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Aim: To determine whether the use of a mixed polymeric micelle delivery system based on

vitamin E succinate (VES)-grafted-chitosan oligosaccharide (CSO)/VES-grafted-chitosan

(CS) mixed micelles (VES-g-CSO/VES-g-CS MM) enhances the delivery of C-DMSA, a

theranostic fluorescent probe, for Hg2+ detection and detoxification in vitro and in vivo.

Methods: Mixed micelles self-assembled from two polymers, VES-g-CSO and VES-g-CS,

were used to load C-DMSA and afforded C-DMSA@VES-g-CSO/VES-g-CS MM for cell

and in vivo applications. Fluorescence microscopy was used to assess C-DMSA cellular

uptake and Hg2+ detection in L929 cells. C-DMSA@VES-g-CSO/VES-g-CS MM was then

administered intravenously. Hg2+ detection was assessed by fluorescence microscopy in

terms of bio-distribution while detoxification efficacy in Hg2+-poisoned rat models was

evaluated in terms of mercury contents in blood and in liver.

Results: The C-DMSA loaded mixed micelles, C-DMSA@VES-g-CSO/VES-g-CS MM,

significantly enhanced cellular uptake and detoxification efficacy of C-DMSA in Hg2+

pretreated human L929 cells. Evidence from the reduction of liver coefficient, mercury

contents in liver and blood, alanine transaminase and aspartate transaminase activities in

Hg2+ poisoned SD rats treated with the mixed micelles strongly supported that the micelles

were effective for Hg2+ detoxification in vivo. Furthermore, ex vivo fluorescence imaging

experiments also supported enhanced Hg2+ detection in rat liver.

Conclusion: The mixed polymeric micelle delivery system could significantly enhance cell

uptake and efficacy of a theranostic probe for Hg2+ detection and detoxification treatment in

vitro and in vivo. Moreover, this nanoparticle drug delivery system could achieve targeted

detection and detoxification in liver.

Keywords: micelles, C-DMSA, mercury poisoning, detection and detoxification, drug

delivery system

Introduction
Mercury ion (Hg2+) is a highly toxic heavy metal ion, which can cause serious

health problems, such as kidney failure, central nervous system damage, abnormal

liver functions and even death.1 It has raised significant concerns as an environ-

mental contaminant and health threat to people and wildlife. Great efforts have been

made for its effective treatment and selective detection.2–11 Hg2+ poisonings were

mainly treated with heavy metal chelators including 2,3-dimercaptopropanol
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(British Anti Lewisite, BAL), D-penicillamine, meso-2,3-

dimercaptosuccinic acid (DMSA)2 and 2,3-dimercapto-

propanesulphonate.3 Antioxidants such as vitamin E, glu-

tathione and lipoic acid were used in mercury ion detox-

ification as well.4,5 For example, meanwhile, many

selective and sensitive techniques were developed for

selective and sensitive Hg2+ detection, which included

atomic absorption spectroscopy,6 inductively coupled

plasma mass spectrometry,7 and fluorescent probes8,9 and

nanoparticle-based sensors.10,11

While most of the literature work focused only on

either Hg2+ detection12 or detoxification, we approached

from a theranostic perspective and designed the first

generation of small-molecule-based theranostic fluores-

cent probe C-DMSA (Figure 1) for simultaneous detec-

tion and detoxification of Hg2+ ion.13 The probe

undergoes Hg2+-promoted hydrolysis and dithioacetal

cleavage to afford coumarin-aldehyde for fluorescence

turn-on response and simultaneously obtain stable

DMSA-Hg2+ complex14 for mercury ion detoxification

(Figure 1). In the previous studies, we demonstrated

that C-DMSA has excellent selectivity for Hg2+ detection

over many other metal ions tested and the probe also

exhibits low toxicities and could effectively protect

MCF-7 cells against Hg2+-induced cell toxicity in methyl

thiazolyl tetrazolium (MTT) assays.13 However, the

probe suffered from poor cell penetration and could not

detect Hg2+ inside cells.13 Moreover, the in vivo efficacy

of C-DMSA in Hg2+ detection and detoxification has not

been explored. To address these issues, we envisioned to

use a nanoparticle-based drug delivery system to enhance

cellular uptake of C-DMSA and to explore its potentials

in in vivo Hg2+ detection and detoxification. In particular,

we could take advantage of size-dependent non-specific

uptake of nanoparticles with sizes lower than 200 nm to

achieve liver-targeting ability,14 and to investigate the

Hg2+ detection and detoxification behavior of C-DMSA

in liver where mercury ions tend to accumulate.4,15

In this study, mixed micelles16 were prepared from two

biocompatible and biodegradable polymers, vitamin E suc-

cinate-grafted-chitosan oligosaccharide (VES-g-CSO)17

and vitamin E succinate-grafted-chitosan (VES-g-CS).18

They were characterized and studied as the drug delivery

system to enhance cellular uptake of C-DMSA and to

achieve liver-targeting ability with advantages that their

sizes and physicochemical properties can be conveniently

tuned by changing weight ratio of the two polymers in

preparation.19,20 Further, in vitro and in vivo detection and

detoxification studies of C-DMSA loaded VES-g-CSO/

VES-g-CS mixed micelles were performed in cell and rat

models to study the efficacy of the nano drug delivery

system to enhance C-DMSA delivery inside cells and

into livers in vivo.

Materials and methods
Materials
The theranostic Hg2+ fluorescent probe, 3-formyl-7-diethy-

lamino coumarin masked meso-dimercaptosuccinic acid (C-

DMSA), was synthesized according to the literature

procedures.11 Chitosan (CS, Mw 50 kDa, 90.0% deacetyla-

tion degree) was purchased from JinQiao Biochemical Co.

Ltd. (Shandong, China). Chitosan oligosaccharide (CSO,

MW 5 kDa, 90.0% deacetylation degree) was obtained

from JinQiao Biochemical Co. Ltd. (Shandong,

People'sRepublic of China). Vitamin E succinate (VES)

was purchased from TCI Development Co. Ltd.

