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Abstract: Regeneration deficiency is one of the main obstacles limiting the effectiveness of 

tissue-engineered scaffolds. To develop scaffolds that are capable of accelerating regeneration, 

we created a heparin/chitosan nanoparticle-immobilized decellularized bovine jugular vein 

scaffold to increase the loading capacity and allow for controlled release of vascular endothelial 

growth factor (VEGF). The vascularization of the scaffold was evaluated in vitro and in vivo. 

The functional nanoparticles were prepared by physical self-assembly with a diameter of 

67–132 nm, positive charge, and a zeta potential of ∼30 mV and then the nanoparticles were 

successfully immobilized to the nanofibers of scaffolds by ethylcarbodiimide hydrochloride/

hydroxysulfosuccinimide modification. The scaffolds immobilized with heparin/chitosan 

nanoparticles exhibited highly effective localization and sustained release of VEGF for several 

weeks in vitro. This modified scaffold significantly stimulated endothelial cells’ proliferation 

in vitro. Importantly, utilization of heparin/chitosan nanoparticles to localize VEGF significantly 

increased fibroblast infiltration, extracellular matrix production, and accelerated vascularization 

in mouse subcutaneous implantation model in vivo. This study provided a novel and promising 

system for accelerated regeneration of tissue-engineering scaffolds.
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Introduction
Tissue-engineered scaffolds are the main substitute materials used to repair cardio-

vascular damage in cardiovascular diseases. However, poor integration of a tissue-

engineered scaffold into the recipient’s cardiovascular system and its incomplete 

regeneration, such as poor endothelialization and incomplete vascularization, limit 

the scaffold’s clinical effectiveness. Poor endothelialization could induce thromboge-

nicity and calcification,1 while incomplete vascularization could result in insufficient 

nutrient and oxygen supply to the scaffold.2 Conventional cardiac tissue engineer-

ing can provide oxygen diffusion only at a distance of about 150 µm due to poor 

vascularization.3,4 Therefore, complete regeneration would be a hallmark of a successful 

tissue-engineered scaffold.

We recently reported an in vivo application of decellularized scaffolds prepared 

from bovine jugular veins to reconstruct dog pulmonary and right ventricle with 

potential regeneration.5–8 This decellularized scaffold is rich in important extracellular 

matrix proteins. In combination with photo-oxidative cross-linkage, decellularized 

bovine jugular veins were able to retain tensile strength, resist thrombosis, and exhibit 
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potential for regeneration. However, the major problem is 

still the lack of cardiovascular integration and complete 

regeneration.

Regeneration of scaffolds requires formation of new blood 

vessels to supply both nutrients and oxygen. Angiogenic 

processes are regulated by various growth factors. Vascular 

endothelial growth factor (VEGF) is one of the most impor-

tant and widely studied growth factors, and has been shown to 

be useful for enhancing regeneration of scaffolds.6 However, 

excessive amounts of VEGF are required because of its short 

half-life (∼50 minutes). This is usually accomplished by the 

administration of high doses of VEGF, which can induce 

severe side effects, such as undesired vascularization at 

nontarget sites, tumor growth at locations away from the 

scaffold, hypotension, and edema.9,10 In contrast, sustained 

local concentration of growth factors is necessary for the 

development of mature blood vessels. Therefore, it is particu-

larly important to localize VEGF to the scaffold and control 

its release at the site of implantation.

A number of growth factors and other bioactive molecules 

possess conserved amino acid sequences which could be the 

heparin-binding sites.11,12 Based on the specificity of fac-

tors for heparin, several heparin-containing systems have 

been developed for controlled release of growth factors.13–16 

Among these the direct immobilization of heparin onto 

the scaffold surface, and subsequent attachment of growth 

factors, is currently the most popular strategy for local 

delivery of growth factors. For instance, VEGF can be 

covalently bound to activated collagen scaffolds by cross-

linking agents.16 After attachment to heparinized acelluar 

collagen, VEGF can increase endothelial cell proliferation,17 

upregulate microvasculature formation, and stimulate blood 

vessel maturation.18–20 Polymeric matrices have also been 

successfully used to deliver angiogenic proteins to scaf-

folds and sustained release was established. These include 

dextran hydrogels,21 alginate hydrogels,22 alginate beads,23 

hyaluronan hydrogels,24 and poly(DL-lactic-co-glycolic acid 

scaffolds.25 Recently, drug delivery of VEGF via heparin-

functionalized nanoparticles/fibrin complex revealed efficient 

revascularization.10 However, there are many drawbacks 

that still hamper the clinical application of these engineered 

scaffolds. These drawbacks include rapid release and clear-

ance of growth factors, the large dose of encapsulated pro-

teins that is required, reduced growth factor bioactivity by 

chemical modification, denaturation of the growth factor due 

to residual cross-linkers, and complications in the host caused 

by systemic administration of nanoparticles. Therefore, a 

larger loading-capacity, sustained biological activity and 

local delivery as well as controlled release of growth factors 

are the key factors for the effective application of decellular-

ized tissue-engineered scaffolds in a clinical setting.

Chitosan is a natural, biocompatible, and biodegradable 

cationic polysaccharide the applications of which in tissue 

engineering and drug delivery have been widely studied. 

The accumulated evidence demonstrated that chitosan 

could stimulate cell attachment and growth.26,27 Heparin 

is a negatively charged, linear polysaccharide present in 

many living organisms and a member of the glycosamino-

glycan superfamily.28 The physical adsorption of heparin 

could prevent early degradation of growth factors, thereby 

preserving their biological activity. With its capacity for 

antithromobogenicity, heparin is used for suppressing acute 

subthrombus.29–31 Thus, a chitosan and heparin nanoparticle 

provides a large loading capacity while stimulating regenera-

tion and preventing early degredation.28

In this study, our main objective is to develop a scaffold 

with large loading capacity, retention of biological activity, 

and a sustained local release of VEGF to enhance the vas-

cularization of decellularized bovine jugular vein scaffolds. 

The large loading capacity was established by the applica-

tion of nanoparticles to localize VEGF. To preserve the 

biological activity, functional heparin/chitosan nanoparticles 

were prepared via physical self-assembly without residual 

cross-linkers. Local delivery and controlled release of 

VEGF was established by ethylcarbodiimide hydrochloride/

hydroxysulfosuccinimide modification of heparin/chitosan 

nanoparticles and subsequent attachment to scaffolds. This 

system exhibited a significant enhancement of regeneration 

in bovine jugular vein scaffolds.

Materials and methods
Materials
1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydro-

chloride (EDC, Sigma-Aldrich, St. Louis, MO) and 

N-hydroxysulfosuccinimide (NHS, Pierce Chemicals, 

Dallas, TX) were used to chemically modify nano-

particles and subsequently attach them to scaffolds. 

