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Abstract: During the last years, liposomes (microparticulate phospholipid vesicles) have been 

used with growing success as pharmaceutical carriers for antineoplastic drugs. Fields of appli-

cation include lipid-based formulations to enhance the solubility of poorly soluble antitumor 

drugs, the use of pegylated liposomes for passive targeting of solid tumors as well as vector-

conjugated liposomal carriers for active targeting of tumor tissue. Such formulation and drug 

targeting strategies enhance the effectiveness of anticancer chemotherapy and reduce at the 

same time the risk of toxic side-effects. The present article reviews the principles of different 

liposomal technologies and discusses current trends in this fi eld of research.
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Passive targeting of solid tumors using liposomal 
carriers
Conventional liposomes
For highly lipophilic drugs, such as many antineoplastic agents, specifi c formulation 

strategies are needed to allow for oral or parenteral administration. Liposomes have 

been used traditionally as a formulation strategy to assist in formulation of poorly-

soluble therapeutic agents. They can be defi ned as particulate drug carriers, which are 

formed spontaneously by dispersion of phospholipids in aqueous media. The resulting 

closed membrane structures can accommodate amphiphilic or lipophilic drugs incor-

porated into or associated with the lipid bilayer, as opposed to direct encapsulation or 

active entrapment of hydrophilic compounds within the aqueous inner compartment 

of the vesicles. Stability of the membrane bilayer as well as retention of incorporated 

drugs depends thereby on lipid composition and cholesterol content of the liposomal 

membranes. Liposomes with a defi ned and uniform size can be produced by different 

methods such as sonication or extrusion through polycarbonate fi lter membranes. Their 

minimal size of 25–100 nm is determined by the maximum possible packing of head-

groups in the inner leafl et of the membrane bilayer as the curvature of the membrane 

increases with decreasing radius. Potential advantages of liposomal formulations are 

twofold: First, concentrations of lipophilic drugs in aqueous media can be increased 

considerably using liposomal formulations. Second, liposomal carriers have a protective 

effect on incorporated drugs by preventing their enzymatic degradation (Krishna and 

Mayer 1999). The antifungal antibiotic amphotericin B is one of the fi rst examples of 

a marketed drug, which made use of this formulation principle for intravenous infu-

sion (Gulati et al 1998). The stability and shelf-life of such drug formulations can be 

extended from several months to years by lyophilization (Stevens and Lee 2003).

Liposomal carriers have a strong impact on pharmacokinetics and tissue distribu-

tion of incorporated drugs. This may lead to enhanced effi cacy as well as reduced 
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toxic side-effects of antitumor drugs. Clinical trials have 

demonstrated a reduced risk of cardiotoxicity of liposomal 

doxorubicin as compared to the free drug while preserving 

antitumor activity (Ewer et al 2004). A major draw-back of 

conventional liposomes is their rapid uptake and accumu-

lation by phagocytic cells of the mononuclear phagocyte 

system (reticuloendothelial system or RES) after systemic 

administration (Frank 1993). The major organs of accumula-

tion are the liver and the spleen due to their rich blood supply 

and the abundance of tissue-resident phagocytic cells. Such 

an unwanted macrophage targeting during chemotherapy 

may be problematic since it may lead to partial depletion 

of macrophages and interfere with important host-defense 

functions of this cell type (Daemen et al 1995). On the other 

hand, passive targeting of organs such as spleen and liver 

may offer as well some advantages with respect to tumor 

chemotherapy: First, the marked increase in tissue retention 

and accumulation of liposomal drugs may lead in the case of 

lipophilic anticancer drugs to retarded removal of the drugs 

from the circulation (Juliano and Stamp 1978). In these stud-

ies, two- to tenfold higher plasma exposures of the antitumor 

agents vinblastine, actinomycin, cytosine arabinoside and 

daunomycin were observed in rats 3 hours after intravenous 

administration as compared to control rats treated with con-

ventional formulations of these drugs. Second, cytokines 

and other immunomodulators have been incorporated in 

liposomes and were used to activate macrophages and to 

render them tumorcidal (Daemen 1992). The application 

of such liposome-encapsulated macrophage activators for 

the treatment of metastatic tumors was explored recently in 

clinical trials (Worth et al 1999).

