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Background: Duraplasty is one of the most critical issues in neurosurgical procedures

because the defect of dura matter will cause many complications. Electrospinning can

mimic the 3D structure of the natural extracellular matrix whose structure is similar to that

of dura matter. Poly(L-lactic acid) (PLLA) has been used to fabricate dura matter substitutes

and showed compatibility to dural tissue. However, the mechanical properties of the PLLA

substitute cannot match the mechanical properties of the human dura mater.

Methods and Results: We prepared stereocomplex nanofiber membranes based on enantio-

meric poly(lactic acid) and poly(D-lactic acid)-grafted tetracalcium phosphate via electrospin-

ning. X-ray diffraction results showed the formation of stereocomplex crystallites (SC) in the

composite nanofiber membranes. Scanning electron microscope observation images showed that

composites nanofibers with higher SC formation can keep its original morphologies after heat

treatment, suggesting the heat resistance of composite nanofiber membranes. Differential scan-

ning calorimeter tests confirmed that the melting temperature of composite nanofiber membranes

was approximately 222°C, higher than that of PLLA. Tensile testing indicated that the ultimate

tensile strength and the elongation break of the stereocomplex nanofiber membranes were close

to human dura matter. In vitro cytotoxicity studies proved that the stereocomplex nanofiber

membranes were non-toxic. The neuron-like differentiation of marrow stem cells on the stereo-

complex nanofiber membranes indicated its neuron compatibility.

Conclusion: The stereocomplex nanofiber membranes have the potential to serve as a dura

mater substitute.

Keywords: poly(lactic acid), dura matter substitute, stereocomplex crystallites,

electrospinning

Introduction
One of the most critical issues in neurosurgical procedures is the closure of dura

matter. Dura mater is the outermost and toughest layer of meninges. It is a

connective tissue membrane that can protect the brain tissue.1–3 Dura matter is

also associated with the pathogenesis of some diseases.4–6 It is composed of the

cellular layer and the fibrous structure in which the fibers develop into multilayers

and vary in orientations.3 Meanwhile, dura matter is a fragile tissue that may be

destroyed by trauma, brain surgery or tumor intrusion. The development of dura

matter substitutes is a current focus of interest. Acellular swim bladder,7 polymer

membranes,8–11 hydrogel,12 and autologous fat13 have been reported to be used in

the repair of dura mater. However, polymer membranes and hydrogel are hard to
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mimic the physiological structure of the dura mater. And

autologous transplantation will cause secondary damage.

Nanofibrous scaffolds hold great interest in tissue engi-

neering. The design of scaffolds mimicking the structural and

functional properties of the natural extracellular matrix (ECM)

is a significant challenge.14–17 Electrospinning is a fast and

straightforward way to produce micro/nanofibers which can

mimic the 3D structure of ECM whose structure is similar to

that of the fibrous structure of dura matter.18–21 The fibrous

network of the electrospinning scaffold not only provides

adhesion sites but also offers mechanical support to cells

during the tissue repair process.22–25 Therefore, electrospin-

ning membranes seem to be a promising dura matter

substitute.3,26 Among the materials that have been reported

to be used to fabricate electrospinning membranes for dura

matter repair, it has been proved that poly(L-lactic acid)

(PLLA) can reduce tissue adhesion and show compatibility

to dural tissue.10,27 Therefore, PLLA is a good choice to

prepare the dura matter substitutes.

The mechanical properties of human dura matter have

been investigated. The ultimate tensile strength of native

human dura matter was tested as 7 ± 2 MPa.28 At the same

time, it also possesses a breaking strain of 116 ± 3% and

good antiadhesion property.12 It is really desired to prepare

artificial dura matter substitutes with these properties for

duraplasty. PLLA has been used to fabricate dura matter

substitute and showed compatibility to dural tissue.10,27

However, the mechanical properties of the PLLA substi-

tute cannot match the properties of the human dura mater.