2-(4-morpholino)ethanesulfonic acid hydrate (MES, Sigma-

Aldrich) was used as a buffer during EDC/NHS modification 

of nanoparticles and subsequent attachment to scaffolds. 

3-(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide 

(MTT, Sigma-Aldrich) was used for cell proliferation assay. 

Human recombinant VEGF-165 was purchased from Cell 

Signaling technology (Danvers, MA). Fluorescein diacetate 

(FDA) and Dulbecco’s Modified Eagle’s Medium (DMEM) 

were purchased from Invitrogen Inc. (Carlsbad, CA).
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Preparation of decellularized  
and photo oxidized scafffolds
The bovine jugular veins (BJV) of buffaloes (300 to 500 kg) 

were obtained from the local slaughterhouse. The scaffolds 

were prepared from BJV by multistep detergent-enzymatic 

decellularization and dye-mediated photo-oxidation proce-

dures (DP) as previously described.7 The DP scaffolds were 

the unmodified scaffolds for nanoparticle loading, modifica-

tion, and VEGF localization in this study.

Preparation of functional heparin/
chitosan nanoparticles
Low-molecular-weight chitosan was obtained by a depo-

lymerization method.32 Heparin/chitosan nanoparticles were 

prepared by physical self-assembly method. Briefly, an 

aqueous solution of chitosan (pH 5.0, 2 mL) was combined 

with aqueous heparin (5 mL) at various mass ratios and then 

magnetically stirred for 15 minutes at 30°C. The aggregates 

were removed by passing the solution through a 0.2 µm 

filter. Free heparin and chitosan were removed by washing 

the nanoparticles 3 times with distilled water and then the 

nanoparticles were collected by centrifugation at 14,000 rpm 

for 15 minutes in a bench-top centrifuge.

Particle size, distribution, and zeta potential of heparin/

chitosan nanoparticles were measured by laser diffraction 

Mastersizer (Malvern Instruments, UK). The morphology 

of nanoparticles was examined by environmental scanning 

electron microscope (SEM, JEOL, Tokyo, Japan). The 

loading efficiency and loading content of heparin in tested 

nanoparticles were determined by the amount of free hepa-

rin left in the supernatant using a colorimetric method and 

calculated as previously described.33

Loading efficiency = �(total amount of heparin added  
- free heparin)/total amount  
of heparin added × 100%.

Loading content = �(total amount of heparin added 
- free heparin)/weight of 
nanoparticles × 100%.

Immobilization of heparin/chitosan 
nanoparticles to scaffolds and then 
localizing VEGF-165
To prepare the immobilization buffer, EDC and NHS were 

dissolved in 2-(4-morpholino) ethanesulfonic acid hydrate 

(MES) buffer at a concentration of 6 mg/mL and 3.6 mg/mL, 

respectively. The MES buffer was prepared by dissolving MES 

in dH
2
O (1.06% [W/V], pH 5.5). Scaffolds (10 × 10 mm2 in area 

and 5 mm in thickness) were cut from the conduit of DP. The 

scaffolds (SF) were placed in 5 mg/mL of nanoparticle (NP) 

solution for 4 hours, and then washed with fresh phosphate 

buffer saline (PBS) for 5 × 5 minutes. The nanoparticle-treated 

scaffolds were then immersed in 1 mL of immobilization buf-

fer and continuously incubated for 4 hours at 37°C, followed 

by washing with PBS for 5 × 5 minutes to produce SF-NP 

(with EDC/NHS). The control scaffolds included: 1) unmodi-

fied scaffolds (SF-DP); 2) SF-NP incubated with PBS and 

without EDC/NHS (SF-NP no EDC/NHS).

To localize VEGF-165, scaffolds (SF-NP with EDC/

NHS, SF-NP without EDC/NHS treatments) were 

immersed in 1 mL of PBS containing 43, 113, or 237 ng/

mL of VEGF overnight at room temperature. After reac-

tion, the scaffolds were washed 5 times with fresh PBS, 

and then collected after removing free VEGF. The amount 

of VEGF remaining in the VEGF immersion solution and 

the PBS washing solution was determined by ELISA using 

the Quantikine human VEGF ELISA kit (RandD Systems). 

A standard curve ranging from 62.5 to 1000 pg/mL was 

determined by using the standard VEGF-165 protein 

provided with the ELISA kit. To quantify the physical 

adsorption of VEGF to scaffolds, 43, 113, or 237 ng/mL 

of VEGF were incubated with the SF-DP (SF-DP-VEGF) 

and free VEGF was measured.

Characteristics of SF-NP-VEGF
The scaffolds immobilized with nanoparticles and localized 

with VEGF (SF-NP-VEGF) were imaged by environmental 

scanning electron microscopy (SEM, Hitachi S-3400N, 

Japan). Surface roughness was determined by atomic force 

microscopy (AFM) (Nanoscope III, Digital Instruments, 

Santa Barbara, CA).

Quantification of VEGF release in vitro
The amount of VEGF released from SF-NP-VEGF treated with 

or without EDC/NHS (n = 3) was assessed using a commer-

cially available ELISA kit (RandD Systems). Briefly, scaffolds 

were immersed in 1 mL of release buffer (0.1% bovine serum 

albumin in PBS [pH 7.2]). The release buffer was replaced at 

designed time intervals from 0 to 30 days and frozen at −20°C 

until the analysis. Concentrations of VEGF determined from 

a standard curve ranged from 62.5 to 1000 pg/mL.

EA.hy926  cells, derived from human umbilical vein 

endothelial cells, were acquired originally from the American 

Type Culture Collection (ATCC, Cat#: CRL-2922) and 

cultured in DMEM medium containing 10% fetal bovine 

serum. The scaffolds (SF-NP) loaded with 50  ng/mL, or 
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250 ng/mL of VEGF, were incubated in a 24-well plate for 

60 minutes before seeding cells. The SF-DP was used as a 

control. A total of 5 × 104 cells in 10 µL medium was seeded 

onto each scaffold for 1 hour at 37°C, followed by addition 

of 1 mL of fresh culture medium. Cells were continually 

cultured for 1, 3, or 7 days.

Live imaging of cell morphology  
on scaffolds
To visualize cell morphology, scaffolds seeded with 

EA.hy926 cells were imaged under confocal laser scanning 

microscopy (Leica TCS-NT) after staining with FDA. The 

seeded scaffolds were rinsed in PBS containing FDA (5 mM) 

at 37°C for 10 minutes, and finally observed under confocal 

laser scanning microscopy.

MTT assay
To determine the viability of cultured endothelial cells, 

scaffolds (SF-DP, SF-NP, SF-NP treated with 50 ng/mL or 

250  ng/mL of VEGF) were prepared as described above. 

MTT was dissolved in PBS at 5 mg/mL. Twenty microliters 

of the MTT solution was added to each well, and the plates 

were incubated at 37°C for 4  hours. After removing the 

medium, 150 µL of DMSO was added to each well. After 

gently shaking for 10 minutes, the absorbance was read at a 

wavelength of 570 nm in a plate reader.