(Shanghai, People's Republic of China). N-

Hydroxysuccinimide (NHS) and 1-Hydroxybenzotriazole

(HOBt) were purchased from Adamas Co. Ltd. Mercury

perchlorate trihydrate was purchased from XianDing

Biotechnology Co. Ltd. (Shanghai, People's Republic of

China). All the other analytical chemicals and reagents

were analytical grade. FBS, PBS, 0.25% (w/v) trypsin solu-

tion, penicillin-streptomycin and DMEM were purchased

from Gibco BRL (Gaithersburg, MD, USA). IR-775 chlor-

ide, pentobarbital sodium and MTT were purchased from

Figure 1 Structure of DMSA (A) and design of fluorescent theranostic agents for Hg2+ (B).
Abbreviations: DMSA, meso-2,3-dimercaptosuccinic acid; C-DMSA, 3-formyl-7-diethylamino coumarin masked meso-dimercaptosuccinic acid.
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Sigma (St. Louis, USA). Hoechst 33258 was purchased

from Beyotime Institute of Biotechnology (Shanghai,

People's Republic of China).

Synthesis of VES-g-CSO
VES-g-CSO was synthesized via coupling of the activated

carboxyl group of VES molecules with the amine groups

of CSO in the presence of EDC and NHS according to our

previously reported procedures.17 CSO (500 mg) was dis-

solved in 25 mL of water at room temperature. VES (160

mg), EDC·HCL (156 mg) and NHS (90 mg) were dis-

solved in 15 mL of anhydrous ethanol and then added into

the CSO solution dropwise on a magnetic stirrer, followed

by stirring in the dark for 24 hrs at 25°C. The resulting

solution was concentrated in vacuum and then precipitated

in cold anhydrous diethyl ether. The product was collected,

washed with anhydrous ethanol three times and dried

under a vacuum dryer (40°C) overnight to obtain the

product.21

Synthesis of VES-g-CS
VES-g-CS was synthesized according to the literature

procedures with minor modifications.21,22 In brief, chito-

san (600 mg) and HOBt (514 mg) was dissolved in 60 mL

of water and the resulting solution was stirred for 24 hrs at

room temperature. VES (178 mg) was dissolved in 40 mL

absolute ethyl alcohol, followed by the addition of EDC

(100 mg). The resulting solution was then slowly added to

the CS-HOBt solution and stirred in the dark for 24 hrs at

room temperature. Then, the product was dialyzed in dis-

tilled water using a dialysis membrane (MW 1 kDa, Green

Bird Inc. Shanghai, People's Republic of China) to remove

hydrophilic byproducts, followed by freeze drying.

Characterization of VES-g-CS
Samples were analyzed by Fourier transform infrared

(FT-IR) spectroscopy, elemental analysis and proton

nuclear magnetic resonance (1H-NMR) spectroscopy.

FT-IR spectra of CS, VES and VES-g-CS were recorded

in KBr pellets with a FT-IR spectrophotometer (Nicolet

6700, Thermo Fisher Scientific, Waltham, MA, USA). For
1H-NMR analysis, VES-g-CS was dissolved in D2O at

25°C and analyzed by 400 MHz NMR spectrometer

(Bruker, Karlsruhe, Germany). The substitution degrees

of VES to VES-g-CS were calculated based on elemental

analysis performed on an element analyzer (CS-344 car-

bon/sulfur analyzer, LECO, St. Joseph, MI, USA).

Preparations of C-DMSA@VES-g-CSO/

VES-g-CS MM
Critical micelle concentrations (CMC) of the VES-g-CSO,

VES-g-CS, VES-g-CSO/VES-g-CS (w/w=8:2) were

determined23 and the micelles were prepared by self-

assembly in water. For VES-g-CSO micelles, 200 μL of

methanol was added to the VES-g-CSO aqueous solution

(4 mg VES-g-CSO dissolved in 4 mL distilled water) and

the mixed solution was sonicated with a probe-type

Sonicator (BILON92-II DL, People'sRepublic of China)

for 5 mins at 100 W with the pulse turned off for 1 s at

intervals of 1 s. After that, the solution was stirred on a

magnetic plate at 100 rpm for 2 hrs to evaporate methanol.

The micelles solution was centrifuged to remove the

supernatant and then re-dissolved in water for experimen-

tal use. The method for the preparation of VES-g-CS and

VES-g-CSO/VES-g-CS MM was the same except that

different ratios of VES-g-CSO and VES-g-CS were used.

For the preparation of C-DMSA@VES-g-CSO/VES-

g-CS MM, the mixture of VES-g-CSO and VES-g-CS

with a total weight of 4 mg was dissolved in 4 mL of

distilled water, followed by the addition of 0.2 mL of

C-DMSA methanol solution (2 mg/mL). Other steps were

the same as the preparation of the VES-g-CSO/VES-g-

CS MM. C-DMSA@VES-g-CSO micelles and

C-DMSA@VES-g-CS micelles were similarly prepared

as the C-DMSA@VES-g-CSO/VES-g-CS MM.

Characterization of the micelles
The average particle size and zeta potential of

C-DMSA@VES-g-CSO/VES-g-CS MM in suspension

were determined by laser diffraction using Zetasizer

Nano ZS90 (Malvern Instruments, Malvern, UK) dynamic

light scattering (DLS) instrument. The morphology of the

micelles was examined by transmission electron micro-

scopy (TEM) (JEM-2100, Tokyo, Japan).

C-DMSA loading efficiency (LE) and

entrapment efficiency (EE)
The LE and EE of micelles for C-DMSA were calculated

with the following Equations (1) and (2), respectively. The

weight of C-DMSA in the micelles was calculated by

subtraction of the weight of unbounded C-DMSA in the

supernatant from the weight of C-DMSA added in pre-

paration of the micelles. The amount of unbounded

C-DMSA was quantified by an UV-vis spectrometer

Dovepress Wei et al

International Journal of Nanomedicine 2019:14 submit your manuscript | www.dovepress.com

DovePress
6919

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


(Thermo Scientific, Evolution 220, MA, USA) at a wave-

length of 403 nm.

LEð%Þ ¼ weight of C� DMSA in micelles

weight of the feeding micelles and C� DMSA

� 100%

(1)

EEð%Þ ¼ weight of C� DMSA in micelles

weight of the feeding C� DMSA
�100% (2)

Drug release and stability profile
In vitro C-DMSA release profiles of the three micelles (C-D

MSA@VES-g-CSO/VES-g-CS MM, C-DMSA@VES-g-

CSOmicelles and C-DMSA@VES-g-CSmicelles) were stu-

died in PBS buffer containing 0.5% (w/w) tween-80 media.

The micelles solution (1 mL, 1 mg/mL micelles) was first

placed in a dialysis bag (MW 1 kDa, Green Bird Inc.