The specific CH3···O=C and CαH···O=C interactions

between two stereoisomers of poly(lactic acid) (PLA)

will lead to the formation of stereocomplex crystallites

(SC).29–31 Compared with pure PLLA membrane, mem-

branes with SC formation exhibited enhanced mechanical

and thermal properties.32 Stereocomplex nanofibers pre-

pared via electrospinning have drawn attention in recent

years.33,34 It has been proved that stereocomplex nanofi-

bers are biocompatible in vivo.35,36 Stereocomplex nano-

fiber membrane prepared by enantiomeric PLA may be a

promising candidate for dura matter substitute.

Considering the intrinsic structural and mechanical prop-

erties of dura matter, this study prepared a stereocomplex

nanofiber membrane as a candidate of artificial dura mater.

The mechanical properties of the stereocomplex nanofiber

membrane are close to that of dura matter. The maximal

tensile strength and elongation break of the stereocomplex

nanofiber membrane were 6.46 ± 0.07 MPa and 111.20 ±

4.7%, respectively. XRD proved the formation of SC in the

stereocomplex nanofiber membrane. It was found that fibers

with higher SC crystallinity can maintain its morphologies

after heat treatment. Thermal properties of the stereocomplex

nanofiber membrane were analyzed via differential scanning

calorimeter (DSC). The melting temperature of the stereo-

complex nanofiber membrane was around 222°C, higher

than that of PLLA. In vitro cytotoxicity of nanofiber mem-

branes and proliferation of bone marrow stem cells (MSCs)

on nanofiber membranes were also investigated. The neuron-

like differentiation of MSCs on the stereocomplex nanofiber

membrane indicated its neuron system compatibility. These

results can offer an innovative insight into the preparation of

a biomimetic and neuron system compactable dura matter

substitute.

Materials and Methods
Materials, Cells and Animals
PLA 4032D (Mw = 2.1×105 g/mol, PDI = 1.7, 98% L-isomer

content) was obtained from NatureWorks. Tetracalcium

phosphate (TTCP) was provided by Ensail Beijing Co.,

Ltd. (China). D-Lactide was purchased from Jinan Daigang

Biomaterial Co., Ltd (China). Methylbenzene, dichloro-

methane (DCM) and petroleum ether were purchased from

Chengdu Kelong Chemical Co., Ltd. (Chengdu, China).

Stannous octanoate (Sn(Oct)2), and 1,1,1,3,3,3-Hexafluoro-

2-propanol (HFIP) were purchased from Aladdin Chemistry

Co., Ltd (Shanghai, China). The mouse fibroblast cell (L929)

was purchased from American Type Culture Collection

(ATCC, USA.) Male Sprague-Dawley (SD) rats (1 week)

were purchased from Chengdu Dossy Experimental Animals

Co., Ltd (Chengdu, China). The Animal Ethics Committee of

West China Hospital of Sichuan University granted permis-

sion for the experiments. All the animal procedures in the

current study were performed in accordance with the

Guidelines for Care and Use of Laboratory Animals of

Sichuan University.

Preparation of Poly(D-Lactic Acid)-

Grafted TTCP (g-TTCP)
TTCP was dried at 135°C for 12 h before use. TTCP was

added into methylbenzene and dispersed under ultrasonication

for 30 min. Then, the dispersed TTCP was added into the

methylbenzene solution of D-lactide and reacted at 130°C for

12 h under nitrogen atmosphere. The reaction mixture was

poured into cold petroleum ether. Precipitation was collected

and dried in vacuum at 35°C to remove solvents. For grafting

ratio analysis, the precipitationwas extracted byDCM through
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a soxhlet extractor for 48 h and the product was recorded as

g-TTCP. For electrospinning, the precipitation was extracted

for 5 h and the product was recorded as g-TTCP-5.