Angiogenesis and regeneration  
potential in mice
To evaluate regeneration of scaffolds, SF-DP or SF-NP-

VEGF was implanted into the subcutaneous pockets of 

8-week-old male BALB/c mice (Chinese Academy of 

Medical Sciences). All mice were given free access to food 

and water in accordance with an approved protocol from the 

South Central University. Mice were anesthetized by intrap-

eritoneal injection of chloral hydrate. The dorsal hair coat was 

clipped, disinfected with betadine and alcohol, and a 12-mm 

dorsal midline incision was made. One subcutaneous pocket 

on each side was prepared, and 1 scaffold was inserted into 

each pocket. The incision was then closed with interrupted 

prolene sutures. Each mouse received 2 implants of the same 

composition, and 6 mice were assigned to each group. Four 

and 8 weeks post surgery, the mice were sacrificed and tissue 

sections were prepared from the implants.

Histological characteristics
Formalin-fixed, paraffin-embedded sections were stained 

with hematoxylin and eosin (H&E) to evaluate cell infiltration 

and capillary density. The capillaries were counted under 

light microscopy. The density of capillary per mm2 was 

calculated by the total amount of capillaries in 10 random 

areas of 1 mm2/10. The endothelial cells were further identi-

fied by anti-CD31 antibody (Bioss Biological Technology 

Ltd., China). The primary myelofibrosis was detected by 

Herovici staining.34 Scott’s alcian blue method was used to 

detect glycosaminoglycans.35 Macrophages were detected 

by CD68 antibody (clone MAC 387, Lab Vision Corp.) as 

previously described.36 Fibroblasts were characterized by the 

presence of vimentin antigen and stained with polyclonal 

rabbit antibody (Bioss Biological Technology Ltd., China) 

by following the established protocol.37

Briefly, the postoperative scaffolds were fixed with 10% 

formalin overnight at 4°C. After they were washed with PBS, 

the scaffolds were embedded in paraffin and cut into 5-µm 

sections. After deparaffinization and rehydration, the scaffold 

sections underwent antigen retrieval with citric acid solu-

tion (Maixin Biological Technology Ltd, CA) in a pressure 

cooker for 3 minutes. The sections were then incubated with 

peroxidase inhibitor (3% H
2
O

2
) in the dark for 15 minutes, 

and nonspecific sites were blocked by 10% goat serum for 

30 minutes at room temperature. Sections were then incubated 

with primary antibody for 1 hour at room temperature. Slides 

were washed twice with PBS, and secondary antibody (Super 

Sensitive Detection System; Maixin) was then applied. After 

slides were washed with PBS again, they were developed 

with diaminobenzidine Chromogen (Maixin) for 15 minutes. 

Slides were washed with water, counterstained with Gill’s 

hematoxylin and placed in 0.5% ammonium hydroxide.

Statistical analysis
The experimental values are expressed as mean  ±  SEM. 

Comparisons between the two groups were performed with 

a 2-tailed t test for unpaired data. A P , 0.05 was considered 

to be statistically significant.

Results
Characteristics of heparin/chitosan 
nanoparticles
Table 1 shows the particle size, polydispersity (PDI), and zeta 

potential of nanoparticles which were prepared at various 

concentrations of chitosan and heparin with a ratio of 5:2 in 

mass (pH 4.5). Table 2 shows the particle size, PDI, and zeta 

potential of nanoparticles which were prepared at pH 4 to 6 

of chitosan (1 mg/mL) and heparin (2 mg/mL). The particle 

size of the nanoparticles varied from 67 to 132 nm and their 

zeta potential values were positive or negative.
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Pores 450 nm in diameter and fibers 1.2 µm diameter were 

also observed (Figure  1A and B). The SF-NP exhibited 

sheaths enclosed within a bundle of nanofibers (Figure 1C 

and D). Surface roughness was determined by AFM. As 

shown in Figure 1E and F, the SF-NP has a smoother sur-

face (RMS = 67.34 nm), while SF-DP had a rougher surface 

(RMS = 137.83 nm) (Figure 1E and F).

Scaffolds immobilized with nanoparticles 
loaded more VEGF
VEGF could be localized to nanoparticles abundantly and 

stably through physical adsorption and modification of 

scaffolds. As shown in Figure 2A, VEGF was loaded in a 

concentration-dependent manner. The SF-NPs with EDC/

NHS treatment exhibited significantly greater efficiency 

(P , 0.01) in loading VEGF compared with SF-NP without 

EDC/NHS treatment and SF-DP at graded concentrations of 

VEGF (Figure 2A). Interestingly, SF-DP loaded 43 ± 8 ng of 

VEGF, possibly because the chondroitin sulfate in extracel-

lular matrix was able to attach to VEGF.

Controlled release of VEGF
The release of VEGF from nanoparticles immobilized to 

scaffolds was analyzed over a period of 30 days (Figure 2B). 

VEGF was released with a high burst (62% to 70%) dur-

ing the first 3  days and 86% to 93% of the total VEGF 

was released at 7  days from SF-NP-VEGF without EDC 

modification (physical adsorption). In contrast, VEGF was 

released with a significantly reduced burst from SF-NP-

VEGF with EDC modification (physical adsorption plus EDC 

modification). The lower concentration group (50 ng/mL) 

released ∼37.12% at 30  days and the higher concentra-

tion group (250 ng/mL) released 42.17% at 30 days. In the 

EDC-modified SF-NP-VEGF, VEGF localized by massive 

nanoparticles still existed on the surface of scaffolds while 

some nanoparticles had swelled to a large diameter at 4 and 

10 weeks (Figure 2C and D).

Effect of nanoparticle-localized VEGF  
on endothelial cell proliferation in vitro
To test whether our SF-NP-VEGF could promote vascu-

larization in decellularized scaffolds, we performed MTT 

assay to measure the viability and proliferation of endothelial 

cells on scaffolds. As shown in Figure 3A, SF-NP-VEGF, 

loaded with 50 ng/mL or 250 ng/mL of VEGF induced clear 

increases in the proliferation of endothelial cells at day 3 

and day 7 compared with SF-DP. This result suggests that 

VEGF localized by nanoparticles promoted the endothelial 

Table 1 The effect of concentration on the characteristics of 
Heparin/Chitosan nanoparticles

Heparin  
conc 
(mg/mL)

Chitosan  
conc 
(mg/mL)

Particle  
size 
(nm)

Polydispersity Zeta  
potential 
(mv)

0.5 1 72.1 ± 7.3 0.117 ± 0.008   28.5 ± 1.2
1 2 87.6 ± 6.2 0.157 ± 0.011   29.2 ± 1.7
1.5 3 98.8 ± 8.7 0.192 ± 0.013   30.1 ± 1.5
3 1.5 83.6 ± 2.3 0.087 ± 0.005 -14.6 ± 3.9
2 1 79.2 ± 6.1 0.056 ± 0.003 -19.1 ± 2.1
1 0.5 70.1 ± 5.7 0.135 ± 0.068 -23.8 ± 5.1

Notes: heparin/chitosan = 2/5; n = 4.