Shanghai, People'sRepublic of China). The dialysis bag was

then submerged in 19 mL of PBS buffer and stirred at 100

rpm at room temperature. At time points of 0.08, 0.25, 0.5, 1,

2, 4, 8, 12, 24, 48 and 72 hrs, 1 mL dialysis solution sample

was taken out and an equal volume of fresh medium was

added. The amount of C-DMSA released in the dialysis

solution at different time points were quantified by the

UV-vis spectrometer at 403 nm.

For stability studies, micelles were stored at 4°C and

particle sizes were measured on the day 0, 2, 4, 6, 8, 10, 12

and 14.

Cell culture
The L929 cell line was purchased from Stem Cell Bank,

Chinese Academy of Sciences (Shanghai, People's

Republic of China). The cells were cultured in DMEM

medium containing 10% (v/v) FBS and 1% penicillin-

streptomycin. The cells were maintained in a humidified

incubator at 37°C with 5% CO2 and precultured until a

confluence of 80–90% was reached before the experiment.

Cell uptake
L929 cells were seeded at a density of 1×105 cells/mL in a

6-well plate and incubated for 24 hrs. Subsequently, cul-

ture medium from each well was replaced with the

C-DMSA containing medium (C-DMSA@VES-g-CSO/

VES-g-CS MM containing 20 μg/mL of C-DMSA or

20 μg/mL free C-DMSA) or same volume of saline and

cells were incubated for 4 hrs. After that, 5 μL Hoechst

33258 was added to each well and cells were incubated for

additional 15 mins. Finally, cells were washed with PBS

and then observed with Ti-S fluorescence microscope

(Nikon, Japan).

For flow cytometry (BD, San Jose, USA) studies, L929

cells were seeded and cultured similarly, except that

Hoechst 33258 was not added.

In vitro fluorescence detection of Hg2+

L929 cells were seeded in 24-well plates at cell density of

5×104 cells/well and incubated for 24 hrs. 200 μL of

RPMI-1640 solution containing Hg2+ (4 µg/mL) was

added into each well and incubated for 1 hr. The free

C-DMSA (20 μg/mL) and C-DMSA@VES-g-CSO/VES-

g-CS MM (containing 20 μg/mL C-DMSA) were then

added. After incubation for additional 4 hrs in the dark,

cells were observed with fluorescence microscope.24,25

In vitro Hg2+ detoxification studies
In vitro detoxification efficacy of C-DMSA@VES-g-CSO/

VES-g-CS MM and C-DMSA to Hg2+ poisoning was

tested on L929 cells by MTT assay. Cells were seeded at

a density of 1×104 cells/well in a 96-well plate. After

incubation for 24 hrs, the growth medium was replaced

with 200 μL of RPMI-1640 solution containing Hg2+

(4 µg/mL). 200 μL of medium containing different con-

centrations of free C-DMSA (0.1–10 μg/mL) or

C-DMSA@VES-g-CSO/VES-g-CS MM (containing 0.1–

10 μg/mL C-DMSA) was then added to separate wells.

After incubation for 24 hrs in the dark, the incubation

medium was replaced with fresh medium.26,27 5 mg/mL

MTT solution (200 μL/well) was added with incubation

for 4 hrs. The supernatant was removed, dimethyl sulfox-

ide (200 μL/well) was added, and the samples were shaken

for 10 mins. The absorbance of each well was measured at

570 nm by a microplate reader (Tecan Safire2, Männedorf,

Switzerland).

Bio-distribution studies
Male BABL/c mice and SD rats were purchased from

SLAC Laboratory Animal Co. Ltd. (Shanghai, People's

Republic of China). All animals were cared for in accor-

dance with the guidelines of the National Institute of

Health for laboratory use and housed in groups as per

study protocol under 12 hrs light and dark cycles and fed

with a normal diet and water ad libitum. Before experi-

ments, all animals were acclimatized for 2 weeks. The

experiments were conducted in accordance with the UK

Animals (Scientific Procedures) Act, 1986 and associated
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guidelines, EU Directive 2010/63/EU for animal experi-

ments. The animals were also treated according to the

protocols evaluated and approved by the Ethical

Committee of the East China University of Science and

Technology.

IR-775, a near-infrared fluorescent dye,28 was loaded to

the mixed micelles similar to afford IR-775@VES-g-CSO/

VES-g-CS MM for facile tracing locations of the mixed

micelles. The bio-distribution of micelles in mice was deter-

mined after tail intravenous injection of IR-775@VES-g-

CSO/VES-g-CS MM (100 μL, containing 50 μg/mL IR-

775) and compared with that of IR-775 (100 μL, containing

50 μg/mL IR-775) injection. Briefly, four mice were ran-

domly grouped into two groups (n=2 mice/group) and

anesthetized by intraperitoneal injection of 0.15 mL pheno-

barbitone (10 mg/mL). The anesthetized mice in the same

group were given free IR-775 or IR-775@VES-g-CSO/

VES-g-CS MM. Mice were euthanized at 2-hr post-treat-

ment, and different organs (heart, lung, liver, kidney and

spleen) were harvested.29 The organs were gently washed

and then fluorescent photographs were taken under fluores-

cent spectral imager (Jitian Inc., Beijing, People's Republic

of China). The excitation wavelength and emission wave-

length are 770 and 810 nm, respectively, with an exposure

time of 10 mins.

C-DMSA loaded mixed micelles for Hg2+

detection in poisoned mice
Eighteen mice were randomly divided into six groups (n=3

mice/group). The mice in control group were treated with

0.2 mL saline via intraperitoneal injection, and after 24

hrs, additional 0.2 mL saline was injected via tail vein.

The second group of mice was also treated with 0.2 mL

saline via intraperitoneal injection, and after 24 hrs, 0.1

mg/kg of the C-DMSA loaded mixed micelles in 0.2 mL

saline was injected via tail vein. The remaining groups of

mice were first treated with HgCl2 at the dosage of 6 mg/

kg via intraperitoneal injection, and then 24 hrs after

injection, 0.2 mL saline, free C-DMSA (0.1 mg/kg) in

0.2 mL saline, C-DMSA@VES-g-CSO/VES-g-CS MM

(0.1or 0.2 mg/kg) in 0.2 mL saline was injected via tail

vein, respectively. Mice were euthanized 2-hr post-treat-

ment, and different organs (heart, lung, liver, kidney and

spleen) were dissected. The organs were gently washed

and fluorescent photographs were taken under fluorescent

spectral imager (Jitian Inc.). The excitation wavelength

and emission wavelength were 477and 503 nm, respec-

tively, with an exposure time of 3 mins.