Electrospinning
The electrospinning process was conducted as reported by

our group.37,38 g-TTCP-5 and PLA 4032D were added in

HFIP/DCM (volume ratio of 5:1) with the final mass ratio of

the mixture was 12% (w/v). The mixture was constantly

stirred for 24 h before electrospinning. Nanofiber membranes

with different mass ratios (g-TTCP-5/PLA 4032D = 0:1,

25:75, 35:65, 45:55, and 55:45) were recorded as PLA,

PLA/TTCP25, PLA/TTCP35, PLA/TTCP45 and PLA/

TTCP55. When electrospinning, feed rate of syringe pump

was 1.0–2.0 mL/h. The voltage of FM-1206 electrospinning

machine (Beijing Future Material Sci-tech Co., Ltd, China)

was 18–20 kV. The distance between nozzle and collector

was 15 cm. The total collection time for each sample was 4 h.

To eliminate the residual solvent, the obtained nanofiber

membranes were put into a vacuum oven at 35°C for 24 h.

Schematic 1 The preparation process of stereocomplexed composite nanofibers.

Figure 1 Characterization of DHA. (A) FT-IR spectra, (B) XRD curves and (C) TG analysis of (a) PDLA, (b) TTCP, (c) g-TTCP, and (d) g-TTCP-5. SEM image of (D) TTCP

and (E) g-TTCP. Scale bars represent 20 μm.
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Fourier Transform Infrared (FT-IR)

Spectroscopy
FT-IR spectra of PDLA, TTCP and g-TTCPwere recorded by

a Nicolet 6700 FT-IR spectrometer (Thermo Fisher Scientific,

USA) in a wavenumber range of 4000–400 cm−1.

X-Ray Diffraction (XRD)
XRD spectra were taken using Bruker D8 ADVANCE

A25X (Bruker, Germany) equipped with Cu−Kα radiation

(λ = 0.15406 nm) as X-ray source operating (40 kV, 40

mA) in the 2θ range of 5−60°. The crystallinity and frac-

tion of SC in nanofibers were calculated by Jade 6.5 soft-

ware according to the following equations:

XSC %ð Þ ¼ ASC= ASC þ AHC þ Aað Þ � 100 (1)

XHC %ð Þ ¼ AHC= ASC þ AHC þ Aað Þ � 100 (2)

fSC %ð Þ ¼ XSC= XSC þ XHCð Þ � 100 (3)

HC: homocrystallites. XSC: crystallinity of SC, XHC crys-

tallinity of HC. ASC: peak areas of SC, AHC: peak areas of

HC, Aa: peak areas of the amorphous phase, ƒSC: the fraction
of SC.

Differential Scanning Calorimeter (DSC)
The thermal behavior of nanofiber membranes was inves-

tigated using DSC (Q2000, TA Instruments, USA) under a

nitrogen atmosphere. The temperature region was 20°C to

250°C. The heating rate was 10°C/min. The cooling rate

was 5°C/min.

Thermalgravimetric (TG) Analysis
TG analysis was conducted under a nitrogen atmosphere with

a heating rate of 10°C/min by TGA 550 (TA Instruments,

USA). The temperature region was 30°C to 600°C.

Scanning Electron Microscope (SEM)

Observation
Hitachi SU3500 SEM (Hitachi, Japan) was used to

observe the morphologies of the nanofiber membranes.

The diameters of around 100 fibers of each sample were

recorded for diameter distribution analysis.

Transmission Electron Microscopy (TEM)
The dispersion of g-TTCP in nanofibers was observed by

Hitachi H-600 TEM (Hitachi, Japan).

Mechanical Properties
Mechanical properties of nanofiber membranes were inves-

tigated by Instron 5976 (Instron, Norwood, MA, USA.)

Membranes in this test were made into rectangles with a

size of 10 × 65 mm. At least three samples of each group

were tested. All samples were stretched until fractured. The

thickness of the membranes tested was 100–160 μm.

Figure 2 The 1H-NMR spectroscopy of PDLA grafted on TTCP.