Table 2 The effect of pH value on the characteristics of Heparin/
Chitosan nanoparticles

Heparin 
pH

Particle size 
(nm)

Polydispersity Zeta potential 
(mV)

4   68.3 ± 3.4 0.090 ± 0.018 26.1 ± 2.6
4.5   75.1 ± 3.1 0.135 ± 0.068 27.1 ± 1.1
5 103.0 ± 6.2 0.176 ± 0.074 29.1 ± 1.7
5.5 238.2 ± 12.3 0.290 ± 0.087 29.4 ± 0.8
6 876.6 ± 52.8 0.610 ± 0.110 29.2 ± 3.1

Notes: Heparin = 1 mg/mL; Chitosan = 2 mg/mL; n = 4.

The PDI measures the homogeneity with ranges from 

0 to 1. A higher PDI indicates a higher heterogeneity. In this 

study, nanoparticles were chosen with positive charge, about 

30 mV zeta potential, and a PDI of 0.086 ± 0.007.

We found that the loading efficiency of nanoparticles 

prepared by 2 mg/mL of chitosan with 1 mg/mL of heparin 

or 1 mg/mL of chitosan with 0.5 mg/mL of heparin with 

a 4:1  mass ratio (chitosan:heparin) was highest and no 

differences were observed between the two preparations 

(93.2% ± 1.43%, P . 0.05). However, the loading content 

of nanoparticles prepared at 2  mg/mL of chitosan with 

1 mg/mL of heparin (0.68 ± 0.17 mg/mg) was greater than 

that of nanoparticles prepared at 1 mg/mL of chitosan with 

0.5 mg/mL of heparin (0.43 ± 0.06 mg/mg). Therefore, the 

nanoparticles prepared with the former formulation were 

chosen for the subsequent studies.

Porous structure of scaffolds  
with immobilized nanoparticles  
and localized VEGF
The morphology of scaffolds was observed under environ-

mental SEM. The SF-DP exhibited nanofiber character-

istics, such as 3-dimensional structure, high porosity, and 

high surface-to-volume ratio. The microporous structure of 

SF-DP consisted of interconnected pores with an average 

diameter of 120 nm and an average wall thickness of 230 nm. 
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cell proliferation on the surface of scaffolds. To minimize 

the influence of affinity for different scaffolds, we performed 

MTT assay 8 hours after cell seeding and found no signifi-

cant differences between SF-NP-VEGF (50 or 250 ng/mL 

of VEGF) and SF-DP (data not shown).

We further observed the morphological changes of 

endothelial cells. As expected, SF-NP-VEGF exhibited more 

elongated endothelial cells on the surface of scaffolds at 

day 3 and day 7 of the incubation compared with unmodified 

scaffolds (SF-DP). Importantly, FDA staining showed signifi-

cantly more circular structures in endothelial cells in the SF-

NP-VEGF group compared with the SF-DP group (Figure 3B). 

These circular structures might suggest cell organization and 

vascularization, rather than cell aggregation alone.

Histological evidence of regeneration
Regeneration of scaffolds was further analyzed by subcuta-

neous implantation of EDC-modified SF-NP-VEGF scaf-

A B

C D

E F

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

0.5
1.0

1.5
2.0 µm

0.5

1.0

1.5

2.0 µm

0.5

1.0

1.5

2.0
2.0

1.2

1.2

1.4

1.4

1.6

1.6

1.8

73.2 nm

0.0 nm

1.8

µm

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8 µm

µm

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 µm

µm

150.0 nm

0.0 nm

µm

Figure 1 The morphology of scaffolds. A) Morphology of photo-oxidative cross-linked decellularized scaffolds (SF-DP) from bovine jugular vein (BJV), magnification × 10,000. 
B) Morphology of SF-DP, magnification  ×  30,000. C) Morphology of heparin/chitosan (HEP/CS) nanoparticle-immobilized scaffold (SF-NP), magnification  ×  10,000. 
D) Morphology of HEP/CS nanoparticle-immobilized scaffold (SF-NP), magnification × 30,000. E) Surface roughness of SF-DP determined by atomic force microscopy (AFM). 
F) Surface roughness of SF-NP determined by AFM.
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folds in mice. Encouragingly, new vessels were easily seen 

in SF-NP-VEGF scaffolds at 4 weeks and 8 weeks after 

implantation while fewer new vessels were seen in SF-DP 

scaffolds (Figure 4). H&E staining also showed new capillaries 

in repopulated layers and tissues surrounding the implanted 

SF-NP-VEGF scaffolds, whereas almost no noticeable capil-

laries were observed in SF-DP scaffolds at 4 weeks. Eight 

weeks after implantation, SF-NP-VEGF scaffolds showed 

significantly more new capillaries than SF-DP (Figure 5A). 

The difference in capillary density (the number of capillaries 

per mm2) between SF-NP-VEGF (132 ± 26 for 250 ng/mL 

VEGF, 118 ± 19 for 50 ng/mL VEGF) and SF-DP (39 ± 8) 

was statistically significant (P , 0.001, n = 8) (Figure 5B). The 

significant vascularization in the SF-NP-VEGF implantation 

was further verified by CD31staining (Figure 6). Thus, the 

angiogenic bioactivity of nanoparticle-localized VEGF was 

evident in vivo.

The migration of host cells into the scaffolds was analyzed 

by the infiltration of host cells into scaffolds. In the SF-NP-

VEGF (250 ng/mL) implant, host cells were homogenously 

distributed into one-fourth of the outer surface of scaffolds 

at 4 weeks and three-fourths at 8 weeks (Figure  5). This 

suggests that the migration process began at the adventitia 

and proceeded continuously towards the luminal surface. In 

the SF-DP implant, distribution of host cells was observed 

at only one-tenth of the outer surface of scaffolds at 4 weeks 

and one-fourth at 8 weeks.

Generally, surface collagen cross-linkage could 

reduce immunological response, but it also blocks cellular 

infiltration. We further verified that the main infiltrated cells 
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were fibroblasts (the vimentin positive cells) (Figure 7) and 

only a few macrophages (Figure 8) were seen at 8 weeks 

post implantation.

Figure  9  shows staining for extracellular matrix com-

ponents of scaffolds at 4 and 8 weeks post implantation. 

Herovici staining showed the red mature collagen fibrils 

in all layers, but SF-NP-VEGF showed more new collagen 

fibrils (blue) (Figure 9B and C). Scott’s alcian blue staining 

showed that glycosaminoglycans were present in all layers of 

the wall (Figure 10). In the SF-NP-VEGF implant, blue newly 
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to the decellularized BJV scaffolds. The nanoparticle-

immobilized scaffolds exhibited a high loading capacity and 

controlled release for VEGF which enhanced vascularization 

of the scaffold in vitro and in vivo.