C-DMSA loaded mixed micelles for Hg2+

detoxification in poisoned rats
Detoxification effects of C-DMSA@VES-g-CSO/VES-g-

CS MM were evaluated in SD rats, which weighed from

170 to 190 g and were fed on a standard rat chow. Thirty

rats were randomly divided into five groups (n=6 rats/

group). For control group, rats were administered with

0.5 mL 0.9% saline solution via intraperitoneal injection.

Rats in the other four poisoned groups were treated with 3

mg/kg HgCl2 in 0.5 mL 0.9% saline via intraperitoneal

injection. After 30 mins, for the control group and one

poisoned group, the rats were injected with 0.5 mL saline.

Another group of poisoned rats were injected with 15 mg/

kg of C-DMSA in 0.5 mL 0.9% saline via tail vein, and

the remaining two groups of poisoned rats were injected

with C-DMSA@VES-g-CSO/VES-g-CS MM (15 or 30

mg/kg C-DMSA) in 0.5 mL saline, respectively. Forty-

eight hours after the injection of HgCl2, all rats were

sacrificed, and samples of blood and liver were collected

for analysis of Hg2+ content and liver functions.15,30

Moreover, alanine transaminase (ALT) and aspartate trans-

aminase (AST) activities in blood were also measured as

biomarkers for evaluation of liver functions. Besides, liver

coefficients were calculated with the following Equation

(3) as an additional detoxification index.

Liver coefficient% ¼ weight of wet liver

weight of the animal
�100% (3)

Hg2+ quantification in blood and liver

samples
Quantification of Hg2+ in blood and liver samples of SD

rats were performed by atomic fluorescence spectrophoto-

metry (AFS) after microwave digestion followed literature

reported procedures with minor modifications.31–34 Blood

samples were collected in centrifuge tubes with lithium

heparin anticoagulant. Dissected liver was weighed and

rinsed with deionized water. Both blood and liver samples

were subjected to microwave digestion (Ethos-TC,

Milestone, Italy).34,35 For microwave digestion, 0.1 g sam-

ple was entirely soaked in acidic media consisting of 2 mL

of 65% w/w high purity HNO3 (JT Baker, USA), 0.5 mL

H2O2 (30%, w/w) and 3 mL of distilled water for 10 mins.

And samples were irradiated with 800 W power of
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microwave, and the digestion temperature increased to

120°C for 10 mins, and further increased to 150°C for

15 mins and then increased and maintained at 180°C for

15 mins. Finally, 4.5 mL of 0.5 g/mL potassium dichro-

mate solution (diluted in 5% HNO3) was added for further

AFS detection on an AFS 9130 atomic fluorescence spec-

trophotometer (Jitian Inc.). The Hg2+ contents in blood

and liver samples of SD rats were expressed as micro-

grams per gram of wet tissue weight (μg/g) for liver and
micrograms per liter for blood (μg/L), respectively.

Data analysis
Data are expressed as means±standard deviations.

Multiple comparisons were made with one-way analysis

of variance with least significant difference using statisti-

cal software (SPSS Inc., Chicago, IL, USA). p-values

<0.05 were considered statistically significant.

Results and discussion
Synthesis and characterization of

VES-g-CS
VES-g-CS was synthesized (Figure 2A) in 74.6% yield and

characterized by 1H-NMR (Figure 2B), FT-IR (Figure 2C)

spectra and elemental analysis. The 1H-NMR spectrum

showed both characteristic peaks of VES and CS

(Figure S1), while the enhanced peak at 1564 cm−1 in IR

spectrum of VES-g-CS indicated formation of amide bonds

between the VES carboxylic acid groups and the free amine

groups on the CS.36 The degrees of VES substitution cal-

culated from elemental analysis was 3.0±0.8% (Table S1).

VES-g-CSO was synthesized and characterized according

to our previously reported procedures.17

CMC of VES-g-CSO, VES-g-CS and VES-

g-CSO/VES-g-CS
Micelles with different ratio of two polymers were pre-

pared. After initial screening (data not shown), three

micelles prepared from VES-g-CSO, VES-g-CS and VES-

g-CSO/VES-g-CS (w/w=8:2), respectively, were selected as

representative micelles/mixed micelles for C-DMSA load-

ing and delivery studies. The corresponding CMC values of

VES-g-CSO, VES-g-CS and VES-g-CSO/VES-g-CS (w/

w=8:2) were determined as 61.5, 17.6 and 21.6 μg/mL in

PBS (pH=7.4), respectively (Figure S2), indicating they all

readily form micelles in aqueous solution.37,38

Preparation and characterization of

C-DMSA loaded micelles
C-DMSA loaded micelles were prepared and their physi-

cochemical properties including LE, EE, particle size, zeta

potential and PI were characterized and summarized in

Table 1. C-DMSA@VES-g-CSO/VES-g-CS MM showed

Figure 2 Synthesis of VES-g-CS (A), 1H-NMR (B) and FT-IR (C) of VES-g-CS.

Abbreviations: VES, vitamin E succinate; CS, chitosan; VES-g-CS, vitamin E succinate-grafted-chitosan; FT-IR, Fourier transform infrared; HOBt, 1-Hydroxybenzotriazole.
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spherical morphology with an average diameter around

100 nm in a TEM image (Figure 3A) which was slightly

smaller than the size in DLS (Figure 3B). This disparity

was likely related to their different measurement condi-

tions, as the TEM image was taken under dry and high

vacuum condition, while DLS measurement was per-

formed in aqueous solution.14

Among the three C-DMSA loaded micelles, the mixed

micelles C-DMSA@VES-g-CSO/VES-g-CS MM prepared

from VES-g-CSO/VES-g-CS (w/w=8:2) showed the

Table 1 Physicochemical properties of C-DMSA loaded micelles

Micelles LE (%) EE (%) Particle size (nm) Zeta potential (mV) PI

VES-g-CSO micelles / / 178.5±2.1 35.7±3.2 0.28

C-DMSA@VES-g-CSO micelles 7.5±0.2 82.8±1.5 185.3±6.2 30.9±1.9 0.21

VES-g-CS micelles / / 116.9±1.1 17.3±1.7 0.17

C-DMSA@VES-g-CS micelles 3.1±0.2 34.9±1.2 120.9±3.1 17.3±0.4 0.17

VES-g-CSO/VES-g-CS MM / / 124.5±3.5 25.6±0.9 0.16

C-DMSA@VES-g-CSO/VES-g-CS MM 6.9±0.3 76.6±1.7 133.2±4.9 24.1±0.1 0.16

Notes: Data were presented as mean±SD (n=3). “/”means the data is indeterminable.

