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Abstract: Type 2 diabetes mellitus (T2DM) is a major chronic disease that is prevalent world-

wide, and it is characterized by an increase in blood glucose, disturbances in the metabolism, 

and alteration in insulin secretion. Nowadays, food-based therapy has become an important 

treatment mode for type 2 diabetes, and phytobioactive compounds have gained an increasing 

amount of attention to this end because they have an effect on multiple biological functions, 

including the sustained secretion of insulin and regeneration of pancreatic islets cells. However, 

the poor solubility and lower permeability of these phyto products results in a loss of bioactivity 

during processing and oral delivery, leading to a significant reduction in the bioavailability of 

phytobioactive compounds to treat T2DM. Recently, nanotechnological systems have been 

developed for use as various types of carrier systems to improve the delivery of bioactive 

compounds and thus obtain a greater bioavailability. Furthermore, carrier systems in most 

nanodelivery systems are highly biocompatible, with nonimmunologic behavior, a high degree 

of biodegradability, and greater mucoadhesive strength. Therefore, this review focuses on the 

various types of nanodelivery systems that can be used for phytobioactive compounds in treating 

T2DM with greater antidiabetic effects. There is also additional focus on improving the effects 

of various phytobioactive compounds through nanotechnological delivery to ensure a highly 

efficient treatment of type 2 diabetes.
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Introduction
Type 2 diabetes mellitus (T2DM) is a major chronic disease with an increasing preva-

lence worldwide, and it is a major burden in many developing and developed countries 

due to the numerous complications associated with the diseases.1,2 The disease associ-

ated with numerous factors, including genetics, age, lack of physical activity, food 

habits, high stress, inflammation, and obesity. Many factors related to this disease can be 

controlled through a change in lifestyle and activities.3,4 Inflammation for this disease, 

and the associated complications, can be effectively reduced by taking certain drugs, 

and recently, the consumption of phytobioactive compounds – such as polyphenols, 

flavanones, curcumin, terpenoids, and quercetin rich foods – has shown potential 

antidiabetic effects without any other complications.5,6 Many researchers have 

orally administered phytobioactive compounds to show its beneficial effect on T2DM 

and its complications.7–15 However, many food grade bioactive compounds taken 

through oral means undergo a substantial loss in bioactivity, and thereby, the antidi-

abetic activity of the phytobioactive compounds is diminished.
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Various nanodelivery systems have been developed 

to improve the oral bioavailability of phyto-based antidi-

abetic compounds and to ensure sustained antidiabetic 

activities.16 Baicalin successfully formulated nanostructured 

lipid carrier (NLC) delivery systems with particle sizes 

of 92 nm, and these showed a higher antidiabetic activity 

with a sustained release of these compounds through oral 

delivery.17 Stevioside is another phyto compound that has 

shown improved antidiabetic activity via controlled release 

of the compounds through polyethylene glycol-polylactic 

acid nanoparticle delivery systems with a particle size of 

150 nm.18 In addition to the potential delivery of phytobioac-

tive compounds for systematic circulation, many researchers 

are searching for effective delivery materials with highly 

nontoxic and nonmutagenic behavior as well as good water 

solubility. Although different nanodelivery systems plays 

a critical role in the delivery of active compounds to many 

diseases.19,20 Only a few novel nanodelivery systems, such 

as solid lipid nanoparticles, nano-phytosome, and nanoemul-

sion, have shown good efficacy in the delivery of phytobioac-

tive compounds. Very recently controlled delivery of drugs 

was studied using nanowire systems,21–23 and their efficacy 

in delivery of drugs to the diabetic model is still limited. The 

current review presents the potential use of various nanoscale 

drug delivery systems for phyto-based bioactive compounds 

to treat T2DM and its associated complications.