In this study we prepared heparin/chitosan nanopar-

ticles by self-assembly. Interestingly, their zeta potential 

values were either positive or negative. The positive or 

negative charges might be determined by the relative ratios 

of the surface molecules (chitosan or heparin), which-

ever is more dominant (Table 1). Most heparin/chitosan 

nanoparticles exhibited positive charges because they 

were covered with more chitosan than heparin. However, 

we hypothesized that nanoparticles with higher ratios of 

heparin to chitosan on the surface will exhibit a nega-

SF-DP, 8-week

SF-DP, 4-week SF-NP-VEGF, 4-week

SF-NP-VEGF, 8-week

Figure 4 New vessel formation in SF-NP-VEGF implants. More new vessels were 
clearly seen in SF-NP-VEGF scaffolds at 4 weeks and 8 weeks after implantation.
Abbreviations: DP, decellularized scaffolds; NP, nanoparticle; SF, scaffolds; VEGF, 
vascular endothelial growth factor
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Figure 5 H&E staining of implant sections and capillary density. A) H&E staining 
showed new capillaries in repopulated layer and tissues surrounding the implants at 
4 and 8 weeks, original magnification × 200. B) The capillary density calculated as 
the number of capillaries per mm2. 
Notes: N = 8; P , 0.001.
Abbreviations: H&E, hematoxylin and eosin; DP, decellularized scaffolds; NP, 
nanoparticle; SF, scaffolds; VEGF, vascular endothelial growth factor

synthesized collagen fibrils were produced by fibroblasts 

and covered one-sixth of regions near the outer layer at 4 

weeks. The glycosaminoglycans were present in the outer 

layer regions in accordance with newly synthesized collagen 

fibrils, as well as the areas of the host cell repopulation. At 

8 weeks, the newly synthesized collagen fibrils (Figure 9) 

and glycosaminoglycans (Figure  10) were distributed on 

half of the walls of the scaffold. In the SF-DP group, newly 

synthesized collagen fibrils and glycosaminoglycans covered 

less than one-fourth of the surface area. This suggests that 

SF-NP-VEGF could accelerate cell infiltration and tissue 

remolding.

Discussion
Optimal tissue-engineered cardiovascular structures should 

be fully biocompatibile and capable of complete regeneration. 

In our previous study, decellularized BJV scaffolds were used 

to reconstruct sections of pulmonary arteries and right ven-

tricles in a dog. This invention provided a preliminary view 

that the acellular BJV scaffolds could resist thrombosis and 

calcification with good regeneration potential and excellent 

hemodynamic performance.5–8 In spite of the progress with 

this scaffold, there are still some issues, such as the delayed 

regeneration and insufficient revascularization, which still 

needed to be resolved. In this study we created a heparin/

chitosan nanoparticle, which can be effectively immobilized 
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SF-DP, 4-week SF-NP-VEGF, 4-week

SF-DP, 8-week SF-NP-VEGF, 8-week

Figure 6 CD31staining of implant sections. The endothelial cells were stained by 
anti-CD31 antibody, original magnification × 200. 
Note: The arrows indicate the positive staining.
Abbreviations: CD31, cluster of differentiation molecule 31; DP, decellularized 
scaffolds; NP, nanoparticle; SF, scaffolds; VEGF, vascular endothelial growth factor

SF-DP, 8-week SF-NP-VEGF, 8-week

SF-DP, 4-week SF-NP-VEGF, 4-week

Figure 7 Immunohistochemical staining of fibroblasts. The fibroblasts were stained 
by anti-vimentin antibody, original magnification × 200. The red stained cells are the 
fibroblasts. 
Note: The arrows indicate positive staining.
Abbreviations: DP, decellularized scaffolds; NP, nanoparticle; SF, scaffolds; VEGF, 
vascular endothelial growth factor

SF-DP, 8-week SF-NP-VEGF, 8-week

SF-DP, 4-week SF-NP-VEGF, 4-week

Figure 8 Immunohistochemical staining of macrophages. The macrophages were 
stained by anti-CD68 antibody, original magnification × 100. 
Note: The arrows indicated red staining cells are macrophages.
Abbreviations: CD68, cluster of differentiation molecule 68; DP, decellularized 
scaffolds; NP, nanoparticle; SF, scaffolds; VEGF, vascular endothelial growth factor

SF-DP, 8-week

SF-DP, 4-week SF-NP-VEGF, 4-week

SF-NP-VEGF, 8-week

Figure 9 Herovici staining of collagen fibrils. Staining showed extracellular matrix 
components of scaffolds at 4 and 8 weeks implantation, original magnification × 200.
Notes: Red indicates the mature collagen fibrils and blue indicates new collagen 
fibrils. The arrows indicate positive staining of new collagen fibrils. 
Abbreviations: DP, decellularized scaffolds; NP, nanoparticle; SF, scaffolds; VEGF, 
vascular endothelial growth factor

in immobilizing to the surface of scaffolds and localizing 

VEGF. This might be because the main components of 

the decellularized tissue-engineered scaffolds are collagen 

fibers, which are negatively charged under physiological 

conditions. Thus, nanoparticles with positive charges can 

effectively bind to the scaffolds. We also found that the 

tive charge and could bind more VEGF. Unexpectedly, 

the primary experiment revealed that nanoparticles with 

negative charges were unevenly distributed throughout 

the surface of the scaffolds. In contrast, nanoparticles 

with positive charge and a zeta potential of ∼30 mV and 

a relatively uniform size ,0.10 (PDI) were more efficient 
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bind heparin with the greatest affinity. However, VEGF-169 

and VEGF-206 can diffuse into the extracellular matrix and 

affect the cellular uptake due to their excessive affinity. In 

contrast, VEGF-165 is a better candidate for the study of 

controlled local release because of relatively lower affinity 

and effective revascularization. Importantly, after the hepa-

rin/chitosan nanoparticles were immobilized to the natural 

nanofiber of scaffolds, they were able to load significantly 

more VEGF-169 (Figure 2a). We hypothesized that during 

the cross-linking procedure, electrovalent bonds turned into 

covalent bonds, which not only produces zero-length amide 

cross-linkages between the amido groups of nanoparticles 

and carboxyl groups of scaffolds, but also mediated the reac-

tion between carboxyl groups of nanoparticles and amido 

groups of VEGF. This structure might confer to heparin/

chitosan nanoparticles the capability to load more VEGF.