Sterically stabilized liposomes
Different methods have been proposed to increase the 

half-life of liposomes in the circulation. They include the 

use of synthetic phospholipids, which are conjugated to 

gangliosides (such as monosialoganglioside GM
1
 derived 

from bovine brain (Allen and Chonn 1987)) or polyethylene 

glycol (PEG) (Klibanov et al 1990; Papahadjopoulos et al 

1991; Woodle et al 1992; Uster et al 1996). Grafting of the 

liposome with the inert and biocompatible polymer PEG 

leads to the formation of a protective, hydrophilic layer on 

the surface of the liposomes. This modifi cation prevents 

the recognition of liposomes by opsonins (ie, antibodies 

or components of the complement system) and therefore 

reduces their clearance by cells of the RES (Moghimi and 

Patel 1992). Such pegylated liposomes are therefore often 

referred to as ‘sterically stabilized’ or ‘stealth’ liposomes 

(Lasic and Papahadjopoulos 1995). In humans, pegylation of 

liposomes results in an up to 50-fold decrease in the volume 

of distribution to values similar to the plasma volume (from 

200 to 4.5 l), a 200-fold decrease in systemic plasma clear-

ance from 22 to 0.1 l/hour and a nearly 100-fold increase in 

area under the time-concentration curve (Allen 1994). Using 

pegylated phospholipids, the apparent terminal half-life of 

such long-circulating liposomes can be extended in humans 

from a time-scale in minutes to days (Lasic 1996).

The protective effect of pegylation and the resulting 

extension of the plasma half-life in vivo correlates with the 

thickness of the PEG-coating. Experiments with polymer-

somes composed of synthetic pegylated block polymers 

demonstrates that plasma half-life of pegylated nanoparticles 

scales indeed with the length of the PEG polymer chain 

(Photos et al 2003). On theoretical grounds, a thickness of 

a PEG coating of 5 to 10 per cent of the particle diameter is 

needed to achieve effective steric stabilization (Lasic 1996). 

Other studies explored the thickness of a PEG coating by 

direct measurement of PEG-tethered ligand-receptor inter-

action potentials using a surface forces apparatus (Wong 

et al 1997). The length of an extended PEG chain with a 

molecular weight of 2000 Da (PEG-2000) was thereby 

demonstrated to be in the range of 16 nm whereas the thick-

ness of a coiled PEG-2000 chain was 5 nm. Based on these 

considerations, it can be concluded that coating of 100 nm 

liposomes with PEG-2000 should lead to effective steric 

stabilization in vivo.

Pegylated liposomes are biocompatible, inert and are 

characterized by a long half-life in the plasma compartment 

in vivo. As outlined above, they show minimal interactions 

with tissues and organs after systemic administration. Due 

to their big particulate size, long-circulating PEG-liposomes 

can not penetrate across continuous or fenestrated normal 

blood vessels since permeability in these vessels is restricted 

to molecules with a molecular weight of more than 5 kDa 

in peripheral tissues and 70 kDa in the kidney (correspond-

ing to a glomerular fi ltration cut-off for cationized proteins 

such as ferritin of 14 nm) (Kanwar et al 1991; Maeda 2001), 

respectively. However, within pathological tissues such as 

infl ammatory or solid tumor tissues, the vascular perme-

ability increases and therefore allows for extravasation of 

macromolecules including plasma proteins and pegylated 

liposomes. In such tissues, macromolecules up to a molecu-

lar weight of approximately 4000 kDa (corresponding to a 

particulate size of 500 nm) are trapped within the interstitial 

tissue space (Yuan et al 1995). This phenomenon has been 

studied extensively and has been termed the tumor-selective 
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enhanced permeability and retention (EPR) effect (Maeda 

et al 2000). These unique properties of solid tumor tissue in 

combination with the extended circulation half-life of steri-

cally stabilized liposomes have been exploited clinically for 

passive tumor tissue targeting (Gabizon et al 1994).