Figure 3 (A) XRD patterns of PLA/TTCP45 treated with different temperatures for 1 h. (a) 60°C; (b) 80°C; (c) 100°C; (d) 120°C; (B) XRD patterns of nanofiber

membranes heated at 100°C for 1 h. (a) PLLA; (b) PLA/TTCP25; (c) PLA/TTCP35; (d) PLA/TTCP45; (e) PLA/TTCP55.
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Nuclear Magnetic Resonance

Characterization (1H-NMR)
To evaluate the number-average molecular weight of

PDLA grafted on TTCP, g-TTCP was dispersed in deuter-

ochloroform (CDCl3) to get the 1H-NMR spectroscopy by

Varian 400 spectrometer (Palo Alto, USA) at 400 MHz.

Biocompatibility Evaluation
The in vitro cytotoxicity of nanofiber membranes was

investigated through Cell Counting Kit-8 (CCK-8) assay

(Dalian Meilun Biotechnology Co., Ltd., China) in L929

cell line. Sterilized nanofiber membranes were incubated

with High-Glucose Dulbecco’s Minimum Essential

Medium (H-DMEM, Hyclone, USA.) containing 10%

fetal bovine serum (FBS, Gemini, USA) and 1% antibiotic

(Solarbio, China) at 37°C for 2 days to prepare leaching

solution of nanofiber membranes. L929 cells were seeded

in 96-well plates with a density of 3 × 103 cells/well and

cultured at 37°C for 24 h. Then, L929 cells in 96-well

plates were cultured with the leaching solution for another

24 h. The cell viability was measured by CCK-8 assay.

Bone marrow stromal stem cells (MSCs) were isolated

from SD rats and the 4th passage was used.39 The cell

proliferation of MSCs seeded on stereocomplexed nanofi-

ber membranes was measured by CCK-8 assay. MSCs

were seeded in 96-well plates with a density of 5 × 103

cells/well and each well of the plate was covered by

stereocomplex PLA/TTCP45. Low-Glucose Dulbecco’s

Minimum Essential Medium (L-DMEM, Hyclone, USA)

containing 10% FBS were used to culture MSCs. After

cultured for 1, 3, and 5 days, live/dead staining and SEM

images of MSCs cultured on stereocomplexed PLA/

TTCP45 were observed by fluorescent microscopy and

Hitachi SU3500 SEM (Hitachi, Japan).

Neuron-Like Differentiation of MSCs
MSCs were added into 24-well plates covered by glass,

PLLA, and stereocomplexed PLA/TTCP45 and cultured

with L-DMEM containing 10% FBS. The density of MSCs

was 1 × 104 cells/well. After 24 h, the culture medium was

replaced by L-DMEM containing 2% FBS and 10 ng/mL

bFGF (MedChemExpress, USA). After 24 h, the medium

was replaced by L-DMEM containing 2% FBS, 20 ng/mL

bFGF and 20 ng/mL EGF (MedChemExpress, USA) every 3

days for 7 days. Then, cells were fixed with 2.5% glutaralde-

hyde and incubated in 0.1% Triton X-100 for 15 minutes.

After that, cells were incubated with the primary antibody of

Tuj1 (Cell Signaling Technology, USA.) and Neuron (Cell

Signaling Technology, USA) overnight at 4°C and incubated

Table 1 The Crystallinity and Fraction of SC in Nanofiber

Membranes

Sample XSC (%) XHC (%) ƒSC (%)

PLLA (100°C) 17.3

PLA/TTCP25 (100°C) 17.5 4.9 78.1

PLA/TTCP 35(100°C) 29.8 0.8 97.4

PLA/TTCP45 (60°C) – – –

PLA/TTCP 45 (80°C) 37.8 – 100

PLA/TTCP (100°C) 47.4 – 100

PLA/TTCP45 (120°C) 45.4 – –

PLA/TTCP 55(100°C) 38.1 – 100

Abbreviations: XSC, crystallinity of SC; XHC, crystallinity of HC; ƒSC, the fraction

of SC.

Figure 4 Morphologies of native (left) and heated (right) nanofiber membranes. (A,
F) PLLA; (B, G) PLA/TTCP25; (C, H) PLA/TTCP35; (D, I) PLA/TTCP45; (E, J)
PLA/TTCP55. Scale bar represents 4 μm.
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with secondary antibody (Abcam, UK) at 37°C for 1.5 h.