The role of phytobioactive 
compounds in T2DM through 
oral delivery
Traditional medicines have extensively used phytobioactive 

compounds to treat T2DM.24–31 These bioactive compounds, 

including but not limited to flavonoids, curcumin, poly-

phenol, and glucosides, have shown showed higher antidi-

abetic activity in various animal models. Due to the higher 

availability and multiple efficacies of these food-based 

medicines, they are currently in great demand in the market. 

The possible molecular mechanisms through which phyto 

compounds treat T2DM are shown in Figure 1. T2DM is 

associated with many complications, and few phytoactive 

compounds that are regularly consumed in food have shown 

multiple antidiabetic effects, thereby reducing drug loads 

during treatment. Curcumin from turmeric and bitter melon 

has shown multiple antidiabetic activities in various animal 

models.32–37 Although various food grade phytobioactive 

compounds are currently used in the treatment of T2DM, 

they lose efficacy during oral delivery, and therefore the 

development of novel delivery systems is crucial in improv-

ing their effects.

Phytobioactive compounds are rich in antidiabetic 

foods or extracts, and their efficacy through oral delivery is 

relatively low due to the multiple challenges faced by the 

compounds, such as gastrointestinal fluid solubilization, 

cell uptake, and changes in the structure of the bioactive 

compounds.38–40 The bioavailability of antidiabetic phyto-

based bioactive compounds curcumin has been improved by 

coingesting them with certain lipids.41 In addition, curcumin 

delivery was greatly enhanced through the mixed lipid and 

protein-based digestible colloidal nanoparticles.40,42 Recently, 

alternative approaches have been proposed to improve the 

efficacy and sustained bioavailability through oral develop-

ment of excipient foods rich in antidiabetic activities using 

various delivery technologies from macro to nanoscale, 

thereby limiting the digestion of these compounds through 

oral delivery.39,40,43–45

Nanodelivery systems used  
to treat T2DM
Currently, nanodelivery systems are an area of intense 

focus for the delivery of bioactive compounds through 

oral means to ensure effective treatment of various chronic 

diseases, including T2DM, hypertension, and cancer. Antidi-

abetic compounds, including curcumin and berberine, among 

other phyto compounds, have been effectively formulated 

• 

• 
• 

Figure 1 Possible molecular mechanism for phytobioactive compounds in treating 
type 2 diabetes.
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using various nanodelivery technologies, resulting in 

higher antidiabetic potential in T2DM animal models. The 

effective oral delivery of nano phytobioactive compounds 

is shown in Figure 2. To ensure effective delivery of the 

bioactive compounds in the nanosystems, it is important to 

carefully design these delivery systems. Effective delivery 

and functional food development can be achieved through 

several approaches using nanoemulsions with improved 

delivery of lipid-soluble bioactive compounds. The deliv-

ery pathways for phytobioactive compound-based nano-

delivery systems are shown in Figure 3. Several nanodelivery 

systems and their efficacy in treating T2DM are discussed 

further.

Solid lipid nanoparticles
Solid lipid nanoparticle delivery systems are used for the oral 