Clinical use of pegylated liposomes
Liposomal drug formulations offer the possibility to increase 

effi cacy while reducing toxic side effects of cytotoxic chemo-

therapeutic drugs. At present, several liposomal anticancer 

drugs are available in the clinic or are in advanced stages of 

clinical development (Park et al 2004; Hofheinz et al 2005). 

Approved drugs include pegylated liposomal doxorubicin 

(Doxil/Caelyx by Alza/Johnson and Johnson in the US and 

Schering-Plough outside the US), non-pegylated liposomal 

doxorubicin (Myocet by Elan), liposomal daunorubicin 

(DaunoXome by Gilead), liposomal cytarabine (DepoCyte by 

Skye Pharma/Enzon/Mundipharma) and liposomal cisplatin 

(Lipoplatin by Regulon). Liposomal formulations of anthracy-

clines are used for the treatment of ovarian and breast cancer 

or HIV associated Kaposi’s sarcoma. DepoCyte was approved 

for the treatment of lymphomas with meningeal spread and is 

the only liposomal drug administered by intrathecal infusion. 

Lipoplatin is used for the treatment of epithelial malignancies 

(Stathopoulos et al 2005). The clinical use of liposomal formu-

lations of conventional cytostatic drugs was focused initially 

on anthracyclines since these cationic amphiphiles allow for an 

effi cient and stable liposomal entrapment. More importantly, 

anthracyclines bear a high risk for acute and cumulative car-

diotoxicity (resulting in cardiomyopathy) limiting their use. 

This problem may be addressed using appropriate liposomal 

formulations (Gabizon 2001; Waterhouse et al 2001) since an 

altered pharmacokinetics of liposomal anthracyclines offers 

the possibility to avoid high plasma peaks owing to the drug 

retention within the liposomal formulation. In addition, a 

reduced distribution of the liposomal anthracyclines to the 

heart muscle is observed using pegylated liposomes. Table 1 

provides a summary of pharmacokinetic properties of com-

mercial pegylated and non-pegylated liposomal doxorubicin 

in comparison to the free drug demonstrating the signifi cant 

differences between the different formulation principles. As 

outlined above, pegylated liposomes show minimal interac-

tions with non-diseased tissues leading to both a low systemic 

plasma clearance as well as a low volume of distribution 

of 0.03–0.05 L/kg (Table 1), which corresponds to values 

obtained for commonly used plasma volume markers or human 

IgG antibodies (Lobo et al 2004). Consequently, pegylated 

liposomal anthracyclines show a signifi cantly lower risk of 

cardiotoxicity (Ewer et al 2004). This site avoidance of a drug 

sensitive tissue is paralleled by an enhanced drug deposition 

in tumor tissue (passive tumor targeting) leading to a pharma-

codynamic advantage as compared to the free drug (Gabizon 

et al 2006). Thus, the improved therapeutic index results in this 

case from both enhanced effi cacy and reduced toxicity.

Vector-mediated tumor targeting 
using liposomal carriers
Receptor-mediated tumor targeting
Tumor cells are often characterized by a specifi c expression 

pattern of membrane associated proteins such as receptors, 

membrane transport systems or adhesion molecules. Provided 

that these structures are accessible from the extracellular 

space, such properties can be exploited for an active targeting 

of diseased cells and tissues using specifi c effector molecules. 

The concept of active targeting has the potential to combine 

the advantage of an increased therapeutic effi cacy with a 

reduced risk for adverse side-effects in non-diseased tissues. 

With the arrival of genetic engineering technologies, which 

made it possible to design chimeric mouse-human mono-

clonal antibodies or recombinant peptidic receptor ligands, 

the clinical use of these active tumor targeting strategies 

has become reality. During the last years, several monoclo-

nal antibodies were developed and FDA-approved for the 

active targeting of various tumors (Imai and Takaoka 2006). 