Currently, local delivery of angiogenic growth factors 

is the primary strategy used to promote vascularization 

within scaffolds. The established approaches include the 

encapsulation of growth factors in scaffolds and immo-

bilization of growth factors to the surface of scaffolds by 

direct chemical cross-link.16 These strategies could main-

tain a steady supplement of growth factors locally due to 

a delayed release from the decellularized scaffolds, which 

effectively induces angiogenesis within the engineered 

tissues. However, the drawbacks of the denaturation of 

growth factors due to residual cross-linkers, and compli-

cations in the host caused by systemic administration of 

nanoparticles, still hampered the clinical application of 

these engineered scaffolds. A significant advantage of our 

delivery system is that the nanoparticles and EDC modi-

fication mediated local delivery and controlled release of 

VEGF. In addition, with EDC modification, the initial burst 

of VEGF released was significantly reduced, which not 

only extended VEGF clearance time, but also reduced the 

toxicity of VEGF due to rapid release. The release pattern 

observed in this study suggests that 3 possible populations 

of VEGF-molecules might exist. The first population is the 

VEGF that was adsorbed to scaffolds and glycosaminogly-

cans, a component of extracellular matrix. This includes a 

nonspecific adsorption through electrostatic adherence and 

hydrophobic effects depending on the extracellular matrix 

in scaffolds. Although the physical adsorption of growth 

factors on the surface of scaffolds could also be achieved 

by heparin and fibronectin modification on the collagen 

scaffold and could effectively promote cell proliferation 

in vitro, it is less efficient in vivo.40 The second population 

might be the major population. In this population, VEGF 

was sequence-specifically bound to heparin. The third 

SF-DP, 8-week SF-NP-VEGF, 8-week

SF-DP, 4-week SF-NP-VEGF, 4-week

Figure 10 Glycosaminoglycans (GAG) staining. Scott’s alcian blue staining showed that 
GAGs were present in all layers of the wall, original magnification × 100. More blue 
staining (new collagen fibrils) was observed in SF-NP-VEGF implant at 4 and 8 week.
Note: The arrows indicate positive staining of new collagen fibrils.
Abbreviations: DP, decellularized scaffolds; NP, nanoparticle; SF, scaffolds; VEGF, 
vascular endothelial growth factor

loading efficiency of nanoparticles exhibited no signifi-

cant difference between different preparations, possibly 

because the amount of chitosan used (positive charge) 

significantly exceeded the amount of heparin (negative 

charge). Therefore, almost all of heparin molecules were 

cross-linked with chitosan into the complexes and yielded 

a high loading efficiency. The optimal size of nanoparticles 

designed for drug delivery is approximately 50 to 150 nm, 

which confers a high surface area-to-volume ratio. In this 

study, the particle size of the heparin/chitosan nanopar-

ticles varied from 67 to 132 nm, suggesting an ideal size 

for drug delivery.

The heparin/chitosan nanoparticles were immobilized 

to the natural nanofiber of scaffolds through chemical 

modification. The microporous structure of scaffolds con-

sisted of interconnected pores with an average diameter of 

120 nm (Figure 1). Therefore, nanoparticles (67 to 132 nm 

in size) could not only cover the surface of scaffolds, but 

also penetrate deep into the matrix through interspaces. This 

is why a smoother surface was observed in nanoparticle-

bound scaffolds (SF-NP) (Figure  1). Previous studies 

demonstrated that EDC can reinforce the nanoparticle’s 

structure.38,39 Therefore, chemical modification might also 

make the scaffold smooth and tight, which should be suit-

able for the endothelial cell attachment and proliferation. 

Among the big family of vascular endothelial growth fac-

tors, isoforms 165, 169, and 206 (VEGF-165, -169, -206) 
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population is the VEGF covalently bonded to heparin by 

EDC modification. We proposed that EDC modification 

contributed to the controlled release of VEGF. In contrast, 

without EDC modification, most VEGF was immobilized 

to SF-NP via electrovalent bond to chondroitin sulfate, the 

main constituents of glycosaminoglycans.

The recruitment of functional cells such as endothe-

lial and fibroblast cells plays a vital role in regeneration, 

while the extracellular matrix could sustain the growth and 

reproduction of the cells. Our in vitro study demonstrated 

that nanoparticle-localized VEGF led to endothelial cell 

proliferation in the scaffolds (Figure 3). Our in vivo study 

clearly demonstrated that massive new capillary formation 

(Figures 4, 5, and 6) was observed in the implanted scaffolds 

immobilized with nanoparticle-localized VEGF. However, a 

significant problem with VEGF alone is that it induces the 

formation of atypical blood vessels. These large, leaky ves-

sels are not fully functional. Therefore, the addition of other 

stabilizing factors is necessary to induce the formation of 

more functional vessels. Importantly, implantation of scaf-

folds with nanoparticle-localized VEGF not only enhanced 

large vessel growth (Figure 4), but most of the vessels are 

small capillaries (Figures 5 and 6). The significant role of SF-

NP-VEGF might be associated with either the localization 

of VEGF to the scaffold or the biological activity of heparin, 

because VEGF usually has diffusion limitations and fails 

to be actively taken up by cells residing on the peripheral 

surfaces of the scaffold. In addition, heparin could prevent 

early degradation of growth factors, while chitosan could 

stimulate cell attachment and growth.26,28 Moreover, heparin 

is an effective anticoagulant used during vascular injury.41

We also observed massive cellular infiltration in the SF-

NP-VEGF implants (Figure 5). The infiltrating cells were 

further verified to be mainly fibroblasts (Figure 7). This fibro-

blast infiltration was accompanied by significant synthesis 

of new collagen fibers (Figure 9) and glycosaminoglycans 

(Figure 10). Fibroblasts may synthesize collagen and other 

extracellular matrix proteins for further tissue remolding. 

This provided solid evidence for regeneration. Another sig-

nificant advantage is that our system is highly biocompatible 

and biodegradable. For instance, the acellular scaffolds could 

provide plenty of highly homologous extracellular matrices to 

humans. Chitosan is a natural biocompatible and biodegrad-

able cationic polysaccharide.26 Heparin is a natural, linear 

polysaccharide present in many living organisms.28 With 

physical self-assembly, the chitosan/heparin nanoparticles 

retained biological activities. Also, the whole system is 

composed of biomaterials without any artificial or synthetic 

materials. The highly biocompatible characteristic of the 

nanoparticles was shown by the limited macrophage repopu-

lation observed in the early implantation stage (Figure 8). 

Macrophages are important contributors to biological scaf-

fold degradation and early remodeling events.

Most current strategies for revascularization of scaffolds 

utilize growth factors to attract and localize vascular endothelial 

cells, such as the strategy described in this study. Most recently, 

a study with endothelial progenitor cells (EPC) demonstrated 

that EPC cultured in contact with heparinized matrices loaded 

with VEGF revealed the highest rate of cell proliferation.42 

Implantation of scaffolds seeded with VEGF-expressing stem 

cells led to a 2- to 4-fold increase in vessel density 8 weeks 

after implantation.43 Attracting and localizing EPC could be 

a novel strategy for endothelialization because EPCs are the 

type of predifferentiated stem cells that have the potential to 

proliferate and differentiate into mature endothelial cells. Also, 

EPCs exhibited an excellent ability to enhance the function 

of ischemic organs by stimulating the re-endothelialization 

of injured blood vessels and by inducing and modulating vas-

culogenesis and angiogenesis in areas with reduced oxygen 

supply.44,45 However, peripheral blood of healthy adults contains 

very low concentrations of EPCs. With our decellularized 

tissue-engineered scaffolds immobilized with nanoparticles 

localizing high loading of VEGF, EPCs might be effectively 

attracted and then endothelialized in vivo.