Then, Apotome.2 (ZEISS, Germany) was used to take immu-

nofluorescence images.

Results and Discussion
Characterization of g-TTCP
Schematic 1 showed the preparation process of g-TTCP.

The FT-IR spectra of PDLA, TTCP, and g-TTCP are

shown in Figure 1A. Compared with TTCP, g-TTCP had

a new peak at 1767 cm−1 which was uniform with the peak

of -C=O of PDLA, indicating the grafting of PDLA. The

XRD curves of PDLA, TTCP, and g-TTCP are shown in

Figure 1B. The peaks of g-TTCP at 2 theta angles of

25.41°, 29.32°, 29.84°, 32.41°, and 31.12° were the same

as that of TTCP. No secondary phase was formed after the

modification of PDLA. It indicated that g-TTCP main-

tained the intrinsic crystalline properties of TTCP.

TG analysis was used to study the grafting ratio of PDLA

onto TTCP, and the results are shown in Figure 1C. Weight

loss of TTCP, g-TTCP, g-TTCP-5 h and PDLAwas 2.60%,

14.82%, 93.48%, and 98.35%, respectively. The grafting

ratio of PDLA onto TTCP is calculated according to equation

1: Grafting ratio (%) =grafted PDLA on TTCP (g)/PDLA-

grafted TTCP (g) × 100 (1). The PDLA grafted on TTCP of

TTCP-PDLA was measured by TG analysis. The grafting

ratio of PDLA on TTCP was 14.35%.

SEM images of TTCP and g-TTCP are shown in

Figure 1D and E. The clusters of g-TTCP were smaller

than that of TTCP. It suggested that g-TTCP may be more

easily dispersed than TTCP.

Figure 5 DSC thermogram of nanofiber membranes with different contents before (A, C) and after heating (B, D).
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The 1H-NMR spectroscopy of PDLA grafted on TTCP is

shown in Figure 2. The methine peaks at 5.2 ppm (the middle

methines) and 4.4 ppm (the terminal methines) can be

observed. According to the peak areas of methine peaks,

the number-average molecular weight of PDLA grafted on

TTCP was around 2000.

SC Formation of Composite Nanofiber

Membranes
In order to choose the proper temperature for heat treat-

ment, native PLA/TTCP45 was heated at different tem-

peratures for 1 h. The XRD results are exhibited in

Figure 3 and Table 1. After heated at 60°C for 1 h, the

curve of PLA/TTCP45 only had an amorphous phase.

After heat treatment at higher temperatures, the peaks of

SC can be observed at 11.8° (110), 20.6° (300/030), and

23.8° (220), which indicated the formation of SC

(Figure 3A). The peaks of HC cannot be observed. The

shearing force from the electric field led to the orientation

of polymer chains, facilitating the SC formation in heated

composite nanofibers.40 The crystallinity and fraction of

SC are shown in Table 1. It was found that the crystallinity

of SC of nanofiber membrane heated at 100°C was 47.4%,

higher than nanofiber membranes heated at 80°C (37.8%)

and 120°C (44.36%). Therefore, nanofiber membranes

were heated at 100°C for 1 h in the following studies.