Examples include Trastuzumab (Herceptin), a monoclonal 

antibody for the treatment of HER-2/neu-positive breast can-

cer (Baselga 2000), Rituximab (Mabthera) for the treatment 

of CD20 expressing lymphoproliferative cells (McLaughlin 

Table 1 Pharmacokinetic properties in human of commercial 
preparations of doxorubicin (DOX). Free doxorubicin is com-
pared to doxorubicin encapsulated in conventional liposomes 
(Myocet) and doxorubicin encapsulated in pegylated liposomes 
(Doxil, Caelyx). Liposome diameter: 85 to 150 nm. Data nor-
malisation using an average body surface area of 1.7 m2 and an 
average body weight of 70 kg. Examples of representative studies 
(Hamilton et al 2002; Gabizon et al 2003; Mross et al 2004).

 Free DOX Myocet Doxil/Caelyx
  (non-pegylated  (pegylated
  liposomal DOX) liposomal DOX)

Dose (mg/kg) 1.2 1.8 1.5
AUC (mg.h/L) 3.5 19.4 4082
Clearance (ml/h) 25’300 9’520 23
Vss (L) 365 139 3.0
Half-life (h) 0.06/10.4a �1/52.6a 84
aTwo elimination phases.
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et al 1998) or Alemtuzumab (Campath) for the treatment of 

B- and T-cell hematological tumors being characterized by 

the expression of the CD52 surface antigen (Flynn and Byrd 

2000). The mechanisms of an antibody-based cancer therapy 

can be twofold: First, a direct action by blocking or stimulating 

the function of target receptors, eg, inhibition of signaling by 

the human epidermal growth factor receptor 2 (HER-2/neu) by 

Herceptin leading to cell growth inhibition and apoptosis of the 

target cell. Second, immune-mediated elimination of tumor cells 

by IgG mediated mechanisms including antibody-dependent 

cellular toxicity, complement-dependent cytotoxicity and 

cell mediated cytotoxicity (eg, phagocytosis by macrophages 

or cytolysis by natural killer cells after recruitment of these 

immune-effector cells) (Imai and Takaoka 2006). The effi cacy 

of such therapeutic antibodies can be increased by combina-

tion with a conventional chemotherapy. Alternatively, the 

antibodies can be linked directly to a toxin in order to guide 

the cytotoxic drug to the target tumor tissue. Experimental 

systems were used to study conjugates between targeting 

antibodies and small molecules such as the antineoplastic 

drug daunomycin (Sinkule et al 1991). Clinical trials have 

explored the pharmacological effects of conjugates between 

antibodies and potent plant toxins such as a deglycosylated 

ricin A-chain (Pastan and Kreitman 1998; Schnell et al 

2003). Such targeting strategies using specifi c monoclonal 

antibodies as targeting vectors are of great interest. However, 

a major draw-back of these technologies is the limited carry-

ing capacity of the monoclonal antibody vector since a very 

limited amount of effector molecules only can be coupled 

directly to a targeting vector without interfering with the 

antigen-recognition by the antibody.

Vector-conjugated liposomes
The pharmacokinetic properties of liposomes can be modu-

lated by specifi c modifi cations of the liposome surface. 

Besides direct chemical modifi cations of the phospholipid 

headgroups (such as the introduction of surface charges or 

hydrophilic groups (Gabizon and Papahadjopoulos 1992)), 

conjugation of proteins, peptides or other macromolecules to 

the liposome surface can be achieved. Chemical conjugation 

techniques provide thereby a stable link between the liposo-

mal phospholipids and a specifi c targeting vector (Hansen 

et al 1995; Torchilin 2005). The availability of pegylated 

liposomes made the development of vector-conjugated 

liposomes possible since the unique properties of these 

long-circulating liposomes can be combined with those of 

a targeting vector of choice within one preparation. These 

properties include ideally:

• Favorable pharmacokinetic properties due to minimal 

interactions with non-targeted tissues or organs

• High selectivity towards a biological target increasing 

drug effi cacy and safety

• A high transport capacity since high concentrations of 

drug molecules can be achieved within the liposomal 

carrier to be transported using a limited number of con-

jugated targeting vectors

• Protection from enzymatic degradation of the liposomal 

cargo within the liposome

• High biocompatibility and therefore a presumably low 

immunogenicity of the liposomal carrier.