Abbreviations: LE, loading efficiency; EE, entrapment efficiency; PI, polydispersity index; VES-g-CSO micelles, vitamin E succinate-grafted-chitosan oligosaccharide micelles;

VES-g-CS micelles, vitamin E succinate-grafted-chitosan micelles; VES-g-CSO/VES-g-CS MM, vitamin E succinate-grafted-chitosan oligosaccharide/vitamin E succinate-grafted-

chitosan mixed micelles; C-DMSA, 3-formyl-7-diethylamino coumarin masked meso-dimercaptosuccinic acid.

Figure 3 Transmission electron microscopy of C-DMSA@VES-g-CSO/VES-g-CS MM (A); particle size distribution of C-DMSA@VES-g-CSO/VES-g-CS MM obtained from

dynamic light scattering (B); C-DMSA release profile from micelles in PBS solution (pH=7.4) (C) and particle size changes of C-DMSA loaded micelles stored at 4°C as a

function of storage time (D).

Note: Data were presented as mean±SD (n=3).

Abbreviations: C-DMSA, 3-formyl-7-diethylamino coumarin masked meso-dimercaptosuccinic acid; C-DMSA@VES-g-CSO micelles, C-DMSA loaded vitamin E succinate-

grafted-chitosan oligosaccharide micelles; C-DMSA@VES-g-CS micelles, C-DMSA loaded vitamin E succinate-grafted-chitosan micelles; C-DMSA@VES-g-CSO/VES-g-CS

MM, C-DMSA loaded vitamin E succinate-grafted-chitosan oligosaccharide/vitamin E succinate-grafted-chitosan mixed micelles.
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narrowest size distribution (PI=0.16). In addition, both C-

DMSA@VES-g-CSO micelles and the mixed micelles had

much higher LE and EE values than those of

C-DMSA@VES-g-CS micelles indicating they were more

effective in loading C-DMSA (Table 1).

In vitro drug release profiles and stability

studies
The C-DMSA release profiles and stability studies of the

three C-DMSA loaded micelles were performed in PBS

buffer. All three micelles showed typical diffusion-based

drug release profiles characterized by an initial burst release

period followed by a decreasing drug release rate later

(Figure 3C). Moreover, it seemed that micelles with larger

sizes were associated with a faster initial C-DMSA release.

Furthermore, results showed that C-DMSA@VES-g-CSO/

VES-g-CS MM had the best stability in PBS buffer with no

obvious size changes up to 14 days (Figure 3D).

Considering overall properties including their average

particle size, PI, stability, LE and EE values,

C-DMSA@VES-g-CSO/VES-g-CS MM (w/w=8:2) were

selected for further in vitro and in vivo studies.

In vitro cytotoxicity study and cellular

uptake
In vitro cytotoxicity of VES-g-CSO/VES-g-CS MM,

C-DMSA and C-DMSA@VES-g-CSO/VES-g-CS MM

were evaluated by MTT assays on a model cell line, L929

fibroblast cells. The results showed that C-DMSA loaded

mixedmicelles and the unloadedmixedmicelles both showed

low cytotoxicity up to 1.0 mg/mL (Figure S3A). Moreover,

when compared with C-DMSA, C-DMSA loaded mixed

micelles resulted in reduced cytotoxicity at the same concen-

trations (Figure S3B). Such reduced cytotoxicity is important

for Hg2+ detoxification treatment as more C-DMSA could be

tolerated as the formulation of mixed micelles.

Cellular uptakes of C-DMSA@VES-g-CSO/VES-g-

CS MM were confirmed by both fluorescence microscopy

and flow cytometry. When L929 cells were co-incubated

with the C-DMSA loaded mixed micelles and the dye

Hoechst 33258, co-staining of the green and blue fluor-

escence from C-DMSA and Hoechst 33258, respectively,

was observed, indicating the successful cellular uptake of

C-DMSA@VES-g-CSO/VES-g-CS MM (Figure 4A).

Additional evidence came from flow cytometry

(Figure 4B). L929 cells treated with C-DMSA@VES-g-

CSO/VES-g-CS MM afforded cells with stronger

fluorescence than those incubated with free C-DMSA. It

was evident that the mixed micelles, with their suitable

size and positive surface charge, could facilitate C-

DMSA endocytosis and significantly increase intracellu-

lar C-DMSA levels.14,22,39,40

In vitro fluorescence detection of Hg2+

Since mixed micelles could significantly increase intracel-

lular C-DMSA levels from cell imaging studies, they

would be expected to enhance Hg2+ detection inside

cells. Indeed, when Hg2+-pretreated L929 cells were incu-

bated with C-DMSA@VES-g-CSO/VES-g-CS MM, sig-

nificantly enhanced fluorescence “turn-on” response was

observed compared with cells incubated with the free C-

DMSA (Figure 5A), indicating improved intracellular

Hg2+ detection by C-DMSA loaded mixed micelles.

In vitro Hg2+ detoxification studies
L929 cells pretreated with 2 μg/mL of Hg2+ for 2 hrs

resulted in cell viability of 58.1±3.7% after 24 hrs

Figure 4 Fluorescence microscopy images (A) and flow cytometry (B) of L929
cells after incubation with PBS.

Notes: Blue, cell nuclei stained with Hoechst 33258; green, fluorescence of

coumarin-aldehyde generated by C-DMSA after its reaction with Hg2+.

Abbreviations: C-DMSA, 3-formyl-7-diethylamino coumarin masked meso-dimer-

captosuccinic acid; C-DMSA@VES-g-CSO/VES-g-CS MM, C-DMSA loaded vitamin

E succinate-grafted-chitosan oligosaccharide/vitamin E succinate-grafted-chitosan

mixed micelles.
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incubation without C-DMSA treatment. Improved cell

viabilities were observed in the C-DMSA and C-

DMSA@VES-g-CSO/VES-g-CS MM (0.1–10.0 μg/mL)

treated cells in a concentration-dependent manner

(Figure 5B), indicating that C-DMSA and the C-DMSA

loaded mixed micelles could effectively protect cells from

Hg2+-induced cytotoxicity. Compared to free C-DMSA, C-

DMSA loaded mixed micelles gave better cell survival

rates at all concentrations, indicating the C-DMSA loaded

mixed micelles were more effective in detoxification in

cell experiments.

