbed in the initial hours (at 2-hour mark) and then 
the uptake of void CHNP lowered with time. In contrast, the initial absorption of CHNP–SR9 was quite low, but increased with the passage of time. Results were presented 
as mean ± SE values and experiments were repeated three times independently. The an average of the three experiments was presented. N =5 ± SE (n = number of rat 
intestines per treatment).
Abbreviations: h, hours; CHNP, chitosan nanoparticles; SR9, cell-permeable dominant negative survivin SurR9-C84A; SE, standard error.
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Figure S6 Gene expressions studies carried out in colon cancer cells. In order to evaluate the effect of SR9 and CHNP–SR9 on the gene expression of various pro-apoptotic 
and anti-apoptotic markers, quantitative real-time PCR studies were conducted, and it was observed that the gene expression results showed that Bax was upregulated when 
compared to untreated, whereas WT survivin and its splice variants survivin 2B, 2α, and 3B were downregulated. Cytochrome-C, p53, caspase-9, caspase-8, and caspase-3 
were also upregulated when compared to untreated. FAS expression did not vary in Caco-2, whereas it was found to be upregulated in SW480 cells. EGFR expression was 
upregulated with SR9 but downregulated with nanoparticles. *P,0.05, **P#0.01.
Abbreviations: CHNP, chitosan nanoparticles; EGFR, epidermal growth factor receptor; PCR, polymerase chain reaction; SR9, cell-permeable dominant negative survivin 
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Figure S7 The reduction in cancer cell proliferation was confirmed using CyQUANT® (Thermo Fisher Scientific, Waltham, MA, USA). assay.
Notes: The cell proliferation was measured using CyQUANT. assay where it was observed that both 50 and 100 μg/mL of SR9 effectively lowered the proliferation in Caco-2 
and SW480 cells, but showed little reduction in proliferation of non-cancerous cells (FHs 74 Int and MCF-10A). The 50 μg/mL of CHNP–SR9 reduced the proliferation 
in cancer cells without effecting the proliferation in non-cancerous cells, whereas 100 μg/mL of CHNP–SR9 reduced the proliferation of Caco-2, SW480, and MCF-10A 
cells. A slight lowering in proliferation of FHs 74 Int cells was also observed. Results were presented as mean ± SE values and were repeated five times independently. The 
representative graph was presented. *P,0.05; **P#0.01; ***P#0.001.
Abbreviations: CHNP, chitosan nanoparticles; SR9, cell-permeable dominant negative survivin SurR9-C84A; Caco-2, colorectal adenocarcinoma cells; FHs 74 Int, human 
small intestinal cells; MCF 10A, human mammary epithelial cells; SW480, colon adenocarcinoma cells.
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Figure S8 Nano-encapsulated SR9 significantly lowered the clonogenic potential of colon cancer cells.
Notes: Both SR9 and CHNP–SR9 showed dose-dependent lowering in the clonogenic potential of Caco-2 and SW480 cells. The void CHNP was also able to reduce the 
clonogenic potential in both the Caco-2 and SW480 cells.
Abbreviations: CHNP, chitosan nanoparticles; SR9, cell-permeable dominant negative survivin SurR9-C84A; Caco-2, colorectal adenocarcinoma cells; SW480, colon 
adenocarcinoma cells.
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Figure S9 Confocal images showing mitochondrial depolarization in Caco-2.
Notes: The void CHNP did not induce any mitochondrial depolarization. The confocal microscopic images from Caco-2 cells confirmed that both SR9 and CHNP–SR9 were 
highly effective in inducing the mitochondrial depolarization when compared to void CHNP.
Abbreviations: CHNP, chitosan nanoparticles; DAPI, 4′,6-diamidino-2-phenylindole; SR9, cell-permeable dominant negative survivin SurR9-C84A; Caco-2, colorectal 
adenocarcinoma cells; JC, JC-1 dye; JC-1, mitochondrial membrane potential probe.
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Figure S10 SR9-induced increase in the cytochrome-C expression was confirmed using confocal microscopy.
Notes: Dose-dependent expression of cytochrome-C expression was observed in Caco-2 cells with treatments of SR9 and CHNP–SR9. Void CHNP was ineffective in 
inducing the cytochrome-C release.
Abbreviations: CHNP, chitosan nanoparticles; DAPI, 4′,6-diamidino-2-phenylindole; FITC, fluorescein isothiocyanate; SR9, cell-permeable dominant negative survivin 
SurR9-C84A; Caco-2, colorectal adenocarcinoma cells.
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Figure S11 Graphical analysis showing caspase-3 activity (mM/mL).
Notes: The caspase-3 activity assay confirmed that both SR9 and CHNP–SR9 induced significant release of caspase-3 when compared to untreated and void CHNP-treated 
Caco-2 cells. Results were presented as mean ± SE values and were repeated three times independently. The representative images were presented.
Notes: *P,0.05.
Abbreviations: CHNP, chitosan nanoparticles; SR9, cell-permeable dominant negative survivin SurR9-C84A.
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Figure S12 Confocal images showing an increase in expression of caspase-3 with SR9 treatments. Confocal microscopy was used to observe the caspase-3 expression 
in Caco-2 cells treated with SR9, CHNP–SR9, and void CHNP. It was observed that both SR9 (50 and 100 µg/mL) and CHNP–SR9 (50 and 100 µg/mL) showed a dose-
dependent increase in expression of caspase-3, whereas little or insignificant increase was evident in caspase-3 expression or Caco-2 cells treated with void CHNP.
Abbreviations: CHNP, chitosan nanoparticles; DAPI, 4′,6-diamidino-2-phenylindole; FITC, fluorescein isothiocyanate; SR9, cell-permeable dominant negative survivin 
SurR9-C84A; Caco-2, colorectal adenocarcinoma cells.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2015:10 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1041