Initial attempts to realize the potential of this technology 

used coupling procedures where a targeting receptor was 

conjugated directly to the surface of the pegylated liposome. 

Such a co-immobilization of PEG and the vector on the same 

liposome, however, can lead to poor target recognition due 

to steric hindrance by the hydrophilic PEG corona (Schnyder 

and Huwyler 2005). It has therefore been proposed to use 

PEG as a spacer by coupling targeting vectors to the distal 

end of pegylated phospholipids (Blume et al 1993; Allen 

et al 1995; Shahinian and Silvius 1995; Huwyler et al 1996). 

This design increases the fl exibility and accessibility of the 

PEG-tethered vector and therefore facilitates its interaction 

with the biological target.

Vector-conjugated PEG-liposomes were used widely 

for tumor targeting. The specifi city and characteristics of 

these liposomal carriers is thereby given mainly by the used 

targeting vectors. Such vectors include small molecules, 

peptides or monoclonal antibodies. Representative examples 

for each of these targeting principles will be provided in the 

following sections.

Many tumor cells are characterized by an overexpression 

of the folate receptor. The fact that this receptor is responsible 

for the receptor-mediated endocytosis, and thus the cellular 

internalization of the vitamin folic acid, has established the 

possibility to deliver antineoplastic drugs, macromolecules 

as well as liposomes by this pathway (Wang and Low 1998; 

Gosselin and Lee 2002; Gabizon et al 2004). Delivery of dau-

nomycin (Pan and Lee 2005) as well as doxorubicin (Shmeeda 

et al 2006) using folate-conjugated liposomes increased the 

cytotoxicity of the encapsulated anticancer drugs in various 

tumor cells. In the latter study (Shmeeda et al 2006), mouse 

J6456 lymphoma tumor cells up-regulated for the folate 

receptor were targeted using long-circulating liposomes, 

where folate was coupled to the distal end of PEG-grafted 

phospholipids. Using folate-conjugated liposomes, increased 

intracellular accumulation of the liposomal cargo was observed 
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in vitro as well as in a mouse ascitic tumor model. It remains to 

be elucidated, if the accumulation of liposomal carriers within 

the endosomal compartment of the target cell will be associated 

with an increased tumorcidal pharmacological effect. So far, 

efforts to accelerate intracellular drug release have focused on 

the incorporation of pH sensitive phospholipids and peptides 

in the liposomal membranes. Such pH sensitive liposomes are 

stable at physiological pH in the circulation, however, they 

disintegrate and thus release the transported drug upon expo-

sure to the acidic environment of the endosomal compartment 

(Connor and Huang 1986; Drummond et al 2000; Hilgenbrink 

and Low 2005). Another approach to modulate in vivo release 

kinetics is the use of magnetoliposomes for active targeting as 

well as magnetic particle induced hyperthermia (for a review 

see (Ito et al 2005)).

An alternative receptor, which is of interest for tumor 

targeting due to overexpression on the surface of various 

cancer cells, is the transferrin receptor. The natural ligand 

of the receptor, ie, transferrin, can be coupled to the sur-

face of pegylated liposomes to achieve tumor targeting 

(Ishida et al 2001). It is important to note, however, that 

the transferrin receptor (which has a binding constant K
D
 of 

5.6 nM) is heavily saturated in vivo by the µM endogenous 

plasma transferrin concentrations (Pardridge 1993). This 

strong competition with endogenous transferrin leads to 

poor in vivo receptor targeting after intravenous injection. 