delivery of various antidiabetic compounds due to certain 

advantages over conventional oral delivery systems, such as 

a higher bioavailability, lower toxicity, sustained delivery, 

higher cellular uptake, and macrophage distribution.46–50 

Various animal models have shown a higher efficacy of these 

nanodelivery systems for oral delivery of various phyto-based 

bioactive compounds. Recently, berberine-loaded solid lipid 

nanoparticle delivery systems were developed with an aver-

age particle size of ~76 nm and a uniform size, and treated rats 

showed a higher antidiabetic activity by suppressing gains 

in body weight, lowering fasting blood glucose levels, and 

promoting islet cell functions. The same research group also 

studied the effect of berberine-loaded solid lipid nanoparticles 

on the diabetic fatty liver and found that the drug’s presence 

was 20× higher in the liver, thereby effectively preventing 

lipogenesis and enhancing lipolysis in the liver of diabetic 

mice models.51,52 In another study, berberine-loaded solid 

lipid nanoparticles were developed with a particle size 

of ~154 nm, showing an improved hypoglycemic effect in 

the C57BL/6 mice model of T2DM.53 Similarly, bioactive 

compounds from mistletoe have shown an enhanced antidi-

abetic effect in the T2DM animal model with a lowered 

hyperglycemic effect.46 However, other potentially active 

antidiabetic compounds, such as quercetin, curcumin, and 

catechin, have also been studied for formulation using solid 

lipid nanoparticles, but their potentiality in the diabetic ani-

mal model is still limited. Various studies have confirmed 

that solid lipid nanoparticles can be effectively used to deliver 

phyto-based bioactive compounds through oral administra-

tion in order to treat T2DM.

Figure 2 Possible nano phytobioactive compound bioavailability through oral 
delivery systems in humans.

Figure 3 Possible delivery mechanism for phytobioactive compound-based nano
delivery systems.
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Nanostructured lipid carriers
NLC are another type of lipid-based nanodelivery systems 

with certain advantages over solid lipid delivery sys-

tems, such as a lower particle size and improved loading 

capacity in order to obtain effective delivery of the phyto 

ingredients in the treatment of T2DM.54 Recently, baical-

lin was studied to develop NLC delivery systems, and the 

results indicated that a particle size of ~92 nm showed an 

enhanced antidiabetic effect in the rat model with sustained 

release.17 As most antidiabetic phytobioactive compounds, 

such as quercetin, thymoquinone, and resveratrol, face 

significant challenges in delivery. NLC delivery systems 

enhanced those bioactive compounds delivery with sus-

tained release.55–58 Baicalin-loaded NLC have shown a 

sustained release through oral delivery with a particle 

size of ~244 nm.59 A higher bioavailability with sustained 

release of quercetin was observed in quercetin-loaded NLC 

developed using a phase inversion method with a particle 

size of ~32 nm.60 In another study, quercetin-loaded NLC 

systems were developed with a particle size of 47 nm, 

resulting in a higher bioaccessibility of ~60%.61 Recently, 

cationic-modified NLC delivery systems were developed 

with quercetin with a particle size of ~126 nm, showing a 

higher bioavailability in lung, kidney, and liver tissues.62 

Although various phyto-derived antidiabetic compounds 

have shown a sustained release in oral studies, their bio-

availability in the diabetic animal model is still limited. 

Thus, NLC systems can be considered as novel oral 

delivery systems with sustained release of the antidiabetic 

phyto compounds.

Nanoemulsions
Nanoemulsions greatly improve the delivery of various 

lipophilic bioactive compounds with high antidiabetic 

properties by providing a high stability of the compounds 

along with an increased bioavailability.63–66 Recently, bitter 

gourd seed oil nanoemulsions containing 50% α-eleostearic 

acid were studied in the diabetic rat model. The results 

indicated that bitter gourd seed oil nanoemulsions with 

a particle size of ,100 nm were highly stable and could 

deliver enhanced antidiabetic properties through oral 

administration.67 The same research group also studied 

the effect of gourd seed oil nanoemulsion with a higher 

cellular uptake and prolonged antioxidant activities.68 In 

another study, alpha-tocopherol-loaded nanoemulsions with 

various particle sizes showed improved protective behavior 

in various organs, especially in streptozotocin-induced 

diabetic rat model.16 Similarly, many other phyto-derived 

bioactive compounds, including curcumin or quercetin, 

have shown an enhanced bioavailability through nano-

emulsion delivery systems. A curcumin-encapsulated 

nanoemulsion was prepared with a particle size of ~130 nm, 

and it showed improved oral bioavailability in addition 

to liver protection.69 The quercetin-loaded nanoemulsion 

was also studied to provide efficient oral delivery of these 

compounds, quercetin was found to be highly protected 

through these delivery systems, with improved antioxidant 

activity along with no toxicity of the carrier system.70,71 

Many recent studies have confirmed that naturally derived 

bioactive compounds can be efficiently delivered through 

oral means using nanoemulsion. However, many studies 

are still needed, in particular to determine the role of the 

individual compounds in the diabetic model when this 

delivery system is used.