Conclusions
Besides the major finding that a controlled release of VEGF 

can enhance regeneration of decellularized BJV scaffolds, 

this system provided excellent biocompatibility. The func-

tional heparin/chitosan nanoparticles exhibit high loading 

capacities, while EDC modification can mediate a controlled 

release of VEGF locally. Our results support heparin/

chitosan nanoparticle as a functional drug delivery agent 

to localize VEGF onto scaffolds and keep its bioactivity 

stable for weeks. With accelerated regeneration and excel-

lent biocompatibility, our system exhibited good therapeutic 

potential. Further studies with a longer follow-up period, a 

combination of multiple growth factors, and reconstruction of 

connections between pulmonary arteries and right ventricles 

of large animals should be conducted before this system can 

be applied in the clinic.

Acknowledgment
This project is financially supported by National “863” 

Program (2007 AA071900) and National Natural Science 

Foundation of China (81071275).

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2011:6 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

941

Nanoparticle-delivered VEGF enhances regeneration of scaffolds

Disclosure
The authors declare no conflicts of interest.

References
	 1.	 Gui L, Muto A, Chan SA, Breuer CK, Niklason LE. Development of 

decellularized human umbilical arteries as small-diameter vascular 
grafts. Tissue Eng Part A. 2009;15(9):2665–2676.

	 2.	 Kaushal S, Amiel GE, Guleserian KJ, et al. Functional small-diameter 
neovessels created using endothelial progenitor cells expanded ex vivo. 
Nat Med. 2001;7(9):1035–1040.

	 3.	 Morritt AN, Bortolotto SK, Dilley RJ, et al. Cardiac tissue engineering in 
an in vivo vascularized chamber. Circulation. 2007;115(3):353–360.

	 4.	 Shen YH, Shoichet MS, Radisic M. Vascular endothelial growth factor 
immobilized in collagen scaffold promotes penetration and proliferation 
of endothelial cells. Acta Biomater. 2008;4(3):477–489.

	 5.	 Lu WD, Yu FL, Wu ZS. Superior vena cava reconstruction using bovine 
jugular vein conduit. Eur J Cardiothorac Surg. 2007;32(5):816–817.

	 6.	 Lu WD, Zhang M, Wu ZS, Hu TH. Decellularized and photooxida-
tively crosslinked bovine jugular veins as potential tissue engineering 
scaffolds. Interact Cardiovasc Thorac Surg. 2009:8:301–305.

	 7.	 Lu WD, Zhang M, Wu ZS, et al. The performance of photooxidatively 
crosslinked acellular bovine jugular vein conduits in the reconstruc-
tion of connections between pulmonary arteries and right ventricles. 
Biomaterials. 2010;31(10):2934–2943.

	 8.	 Park CJ, Clark SG, Lichtensteiger CA, Jamison RD, Johnson AJ. Accel-
erated wound closure of pressure ulcers in aged mice by chitosan scaf-
folds with and without bFGF. Acta Biomater. 2009;5(6):1926–1936.

	 9.	 Huang M, Vitharana SN, Peek LJ, Coop T, Berkland C. Polyelectrolyte 
complexes stabilize and controllably release vascular endothelial growth 
factor. Biomacromolecules. 2007;8(5):1607–1614.

	10.	 Chung YI, Kim SK, Lee YK, et al. Efficient revascularization by VEGF 
administration via heparin-functionalized nanoparticle-fibrin complex. 
J Control Release. 2010;143(3):282–289.

	11.	 Joung YK, Bae JW, Park KD. Controlled release of heparin-binding 
growth factors using heparin-containing particulate systems for tissue 
regeneration. Expert Opin Drug Deliv. 2008;5(11):1173–1184.

	12.	 Ferrara N, Houck KA, Jakeman LB, Winer J, Leung DW. The vascular 
endothelial growth factor family of polypeptides. J Cell Biochem. 
1991;47(3):211–218.

	13.	 Steffens GC, Yao C, Prével P, et al. Modulation of angiogenic potential of 
collagen matrices by covalent incorporation of heparin and loading with vas-
cular endothelial growth factor. Tissue Eng. 2004;10(9–10):1502–1509.

	14.	 Yao C, Roderfeld M, Rath T, Roeb E, Bernhagen J, Steffens G. The impact 
of proteinase-induced matrix degradation on the release of VEGF from 
heparinized collagen matrices. Biomaterials. 2006;27(8):1608–1616.

	15.	 Yao C, Markowicz M, Pallua N, Noah EM, Steffens G. The effect 
of cross-linking of collagen matrices on their angiogenic capability. 
Biomaterials. 2008;29(1):66–74.

	16.	 Chiu LL, Radisic M. Scaffolds with covalently immobilized VEGF and 
Angiopoietin-1 for vascularization of engineered tissues. Biomaterials. 
2010;31(2):226–241.

	17.	 Rocha FG, Sundback CA, Krebs NJ, et  al. The effect of sustained 
delivery of vascular endothelial growth factor on angiogenesis in 
tissue-engineered intestine. Biomaterials. 2008;29(19):2884–2890.

	18.	 Nillesen ST, Geutjes PJ, Wismans R, Schalkwijk J, Daamen WF, van 
Kuppevelt TH. Increased angiogenesis and blood vessel maturation in 
acellular collagen-heparin scaffolds containing both FGF2 and VEGF. 
Biomaterials. 2007;28(6):1123–1131.

	19.	 Wissink MJ, Beernink R, Pieper JS, et al. Immobilization of heparin 
to EDC/NHS-crosslinked collagen. Characterization and in vitro 
evaluation. Biomaterials. 2001;22(2):151–163.

	20.	 Wissink MJ, Beernink R, Scharenborg NM, et al. Endothelial cell seed-
ing of (heparinized) collagen matrices: effects of bFGF pre-loading 
on proliferation (after low density seeding) and pro-coagulant factors. 
J Control Release. 2000;67(2):141–155.

	21.	 Hiemstra C, Zhong Z, van Steenbergen MJ, Hennink WE, Feijen J. Release 
of model proteins and basic fibroblast growth factor from in situ forming 
degradable dextran hydrogels. J Control Release. 2007;122(1):71–78.

	22.	 Jay SM, Saltzman WM. Controlled delivery of VEGF via modulation 
of alginate microparticle ionic crosslinking. J Control Release. 2009; 
134(1):26–34.