However, effi cient tumor targeting is possible using alterna-

tive routes of administration. This has been shown for the 

photodynamic therapy of carcinoma cells in vitro (Gijsen 

et al 2002) or in vivo in an orthotopic human AY-27 rat blad-

der tumor model, where transferrin-conjugated liposomes 

were instilled directly into the bladder of the experimental 

animals (Derycke et al 2004). Alternative indications might 

be the treatment of lung cancer, where transferrin-conjugated 

liposomes could be used to deliver cytostatic drugs by 

inhalation (Anabousi et al 2006). The limitations of the 

endogenous receptor ligand transferrin can be addressed by 

the use of specifi c monoclonal antibodies (mAb). Examples 

include the OX26 mAb directed against the rat transfer-

rin receptor (Friden et al 1991). The OX26 recognizes an 

epitope on the transferrin receptor, which is distant to the 

transferrin binding site leading to minimal competition with 

plasma transferrin and therefore allows for an intravenous 

administration of this targeting vector (Skarlatos et al 1995). 

Pegylated liposomes conjugated to the OX26 mAb (ie, 

OX26-immunoliposomes) were used previously to target 

the brain vascular endothelium in vivo (Huwyler et al 1996) 

and to transport incorporated drugs across the blood-brain 

barrier by receptor-mediated transcytosis (Cerletti et al 2000; 

Zhang et al 2003).

Similar targeting strategies, which make use of immu-

noliposomes, can be applied to the targeting of various 

tumors in vivo using tumor-specifi c antibody-vectors. The 

used antibodies can be directed against various receptors or 

surface antigens, including antibodies against the transfer-

rin receptor (Suzuki et al 1997; Xu et al 2002) or clinically 

used monoclonal antibodies (as discussed above). Examples 

include the use of Fab’ fragments of a humanized recombi-

nant MAb against the extracellular domain of HER2/neu, 

which were conjugated to sterically stabilized immunolipo-

somes and used for the targeting of HER2-overexpressing 

breast cancer cells (Kirpotin et al 1997). The signifi cantly 

increased anticancer activity in several animal xenograft 

tumor models of the immunoliposomal preparations can be 

attributed to the fact, that the immunoconjugates (as well as 

the free antibody) are internalized rapidly by the target cells 

by receptor-mediated endocytosis (Park et al 2001; Park et al 

2002). The importance of this observation is emphasized 

by studies, where liposomes conjugated to the monoclonal 

antibody OV-TL3 were used for the treatment of ovarian 

carcinoma cells in an intraperitoneal animal xenograft model 

(Vingerhoeds et al 1996). Despite effi cient targeting of the 

OA3 surface receptor on the ovarian tumor cells, no superior 

antitumor effects could be demonstrated in vitro or in vivo as 

compared to non-targeted liposomal formulations. This lack 

of enhanced effi cacy was attributed in part to the fact, that 

the cell-bound liposomes were not internalized by the target 

cells (Mastrobattista et al 1999). An interesting approach to 

overcome these limitations of surface-bound tumor mark-

ers and to exploit them for a targeting strategy is the use 

of immuno-enzymosomes (Vingerhoeds et al 1993; Bailey 

1994). Immunoliposomes are thereby not used to deliver a 

liposomal drug to its site of action but rather to transport 

pro-drug activating enzymes on their surface. Subsequent to 

liposomal tumor targeting, an anticancer prodrug matched 

with the enzyme is given, which will be converted to a 

cytotoxic compound at the tumor site. At least in different in 

vitro systems, immuno-enzymosomes were able to induce a 

marked cytotoxicity, which was superior to the one observed 

for immunoliposomes or the non-targeted liposomal enzyme 

(Fonseca et al 2003).