Nanoliposomes
Nanoliposomes are effective in delivering bioactive com-

pounds that are both hydrophilic and hydrophobic with 

enhanced stability, efficacy, and bioavailability along 

with a lower particle size.72–76 The delivery of phytobioac-

tive compounds with antidiabetic properties was greatly 

enhanced through the nanoliposome systems.72,75–77 Recently, 

Orthosiphon stamineus, an antidiabetic medicinal herbal 

extract, was studied with a nanoliposome system in terms 

of its efficacy. The study showed that this extract can be 

effectively loaded into nanoliposome systems with a par-

ticle size of 152 nm to improve the antioxidant properties.78 

Similarly, resveratrol, another antidiabetic compound, was 

studied for its oral bioavailability in an animal model when 

administered using nanoliposome systems. The results indi-

cated that the animal group treated with resveratrol-loaded 

nanoliposome showed a 2 times increase in the bioavailability 

of resveratrol than the control group.79 Recently, catechin was 

successfully encapsulated using a nanoliposome system and 

was studied to develop functional food. Researchers found 

that catechin-loaded nanoliposomes can efficiently protect 

catechins from various factors, and these could be used 

as a possible functional food to deliver catechins.80 Folic 

acid-functionalized insulin-loaded liposomes were studied, 

and these showed enhanced bioavailability of insulin in the 

animal model through oral administration.81 Although many 

antidiabetic phytobioactive compounds have been success-

fully studied for their oral bioavailability and their efficacy 

in reaching circulation systems, nanoliposomes loaded with 

phytobioactive compounds in antidiabetic animal models 

still have limited use.
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Nanosuspensions
Nanosuspensions are delivery techniques for oral administra-

tion of active ingredients in the liquid phase with a particle 

size of ,1 µm, and these are prepared using various tech-

niques, including wet or dry milling.82–85 Many phyto ingre-

dients have been effectively prepared using nanosuspension 

techniques and have shown more effective antidiabetic effects 

than regular systems.86,87 Recently antidiabetic compounds, 

namely gymnemic acids, were prepared using a nanosus-

pension method with enhanced bioavailability.86 The same 

research group also studied the effect of those gymnemic 

acid nanosuspensions in humans and found that an enhanced 

antidiabetic effect with a greater glucose-lowering effect in 

humans.88 Similarly, berberine nanosuspensions, another 

antidiabetic compound, showed an improved antidiabetic 

effect in T2DM animal models at a low dosage level. Simi-

larly, other active phyto compounds, such as quercetin, have 

shown antidiabetic effects, and were studied in terms of their 

efficacy in oral delivery through nanosuspensions in order 

to prevent their loss of bioactivity. Quercetin nanosuspen-

sion with a uniform size have shown a higher bioavailability 

through oral delivery, with a 70× increase relative to control 

quercetin.89 In another study, curcumin-loaded nanosuspen-

sions were prepared with a particle size of 210 nm, and these 

showed an enhanced absorption of curcumin through various 

digestive system parts with a higher change in confirmation 

and a fluidity change of the intestinal mucosal membrane.90 

These studies open mechanisms to develop nanosuspension-

based phytoconstituents for antidiabetic activity in various 

animal models.