The preparation process of stereocomplexed nanofibers

was shown in Schematic 1. After treated at 100°C for 1 h,

the SC formation of the membranes was tested by XRD

and the results are shown in Figure 3B and Table 1. Heated

PLA/TTCP45 and PLA/TTCP55 only had the peaks of SC

at 11.8° (110), 20.6° (300/030), and 23.8° (220), while

heated PLA/TTCP25 and PLA/TTCP35 had both peaks

of SC and HC. The crystallinity and fraction of SC are

shown in Table 1. It was found that the fraction of SC

increased, while the fraction of HC decreased. The critical

concentration of HC was much higher than that of SC. The

growth of HC was suppressed resulting in the reduction of

HC amount.41,42

Heat Resistance of Composite Nanofiber

Membranes
SEM was used to observe the morphologies of nanofibers

before and after heating (Figure 4). Diameter distributions

of nanofibers of each group were presented in the histo-

gram in Figure 4. The mean diameter of fibers of pure

PLLAwas around 1 μm. The mean diameters of composite

nanofibers were between 600 and 770 nm. As shown in

Figure 4, all nanofibers had a straight outlook before heat

treatment. Fibers of PLA/TTCP45 and PLA/TTCP55 still

maintained its straight outlook after heating. However,

fibers of PLLA cannot maintain its straight outlook after

heated at 100°C for 1 h. Some fibers of heated PLA/

TTCP25 and heated PLA/TTCP35 were slightly bent as

well. It indicated that fibers with higher SC crystallinity

exhibited better heat resistance.

DSC was used to analyze the thermal activity of nanofiber

membranes. The first DSC heating scans of nanofiber mem-

branes were shown in Figures 4B and 5A. The relevant data

are shown in Table 2. Pure PLLAmembranes had onemelting

peak at around 166°C, which was the melting peak of HC.

After adding g-TTCP-5, SC was generated in the membranes,

as proved by the melting peak at around 221°C. SC was the

dominant crystal phase in PLA/TTCP45 and PLA/TTCP55

because the melting peak of HC was hard to observe,43 which

was uniform with the results of XRD. Cooling sections of

DSC were shown in Figures 4D and 5C. The cold crystal-

lization peaks of pure PLLAwere hard to observe while that of

composite membranes emerged at around 118°C. It indicated

that HC exhibited a lower crystallization rate than SC.42,44

Mechanical Properties of Nanofiber

Membranes
The ultimate tensile strength and elongation at break of

native human dura matter were tested as 7 ± 2 MPa and

116 ± 3%, respectively.12,26 The typical stress–strain

Table 2 DSC Data of Nanofiber Membranes During the Heating

Process

Sample SCTm

(°C)

ΔSCHm

(J/g)

HCTm

(°C)

ΔHCHm

(J/g)

PLLA – – 166.8 45.8

PLLA (100 °C) – – 165.6 42.8

scPLA/TTCP25 220.5 34.7 166.8 1.0

scPLA/TTCP25

(100°C)

218.2 35.8 166.2 1.1

scPLA/TTCP35 221.1 43.9 – –

scPLA/TTCP35

(100°C)

221.7 44.7 – –

scPLA/TTCP45 221.9 45.8 – –

scPLA/TTCP45

(100°C)

222.0 46.3 – –

scPLA/TTCP55 222.5 42.4 – –

scPLA/TTCP55

(100°C)

222.1 44.7 –

Abbreviations: SCTm, melting temperature SC; HCTm, melting temperature of HC;

ΔHm, crystallization enthalpy change.
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curves of each group are shown in Figure 6A and B. The

tensile strength and elongation break of each group are

shown in Figure 6C and D. After the addition of g-TTCP-

5, the ultimate tensile strength of native nanofiber mem-

branes exhibited a decreasing trend. After heated at 100°C

for 1 h, the ultimate tensile strength of all composite

membranes was increased, especially that of PLA/

TTCP25 (6.19 MPa), PLA/TTCP35 (6.35 MPa), and

PLLA/TTCP 45 (6.46 MPa) which increased by 28.42%,

38.60%, and 27.41%, respectively, comparing with the

corresponding native nanofiber membranes. The elonga-

tion break of composite nanofiber membranes decreased

compared with that of PLLA fibers. The elongation break

of heated PLA/TTCP25, PLA/TTCP35, PLA/TTCP45,

and PLA/TTCP55 was 122.43%, 119.01%, 111.20%, and

93.73%, respectively. The ultimate tensile strength and

elongation at break of native human dura matter were

tested as 7 ± 2 MPa and 116 ± 3%, respectively.12,26 The

mechanical properties of the composite nanofiber mem-

branes were close to that of native human dura matter,

especially PLA/TTCP45. The TEM image of PLA/TCP45

is shown in Figure 6E. It can be observed that monodis-

perse TTCP particles were arranged one by one in the

nanofiber of PLA/TCP45. The decrease of the tensile

strength of PLA/TTCP55 should owe to the increased

content of g-TTCP because the blocking effect of TTCP

made the risk of destroying by outside force increase.45,46

In vitro Biocompatibility
In order to evaluate the in vitro cytotoxicity of nanofiber