Perspectives
Reversal of multidrug resistance
There are two main protein superfamilies of drug transport-

ing proteins, which have been reported to interfere with the 
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pharmacokinetics and tissue distribution of pharmaceuticals 

and in particular anticancer drugs: Members of the solute 

carrier (SLC) protein family have been classifi ed as second-

ary or tertiary active drug transporters, which are driven by 

an exchange of intracellular ions (Mizuno and Sugiyama 

2002). ATP hydrolysis is the driving force for primary drug 

transporters, belonging to the class of ATP-binding cassette 

transporters (ABC transporters). The human ABC transporter 

gene superfamily comprises currently 49 members belonging 

to eight subfamilies (Klein et al 1999; Schinkel and Jonker 

2003). A prominent and well characterized member of the 

ABC transporters is P-glycoprotein (Juliano and Ling 1976). 

The gene coding for P-glycoprotein (ABCB1, MDR1) has 

been localized in several human tissues including the liver, 

kidney, intestine and the brain (Thiebaut et al 1987). Expres-

sion of this ATP-dependent drug effl ux pump by tumor cells 

is associated with a defi ned pattern of multidrug-resistance 

(MDR or multidrug-resistance phenotype) against anticancer 

drugs including anthracyclines, anthracenes, vinca-alcaloids, 

camptothecin derivatives (topotecan), tubulin polymer-

izing drugs (colchicine and taxanes), actinomycin D, and 

epipodophyllotoxins (eg, etoposide) (Litman et al 2001). 

P-glycoprotein is expressed frequently in clinical cancers. 

The mean expression frequency of the MDR1 gene prod-

uct, as shown by statistical meta-analysis, is 38% with a 

range from 0% (prostate carcinoma) to 88% (endometrial 

carcinoma) (Efferth and Osieka 1993). Cytostatic treatment 

leads to an increase in P-glycoprotein expression in all tumor 

types analyzed in the range from 4% (sarcoma) to 51% (lung 

carcinoma) (Efferth and Osieka 1993). Inherent or acquired 

multidrug-resistance in cancer has been shown to be associ-

ated with a poor prognosis at the time of diagnosis and is 

thus a major challenge in cancer treatment.

Pharmacological reversal of MDR activity by the use 

of specifi c inhibitors of drug carriers is problematic (Sikic 

1997). The use of compounds such as the P-glycoprotein 

antagonist SDZ PSC 833, a non-immunosupressant ana-

logue of cyclosporin A, leads to a higher susceptibility 

of tumors towards chemotherapy (Boesch et al 1991). 

However, this benefi cial effect is neutralized by the fact, 

that such compounds potentiate toxic side-effects of the 

used cancer drugs in non-diseased tissues (Advani et al 

1999). This phenomenon is a consequence of inhibition 

of endogenously expressed P-glycoprotein, which has an 

important protective function in these tissues (Lemaire et al 

1996; Song et al 1999). An alternative approach to over-

come MDR could be the use of immunoliposomes, since 

this technology allows to by-pass drug transporters located 

in the plasma membrane (Suzuki et al 1997). Using anti 

transferrin receptor antibody-conjugated immunoliposomes, 

it could be shown that cellular uptake of the P-glycoprotein 

substrate digoxin by P-glycoprotein competent endothe-

lial RBE4 cells was indeed increased by a factor of 25 as 

compared to the free drug (Huwyler et al 2002). In con-

trast to the free drug, cellular accumulation of liposomal 

digoxin was thereby insensitive to co-administration of the 

P-glycoprotein inhibitor ritonavir but sensitive to nocodazole, 

a reversible inhibitor of endocytosis. Other liposome-based 

targeting strategies, such as the use of immunoliposomes 

conjugated with a monoclonal antibody directed against 

P-glycoprotein (Matsuo et al 2001), demonstrated enhanced 

cytotoxic effects in P-glycoprotein expressing tumor cell 

lines (Mamot et al 2003).

Gene therapy
Traditionally, cationic liposomes have been used for the 

transfection of cells in vitro. DNA can be complexed with 

cationic lipids leading to the formation of condensed aggre-

gates of DNA and multilamellar lipid bilayers (Spector and 

Schnur 1997). An overall positive charge of these com-

plexes enhances transfection of anionic animal target cells. 