	23.	 Pieper JS, Hafmans T, Veerkamp JH, van Kuppevelt TH. Development of 
tailor-made collagen-glycosaminoglycan matrices: EDC/NHS crosslink-
ing, and ultrastructural aspects. Biomaterials. 2000;21(6):581–593.

	24.	 Cai S, Liu Y, Zheng Shu X, Prestwich GD. Injectable glycosaminogly-
can hydrogels for controlled release of human basic fibroblast growth 
factor. Biomaterials. 2005;26(30):6054–6067.

	25.	 Zhong Y, Zhang L, Ding AG, et al. Rescue of SCID murine ischemic 
hindlimbs with pH-modified rhbFGF/poly(DL-lactic-co-glycolic acid) 
implants. J Control Release. 2007;122(3):331–337.

	26.	 Kujawa P, Schmauch G, Viitala T, Badia A, Winnik FM. Construction 
of viscoelastic biocompatible films via the layer-by-layer assem-
bly of hyaluronan and phosphorylcholine-modif ied chitosan. 
Biomacromolecules. 2007;8(10):3169–3176.

	27.	 Zhu Y, Gao C, Liu X, He T, Shen J. Immobilization of biomacromol-
ecules onto aminolyzed poly(L-lactic acid) toward acceleration of 
endothelium regeneration. Tissue Eng. 2004;10(1–2):53–61.

	28.	 Liu Z, Jiao Y, Liu F, Zhang Z. Heparin/chitosan nanoparticle carriers 
prepared by polyelectrolyte complexation. J Biomed Mater Res A. 
2007;83(3):806–812.

	29.	 Sallustio F, Di Legge S, Marziali S, Ippoliti A, Stanzione P. Floating 
carotid thrombus treated by intravenous heparin and endarterectomy. 
J Vasc Surg. 2011;53(2):489–491.

	30.	 Maegdefessel L, Linde T, Krapiec F, et  al. In vitro comparison of 
dabigatran, unfractionated heparin, and low-molecular-weight heparin 
in preventing thrombus formation on mechanical heart valves. Thromb 
Res. 2010;126(3):e196–e200.

	31.	 Schlitt A, Rupprecht HJ, Reindl I, et  al. In-vitro comparison of 
fondaparinux, unfractionated heparin, and enoxaparin in prevent-
ing cardiac catheter-associated thrombus. Coron Artery Dis. 2008; 
19(4):279–284.

	32.	 Mao S, Shuai X, Unger F, Simon M, Bi D, Kissel T. The depolymeriza-
tion of chitosan: effects on physicochemical and biological properties. 
Int J Pharm. 2004;281(1–2):45–54.

	33.	 Meng S, Liu Z, Shen L, et al. The effect of a layer-by-layer chitosan-
heparin coating on the endothelialization and coagulation properties of 
a coronary stent system. Biomaterials. 2009;30(12):2276–2283.

	34.	 Rawlins JM, Lam WL, Karoo RO, Naylor IL, Sharpe DT. Quantifying 
collagen type in mature burn scars: a novel approach using histology 
and digital image analysis. J Burn Care Res. 2006;27(1):60–65.

	35.	 Scott JE. Amplification of staining by Alcian Blue and similar ingrain 
dyes. J Histochem Cytochem. 1972;20(9):750–752.

	36.	 Knoess M, Krukemeyer MG, Kriegsmann J, Thabe H, Otto M, Krenn V. 
Colocalization of C4d deposits/CD68+ macrophages in rheumatoid 
nodule and granuloma annulare: immunohistochemical evidence of 
a complement-mediated mechanism in fibrinoid necrosis. Pathol Res 
Pract. 2008;204(6):373–378.

	37.	 Kopecky M, Semecky V, Nachtigal P. Vimentin expression during altered 
spermatogenesis in rats. Acta Histochem. 2005;107(4):279–289.

	38.	 Hu Y, Jiang X, Ding Y, Ge H, Yuan Y, Yang C. Synthesis and charac-
terization of chitosan-poly(acrylic acid) nanoparticles. Biomaterials. 
2002;23(15):3193–3201.

	39.	 Chen MC, Wong HS, Lin KJ, et al. The characteristics, biodistribution 
and bioavailability of a chitosan-based nanoparticulate system for the 
oral delivery of heparin. Biomaterials. 2009;30(34):6629–6637.

	40.	 Visser LC, Arnoczky SP, Caballero O, Kern A, Ratcliffe A, Gardner KL. 
Growth factor-rich plasma increases tendon cell proliferation and matrix 
synthesis on a synthetic scaffold: an in vitro study. Tissue Eng Part A. 
2010;16(3):1021–1029.

	41.	 Yang XB, Bhatnagar RS, Li S, Oreffo RO. Biomimetic collagen scaf-
folds for human bone cell growth and differentiation. Tissue Eng. 
2004;10(7–8):1148–1159.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine

Publish your work in this journal

Submit your manuscript here: http://www.dovepress.com/international-journal-of-nanomedicine-journal

The International Journal of Nanomedicine is an international, peer-
reviewed journal focusing on the application of nanotechnology 
in diagnostics, therapeutics, and drug delivery systems throughout 
the biomedical field. This journal is indexed on PubMed Central, 
MedLine, CAS, SciSearch®, Current Contents®/Clinical Medicine, 

Journal Citation Reports/Science Edition, EMBase, Scopus and the 
Elsevier Bibliographic databases. The manuscript management system 
is completely online and includes a very quick and fair peer-review 
system, which is all easy to use. Visit http://www.dovepress.com/ 
testimonials.php to read real quotes from published authors.

International Journal of Nanomedicine 2011:6submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

Dovepress

942

Tan et al

	42.	 Grieb G, Groger A, Piatkowski A, Markowicz M, Steffens GC, Pallua N. 
Tissue substitutes with improved angiogenic capabilities: an in vitro 
investigation with endothelial cells and endothelial progenitor cells. 
Cells Tissues Organs. 2010;191(2):96–104.

	43.	 Yang F, Cho SW, Son SM, et al. Genetic engineering of human stem cells 
for enhanced angiogenesis using biodegradable polymeric nanoparticles. 
Proc Natl Acad Sci U S A. 2010;107(8):3317–3322.

	44.	 Hung HS, Shyu WC, Tsai CH, Hsu SH, Lin SZ. Transplantation of 
endothelial progenitor cells as therapeutics for cardiovascular diseases. 
Cell Transplant. 2009;18(9):1003–1012.

	45.	 Kirton JP, Xu Q. Endothelial precursors in vascular repair. Microvasc 
Res. 2010;79(3):193–199.

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com/international-journal-of-nanomedicine-journal
http://www.dovepress.com/testimonials.php
http://www.dovepress.com/testimonials.php
www.dovepress.com
www.dovepress.com
www.dovepress.com
www.dovepress.com

	Publication Info 2: 
	Nimber of times reviewed: 