membranes, the leaching solution of each group was used to

culture L929 cells for 24 h. The results of the cell viability

of each group measured by CCK-8 assay are shown in

Figure 7D. The group cultured on glass was set as the

control. Compared with control, the cell viability of nano-

fiber groups was not suppressed, indicating the non-toxicity

Figure 6 Mechanical properties of nanofiber membranes. Typical stress curves of (A) native and (B) heated nanofiber membranes. (C) Elongation break and (D) tensile

strength of nanofiber membranes. (a) PLLA; (b) PLA/TTCP25; (c) PLA/TTCP35; (d) PLA/TTCP45; (d) PLA/TTCP55. (E) The TEM image of PLA/TTCP45. Scale bar

represents 4 μm. *P<0.5, ***P<0.01.
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of nanofiber membranes. The proliferation of MSCs was

tested by CCK-8 assay and results are shown in Figure 7E.

It can be seen that MSCs cultured on nanofiber membranes

exhibited time-dependent proliferation, suggesting biocom-

patibility of nanofiber membranes.

In consideration of the crystallinity of SC and the

mechanical properties of composites membranes, we

chose PLA/TTCP45 to study the adhesion and prolifera-

tion of MSCs. Figure 7A–C showed the live/dead staining

and SEM images of MSCs cultured on PLA/TTCP45 for

2, 4, and 6 days. It can be observed that dead cell (red) was

hardly found at day 6 and the number of MSCs exhibited

time-depended increase. The pseudopodia of MSCs

observed by SEM proving the excellent adhesion of

MSCs on PLA/TTCP45.

Neuron-Like Differentiation of MSCs
The expression of tuj1 and neuron of MSCs seeded on

nanofiber membranes was observed by immunofluorescence

imaging (Figure 8). After differentiation for 9 days, all three

groups exhibited the expression of tuj1 and neuron. It sug-

gested thatMSCs could differentiate into neuron-like cells on

PLA/TTCP45 as on PLLA and glass, indicating the neuron

compatibility of PLA/TTCP45.

Conclusion
Stereocomplexed composite nanofiber membranes based on

PLA and PDLA-grafted TTCP were prepared via electro-

spinning. After heated at 100°C for 1 h, SC formed in

composite nanofibers. The crystallinity of SC of PLA/

Figure 7 (A) Live/Dead staining of MSCs seeded on scPLA/TTCP45. SEM images of MSCs cultured on scPLA/TTCP45 with 500× magnification (B) and 2000× magnification

(C). Scale bars represent 30 μm. (D) In vitro cytotoxicity assay of nanofiber membranes measured by CCK-8 assay. (E) MSCs proliferation on nanofiber membranes

measured by CCK-8 assay.
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TTCP45 was 47.4%. The composite nanofibers, PLA/

TTCP45 and PLA/TTCP55, maintained its straight outlook

after heating. The melting temperature of composite nano-

fiber membranes was around 222°C, higher than that of

PLLA. It indicated the heat resistance of the composite

nanofiber membranes. The elongation break and ultimate

tensile strength of PLA/TTCP45 were 111.20% and 6.46

MPa, respectively, which were close to that of native human

dura mater. In vitro cytotoxicity test showed that MSCs

exhibited time-depended increase indicating the biocompat-

ibility of composite nanofiber membranes. MSCs could

differentiate into neuron-like cells on PLA/TTCP45 as on

PLLA and glass, indicating the neuron compatibility of

PLA/TTCP45. In a word, PLA/TTCP45 exhibited potential

application to act as a dura mater substitute.
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