Protein-induced survivin inhibition causes cancer cell apoptosis

Spheroid area (pixels)

Pi
xe

ls
 (t

ho
us

an
ds

)

4,000

3,500

3,000

2,500

2,000

1,500

1,000

500

**

0

Untreated

3,601,596 1,353,918.3 904,734.67 1,090,900 903,878 1,618,202.51,013,726.7

SR9
50 µg/mL

SR9
100 µg/mL

CHNP
50 µg/mL

CHNP
10 µg/mL

Void
CHNP

100 µg/mL

1% Triton
X 100

Figure S13 Cytotoxicity of SR9 in multicellular 3D tumor model was confirmed using the tumor spheroid assay.
Notes: The tumor spheroid assay was performed in order to evaluate the anti-proliferative efficacy of SR9 and CHNP–SR9 in the 3D model. It was observed that both SR9 
and CHNP–SR9 significantly decreased the tumor spheroid surface area and size when compared to the untreated and the void CHNP-treated spheroids.
Abbreviations: 3D, three-dimensional; CHNP, chitosan nanoparticles; SR9, cell-permeable dominant negative survivin SurR9-C84A.
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Figure S14 Apoptotic array for 35 key molecules involved in the pathway of apoptosis.
Notes: (A) Apoptotic array membranes showing the band intensity of various target proteins. The apoptotic array results from untreated, SR9, CHNP–SR9, and void CHNP-
treated Caco-2 cells. The above figure shows the apoptotic array membranes with the SR9, CHNP–SR9, and void CHNP treatments and expression of various molecules 
involved in the apoptotic pathway. (B) Apoptotic array analysis showing protein expressions of key proteins involved in the extrinsic apoptotic pathway. The apoptotic array 
results were analyzed for molecules involved in the extrinsic apoptotic pathway. Results were presented as mean ± SE values, and the representative graph was presented. 
(C) Apoptotic array analysis showing protein expression of key proteins involved in the apoptosis pathway. These molecules are involved in both extrinsic as well as intrinsic 
apoptotic pathways. Results were presented as mean ± SE values and the representative graph was presented. *P,0.05, **P#0.01, and  ***P#0.001.
Abbreviations: CHNP, chitosan nanoparticles; SR9, cell-permeable dominant negative survivin SurR9-C84A; SE, standard error; HSP, heat shock protein; Smac, second 
mitochondria-derived activator of caspases.
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