Bio-distributions of the mixed micelles
As shown in Figure S4 and Table S2, pharmacokinetic

parameters including the half-life, AUC0–24 hrs and clear-

ance (CL) of C-DMSA@VES-g-CSO/VES-g-CS MM

were remarkably improved. On this basis, bio-distributions

of the mixed micelles were studied by ex vivo fluores-

cence imaging of dissected organs (heart, lung, liver, kid-

ney and spleen) of mice 2 hrs after intravenous injection of

the IR-775 dye loaded mixed micelles via their tail vein.

Significantly higher amount of IR-775 fluorescence were

observed in liver compared with any other organs, while

direct injection of IR-775 dye did not show any organ-

specific distributions (Figure 6A). The results suggested

that the mixed micelles with the size lower than 200 nm

and positive charge may accumulate readily in liver via

non-specific uptake mechanisms,41 which was attributed to

the uptake by reticuloendothelial system.14,42

Hg2+ detection in poisoned rats
We further tested the potential use of C-DMSA@VES-g-

CSO/VES-g-CS MM in the detection of Hg2+ in animal

models. Ex vivo fluorescence imaging studies of dissected

organs were performed, as non-invasive fluorescence ima-

ging is not possible for C-DMSA for its short fluorescence

excitation/emission wavelength. Fluorescence photograph

of five major organs from mice with different treatment

protocols were taken and compared (Figure 6B). For the

rat treated with C-DMSA loaded mixed micelles only

(column c in Figure 6B), low fluorescence was observed

for all dissected organs, similar with the saline control and

the Hg2+ -poisoned rats (columns a and b in Figure 6B,

respectively), as the loaded C-DMSA molecules are non-

fluorescent under the imaging condition (λex=477 nm). In

contrast, when poisoned rats treated with the C-DMSA

loaded mixed micelles by tail vein injection, dose-depen-

dent high fluorescence intensities were observed 2 hrs later

in liver (columns e and f in Figure 6B), indicating that

micelles were targeted to liver and the loaded C-DMSA

molecules reacted with Hg2+ to generate fluorescent pro-

duct responsible for the observed fluorescence increase.

Moderate fluorescence intensity increase was also

observed for kidneys (columns e and f in Figure 6B),

suggesting partial clearance and reaction of C-DMSA

Figure 5 Fluorescence imaging intracellular Hg2+ of L929 cells with free C-DMSA or

C-DMSA loaded mixed micelles (A); cell viability of L929 cells treated with Hg2+ and

different treatments with untreated cells and poisoning group served as controls (B).
Notes: Left column, cells without Hg2+ pretreatment; right column, cells with Hg2+

pretreatment; top row, cells treated with PBS (blank); middle row, cell treated with

C-DMSA (20 μg/mL); bottom row, cells treated with C-DMSA@VES-g-CSO/VES-g-

CS MM. **p<0.01, compared to control group; ##p<0.01, compared to poisoning

group. Data were presented as mean±SD (n=6).

Abbreviations: DMSA, meso-2,3-dimercaptosuccinic acid; C-DMSA; 3-formyl-7-

diethylamino coumarin masked meso-dimercaptosuccinic acid; C-DMSA@VES-g-

CSO/VES-g-CS MM, C-DMSA loaded micelles, vitamin E succinate-grafted-chitosan

oligosaccharide/vitamin E succinate-grafted-chitosan mixed micelles.

Dovepress Wei et al

International Journal of Nanomedicine 2019:14 submit your manuscript | www.dovepress.com

DovePress
6925

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


with Hg2+ in kidneys. In contrast, when a poisoned rat

administrated with free C-DMSA, low fluorescence in

liver but strong fluorescence in kidney was observed (col-

umn d in Figure 6B), suggesting fast clearance and reac-

tion of C-DMSA with Hg2+ in kidney and low enrichment

in liver. These findings were in accordance with the pre-

vious biodistribution studies and suggested that the

C-DMSA loaded mixed micelles were mostly enriched in

liver and therefore particularly suitable for the detection

and detoxification of Hg2+ ion in liver.

In vivo detoxification in Hg2+ poisoned

rats
Detoxification effects of C-DMSA@VES-g-CSO/VES-

g-CS MM were evaluated by liver coefficients, liver

and blood mercury contents before and after treatment

and compared with those values from healthy control

rats or poisoned rats treated with C-DMSA or saline

(Table 2).

Liver coefficients for the Hg2+ poisoned group, the free

C-DMSA treated group and the two C-DMSA@VES-g-

CSO/VES-g-CS MM treated groups (15 and 30 mg/kg)

were 5.12%, 4.93%, 4.64% and 4.59%, respectively.

Compared with the value of 4.57% in control group, sig-

nificant reduction and nearly complete recovery of liver

coefficients were identified in the mixed micelles-treated

groups. In addition, mercury contents in liver and in blood

of the two mixed micelles-treated groups were signifi-

cantly reduced compared with the Hg2+ poisoned group

and the free C-DMSA treated group (*P<0.05) (Table 2).

In particular, after treated with the mixed micelles with the

dosage of 30 mg/kg, mercury contents in liver and in

blood were reduced from 4.57 μg/g tissue and 0.86 μg/L

in the poisoned group down to 2.63 μg/g tissue and

0.52 μg/L, respectively. Moreover, at the same dosage of

C-DMSA (15 mg/kg), C-DMSA loaded mixed micelles

gave better therapeutic results both in liver coefficient

and mercury content in liver and blood than the free

C-DMSA. These results indicated a significantly enhanced

efficacy of C-DMSA loaded mixed micelles in Hg2+

removal in vivo and treatment of Hg2+-induced hepatome-

galy compared with the free C-DMSA, which may attri-

bute to the combined effects of elongated circulation time,

enhanced cellular uptake and liver-specific delivery of

Heart

IR-775
loaded micelles IR-775

A

Liver

Spleen

Lung

Kidney

a b c d e f

133

2331

5331

8306

11350

B

Heart

Liver

Spleen

Lung

Kidney

Figure 6 Ex vivo fluorescent photograph of major organs dissected from IR-775@VES-g-CSO/VES-g-CS MM treated mice (A). Ex vivo fluorescent photograph of major

organs dissected from mice with different treatments (B).
Notes: Blank control (a); HgCl2 poisoned (b); 15 mg/kg of C-DMSA@VES-g-CSO/VES-g-CS MM (c); HgCl2 poisoned with C-DMSA treatment (d); HgCl2 poisoned with 15

mg/kg of C-DMSA@VES-g-CSO/VES-g-CS MM treatment (e); HgCl2 poisoned with 30 mg/kg of C-DMSA@VES-g-CSO/VES-g-CS MM treatment (f).