However, a use of such cationic liposomal carriers in vivo 

is hardly possible due to their very unfavorable pharmaco-

kinetic properties: On one hand, an unspecifi c and rapid 

binding and transfection of every tissue is observed, which 

comes in contact with the cationic DNA complexes (Liu et al 

1995). On the other hand, precipitation and fl occulation into 

large aggregates of cationic DNA-lipid complexes occurs at 

their isoelectric point (Rädler et al 1997). After intravenous 

application, a massive retention by passive fi ltration of these 

aggregates is observed within the lung, which is the fi rst tis-

sue to be perfused after injection (Osaka et al 1996; Liu et al 

1997). Very recent and exciting experiments did overcome 

these problems by using pegylated immunoliposomes to 

deliver DNA expression plasmids to rodent or primate brain 

tissue (Shi and Pardridge 2000; Zhang et al 2003). Unlike cat-

ionic liposomes, this neutral and long circulating liposomal 

formulation is stable and not trapped in the lung. This high 

selectivity offers the possibility of a nonviral gene therapy 

of tumor and possibly other tissues. To this end, pegylated 

immunoliposomes were conjugated to two different mono-

clonal antibodies, which were used to target the construct to 

U87 human glioma cells implanted into the brain of immuno-

defi cient (scid) mice (Zhang et al 2003). The used antibodies 

were the rat 8D3 mAb to the mouse transferrin receptor to 

promote transfer across the mouse blood-brain barrier and 
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the 83–14 mAb to the human insulin receptor to target the 

implanted human glioma cells within the brain parenchyma. 

The transported DNA expression plasmid did encode for a 

short hairpin RNA fragment (shRNA) designed to silence the 

expression of an oncogenic gene (human epidermal growth 

factor receptor EGFR) by RNA interference (RNAi) or post-

transcriptional gene silencing. This gene therapy resulted in 

almost 90% increase in survival time of mice with advanced 

intracranial brain cancer (Zhang et al 2003).

Clinical use of vector-conjugated 
liposomes
In view of the rapid and promising advances in the fi eld of 

specifi c liposomal tumor targeting during the last years, a 

clinical use of vector-conjugated liposomes or immunoli-

posomes should be envisaged. Recent reports indicate that 

an anti-HER2 immunoliposomal formulation was developed 

towards clinical trials using optimized protocols supporting 

large-scale production and clinical use (Park et al 2001). 

Matsumura et al (Matsumura et al 2004) have published 

the fi rst clinical trial where doxorubicin encapsulated in 

pegylated immunoliposomes was administered to twenty-

three patients suffering from advanced or recurrent gastric 

cancer refractory to conventional therapy. As a targeting 

vector, a F(ab)’ fragment of a human monoclonal antibody 

directed against a cancer cell surface antigen was used 

(Hosokawa et al 2003), which was coupled directly to the 

liposomal surface of pegylated liposomes without using a 

molecular spacer. The used PEG had an average molecular 

weight of 5 kDa. The immunoliposomal doxorubicin was 

well tolerated during a treatment regimen of up to six cycles. 

The volume of distribution (V
D
 of approx. 40 ml/kg, ie, 

50% of blood volume) and the low plasma clearance (Cl of 

approx. 3 ml/h/kg) are comparable to the ones of doxorubi-

cin encapsulated in sterically stabilized liposomes (Gabizon 

et al 2003). It remains to be elucidated in future studies, if 

the proposed immunoliposomal formulation of doxorubicin 

might offer therapeutic advantages for the treatment of 

gastric cancer.

During the last years, liposomes as pharmaceutical drug 

carriers have received a lot of attention. Successful clinical 

applications in the fi eld of drug delivery and passive targeting 

of solid tumors have demonstrated the potential of the tech-

nology. Once optimized production processes are available, a 

new generation of vector-conjugated liposomal carriers will 

allow for an active targeting of metastatic or chemoresistant 

tumors, for which at present no effi cient therapeutic options 

are available. Further investigations and clinical trials are 

now required to optimize existing technologies and to make 

them available to cancer patients.
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