Abbreviations: IR-775 loaded micelles, vitamin E succinate-grafted-chitosan oligosaccharide/vitamin E succinate-grafted-chitosan mixed micelles.
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C-DMSA in the formulation of C-DMSA loaded mixed

micelles.

To further confirm the detoxification and hepatoprotec-

tive effects of C-DMSA loaded mixed micelles, ALT and

AST activities in blood were measured (Figure 7A and B),

which were biomarkers commonly used for assessment of

liver function impairment.43,44 The results showed that

enzyme activities were significantly decreased in the

micelles-treated groups compared with the Hg2+ poisoned

group and the free C-DMSA treated group, strongly support-

ing that the C-DMSA@VES-g-CSO/VES-g-CS MM were

effective in protection of liver cells from Hg2+-induced cell

damage.

Conclusion
In the present study, mixed micelles prepared from two

polymers were used to load C-DMSA, a theranostic fluor-

escent probe for Hg2+ detection and detoxification, in cell

and in vivo applications. The mixed micelles,

C-DMSA@VES-g-CSO/VES-g-CS MM showed appeal-

ing properties and good stability. In vitro studies showed

that the C-DMSA loaded mixed micelles significantly

increased C-DMSA cellular uptake and Hg2+ detection in

L929 cells. Moreover, significantly improved detoxifica-

tion efficacy was shown in Hg2+-poisoned rat models in

terms of mercury contents in blood and in liver. Notably,

the C-DMSA loaded mixed micelles showed excellent

hepatoprotective activity as evidenced by reduced liver

coefficients and reduced ALT and AST activities.

Furthermore, ex vivo fluorescence imaging experiments

also supported enhanced Hg2+ detection in rat liver. The

above results suggested that C-DMSA@VES-g-CSO/

VES-g-CS MM significantly improved the efficacy of C-

DMSA in treatment of mercury poisoning, suggesting the

important role of the mixed micelles as a delivery system

to increase the cellular uptake of the theranostic probe.

More importantly, liver-specific targeting capabilities were

achieved by C-DMSA@VES-g-CSO/VES-g-CS MM. To

the best of our knowledge, this work provided the first

proof of concept studies that a mixed polymeric micelle

delivery system could significantly enhance cell uptake

and efficacy of a theranostic fluorescent probe for heavy

Figure 7 ALT (A) and AST (B) in blood samples from rats with different treatments.

Notes: *p<0.05, compared to control group; #p<0.05, compared to HgCl2 group. Data were presented as mean±SD (n=6).

Abbreviations: ALT, alanine transaminase; AST, aspartate transaminase; C-DMSA; 3-formyl-7-diethylamino coumarin masked meso-dimercaptosuccinic acid; C-DMSA

loaded MM, C-DMSA loaded vitamin E succinate-grafted-chitosan oligosaccharide/vitamin E succinate-grafted-chitosan mixed micelles.

Table 2 Liver coefficients and contents of total mercury in rat liver and blood

Treatment Mercury Liver coefficients (%)

Liver (μg/g tissue) Blood (μg/L)

Control 0.01±0.01 0±0.01 4.57±0.11

HgCl2 4.57±0.42*** 0.86±0.18*** 5.12±0.11*

HgCl2+C-DMSA (15 mg/kg) 3.64±0.54 0.70±0.19 4.93±0.15

HgCl2+C-DMSA loaded micelles (15 mg/kg) 2.63±0.55# 0.59±0.06# 4.64±0.19#

HgCl2+C-DMSA loaded micelles (30 mg/kg) 2.38±0.29# 0.52±0.02# 4.59±0.13#

Notes: *p<0.05, ***p<0.001, compared to control group. #p<0.05 compared to HgCl2 group. Data were presented as mean±SD (n=6).

Abbreviations: C-DMSA, 3-formyl-7-diethylamino coumarin masked meso-dimercaptosuccinic acid; C-DMSA loaded micelles, C-DMSA loaded vitamin E succinate-grafted-

chitosan oligosaccharide/vitamin E succinate-grafted-chitosan mixed micelles.
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metal detection and detoxification treatment both in vitro

and in vivo. The strategy presented here may provide a

promising approach to address the delivery problem of a

theranostic probe/drug for diagnosis and treatment of

heavy metal poisoning.
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Supplementary materials
Determination of critical micelle

concentrations
Critical micelle concentrations (CMC) of the VES-g-CSO,

VES-g-CS, VES-g-CSO/VES-g-CS (w/w=8:2) were deter-

mined on a Lumina fluorescence spectrometer (Thermo

Fisher Scientific, Waltham, MA, USA). Solutions contain-

ing of 4.94×10−7 mol/L pyrene and increasing concentra-

tions (1.0×10−4 −1.0 mg/mL) of the polymer to be tested

were prepared. Each solution sample was sonicated for 5

mins at 100 W with the pulse turned off for 1 s at intervals

of 1 s, incubated at room temperature for 12 hrs in light-

resistance containers before its fluorescence emission

spectrum was recorded at excitation wavelength 335 nm.

CMC values were determined from plots of the intensity

ratio of I1 (373 nm)/I3 (385 nm) against logarithm of

polymer concentrations (Figure S1).

Cytotoxicity study
In vitro cytotoxicity of C-DMSA@VES-g-CSO/VES-g-

CS MM was studied on L929 cells by the MTT assay.

Cells were seeded at a density of 1×104 cells/well in a 96-

well plate. After 24-hr incubation, the growth medium was

replaced with 200 μL of medium containing different

concentrations of free C-DMSA (1–100 μg/mL),

VES-g-CSO/VES-g-CS MM (0.01–1 mg/mL) or

C-DMSA@VES-g-CSO/VES-g-CS MM (containing 1–

100 μg/mL C-DMSA). After incubation for additional 24

hrs in the dark, the drug-containing medium was replaced

with PBS and the samples were incubated in a humidified

incubator at 37°C with 5% CO2. PBS was then replaced

with fresh medium and MTT solution (500 μg/mL,

200 μL/well) was added, after that the cells were cultured

again for 4 hrs. The supernatant was removed, dimethyl-

sulfoxide (200 μL/well) was added and the samples were

shaken for 10 mins. The absorbance of each well was

measured at 570 nm by a microplate reader (Tecan

Safire2, Männedorf, Switzerland) (Figure S2).

Pharmacokinetic profiles
Six male SD rats weighing 170–190 g were randomly

divided into two groups for pharmacokinetics studies.

Before administration, the rats were fasted for 12 hrs

with access to drinking water. Free C-DMSA and

C-DMSA@VES-g-CSO/VES-g-CS MM were intrave-

nously injected at an equivalent dose of 10 mg/kg.

Blood (0.2 mL) was taken from the orbital venous

plexus prior to administration of test substances (0 hr)

and after 0.1, 0.25, 0.5, 1, 2, 4, 7, 10 and 24 hrs (n=3

for each time point). The concentration of C-DMSA in

the blood samples was determined by a fluorescence

spectrophotometer (λEx 403 nm and λEm 480 nm). The

related pharmacokinetic parameters were calculated

using Kinetic 5.0 software.

The Phase I half-life (t½α) for C-DMSA and

C-DMSA@VES-g-CSO/VES-g-CS MM was calculated

at 0.12±0.01 and 0.74±0.12 hrs, respectively, Phase II

values (t½β) were 1.91±0.20 and 15.23±1.20 hrs, respec-

tively. Furthermore, the AUC0–24 hrs for the drug-loaded

micelles was 4.57 folds increased compared to free C-

DMSA (Table S2). The results demonstrated that the

entrapment of C-DMSA in nano drug delivery systems

can prolong its circulation.

Figure S1 1H-NMR CS (A) and VES (B).
Abbreviations: VES, vitamin E succinate; CS, chitosan.
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Figure S2 Determination of CMC values of VES-g-CSO/VES-g-CS (w/w=4:1) (A), VES-g-CSO (B) and VES-g-CS (C) solutions.

Abbreviations: CMC, critical micelle concentration; VES-g-CSO, vitamin E succinate-grafted-chitosan oligosaccharide; VES-g-CS, vitamin E succinate-grafted-chitosan; VES-

g-CSO/VES-g-CS, vitamin E succinate-grafted-chitosan oligosaccharide/vitamin E succinate-grafted-chitosan.

Figure S3 Cell viability of L929 cells treated with the blank mixed micelles (VES-g-CSO/VES-g-CS MM) or C-DMSA@VES-g-CSO/VES-g-CS MM (A). Cell viability of L929

cells treated with C-DMSA or C-DMSA@VES-g-CSO/VES-g-CS MM (B).
Note: Data were presented as mean±SD (n=3).

Abbreviations: C-DMSA, 3-formyl-7-diethylamino coumarin masked meso-dimercaptosuccinic acid; VES-g-CSO/VES-g-CS MM, vitamin E succinate-grafted-chitosan

oligosaccharide/vitamin E succinate-grafted-chitosan mixed micelles; C-DMSA@VES-g-CSO/VES-g-CS MM, C-DMSA loaded vitamin E succinate-grafted-chitosan oligosac-

charide/vitamin E succinate-grafted-chitosan mixed micelles.
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Figure S4 Mean plasma concentration-time curves of C-DMSA after intravenous administration of C-DMSA and C-DMSA@VES-g-CSO/VES-g-CS MM in rats.

Notes: All the rats were received the single dosage at an equivalent dose of 10 mg/kg C-DMSA. Data were presented as mean±SD (n=3).

Abbreviations: C-DMSA, 3-formyl-7-diethylamino coumarin masked meso-dimercaptosuccinic acid; C-DMSA@VES-g-CSO/VES-g-CS MM, C-DMSA loaded vitamin E

succinate-grafted-chitosan oligosaccharide/vitamin E succinate-grafted-chitosan mixed micelles.

Table S1 Elemental analysis of VES-g-CSO and VES-g-CS

Polymer N% C% H% DS (%)

CSO 6.4±0.1 34.1±0.2 6.6±0.1 /

VES-g-CSO 4.5±0.2 34.5±0.2 6.8±0.1 1.2±0.3

CS 7.3±0.0 40.1±0.1 7.2±0.1 /

VES-g-CS 6.4±0.1 40.3±0.8 7.1±0.1 3.0±0.8

Notes: Data were presented as mean ± SD (n=3). “/”means the data is indeterminable.

Abbreviations: DS (%), degree of substitution of VES to amino group of CSO or CS was calculated by elemental analysis; CS, chitosan; CSO, chitosan oligosaccharide; VES-

g-CSO, vitamin E succinate- grafted-chitosan oligosaccharide; VES-g-CS, vitamin E succinate-grafted-chitosan.

Table S2 Pharmacokinetic parameters of C-DMSA after a single dosage intravenous administration to rats

Pharmacokinetic parameters C-DMSA C-DMSA@VES-g-CSO/VES-g-CS MM

t1/2α (h) 0.12±0.01 0.74±0.12**

t1/2β (h) 1.91±0.20 15.23±1.20**

Vd (L/kg) 0.21±0.06 0.17±0.04

AUC0-24h (μg·h/L) 9.96±0.26 45.59±1.37***

CL (L/h/kg) 0.49±0.07 0.10±0.02**

Notes: All the rats were received the single dosage at an equivalent dose of C-DMSA (10 mg/kg). **p<0.01, ***p<0.001, compared to C-DMSA group. Data were presented

as mean±SD (n=3).

Abbreviations: t1/2α, a rapid distribution half-life; t1/2β, elimination half-life; AUC, the area under the concentration-time curve; Vd, the apparent volume of the central

chamber; CL, clearance; C-DMSA, 3-formyl-7-diethylamino coumarin masked meso-dimercaptosuccinic acid; C-DMSA@VES-g-CSO/VES-g-CS MM, C-DMSA loaded vitamin

E succinate-grafted-chitosan oligosaccharide/vitamin E succinate-grafted-chitosan mixed micelles.
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