PLGA NPs
Polylactic-co-glycolic acid nanoparticles (PLGA NPs act 

as an effective carrier in oral delivery systems for various 

phytobioactive compounds due to the effective bioavail-

ability and stability of those compounds.91 Antidiabetic 

phyto compounds, such as quercetin and curcumin, are 

effectively entrapped or absorbed in PLGA nanoparticles 

with a size ,100 nm using various methods, such as solvent 

evaporation or nanoprecipitation, and these novel delivery 

systems have shown improved antidiabetic effects.92,93 

Recently, quercetin-loaded PLGA NPs were studied for their 

efficacy in the diabetic model. Quercetin-loaded PLGA NPs 

were prepared with a particle size of ~179 nm, with a uniform 

particle size and smooth appearance. An animal study showed 

that the effect of the PLGA NPs every 5 days through oral 

delivery is equivalent to an everyday dosage of control quer-

cetin. This study confirmed that PLGA NPs are very effective 

in delivering quercetin, thereby limiting the need for everyday 

dosage and reducing the frequency of taking the drug.94 PLGA 

NPs loaded with fenugreek seed extract showed a higher 

antidiabetic efficacy in the alloxan-induced diabetic model95 

with a higher antioxidant and antilipid peroxidation activity. 

Thymoquinone from black seeds has potent antidiabetic 

efficacy and was studied to develop thymoquinone-loaded 

PLGA NPs, which showed an enhanced antioxidative effect 

along with sustained release in simulated gastrointestinal 

systems.96 Costus speciosus extract-loaded PLGA NPs were 

also studied for their efficacy in the antidiabetic model, and 

the study confirmed that costus speciosus extract-loaded 

PLGA NPs can effectively control glucose.97

Nano phytobioactive compounds 
used in the treatment of  T2DM
Nanoscale phyto-derived bioactive compounds or phyto 

extracts showed improved bioavailability in many chronic 

diseases, including T2DM. Nanoscale processing improves 

the efficaciy of these compounds through higher exposure 

of the active sites, thereby improving the bioactivity.98 

Furthermore nanodelivery systems can overcome many 

barriers in gastrointestinal systems, thereby improving 

the bioavailability to various target sites and prevent-

ing oxidative stress-related disease along with chronic 

disease, including T2DM. A few nano-phytobioactive 

compounds with improved bioactivity are discussed in 

this section.

Nano-silibinin
Silibinin is a major bioactive compounds in milk thistle, 

and it has shown higher antidiabetic activities in various 

cell and animal models.99–103 Many animal models have 

shown that a higher consumption of those compounds 

results in improved antidiabetic activities along with the 

neuropathy and nephropathy. Although these compounds 

have shown antidiabetic activities with higher potential, 

their systematic bioavailability and absorption in the stom-

ach and intestine are relatively low.104–106 Recently, various 

nanodelivery approaches have been studied to improve their 

bioavailability in diabetic animal models, and this could 

be a novel approach to silibinin-based nano treatment of 

T2DM. PLGA-loaded silibinin NPs were studied for their 

antidiabetic activities in streptozotocin-induced diabetes rat 

models. The silibinin-loaded NPs with a size of ~230 nm 

showed an improved bioavailability of such compounds in 

the systematic circulation along with a higher restoration of 

the pancreatic cells. The study also confirmed that higher 
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antidiabetic activities of silibinin-loaded NPs were most 

likely due to a higher passive transport and restoration of 

the antioxidative status.107 Similarly, silibinin-loaded nano-

liposomes showed improved bioavailability in other chronic 

disease models. In another study, silibinin-coloaded with 

another glycyrrhizic acid-loaded nanoliposome showed 

improved stability and bioactivity in cell models.108 These 

studies have shown that nanodelivery systems can improve 

the availability and therapeutic nature of bioactive com-

pounds to manage diabetes.

Nano-quercetin
Quercetin is another phytobioactive compound, and it 

has shown potential bioactivity against various oxidative 

stress-related diseases, including T2DM.109–113 Although 

quercetin shows beneficial activities in various cell and 

animal antidiabetes study models, its efficacy through oral 

delivery systems is very low due to the postabsorptive 

metabolism and gastrointestinal conditions.114–117 Several 

approaches have been carried out to improve the bioavail-

ability of quercetin in order to improve its bioactivity. The 

nanodelivery approach is quite promising in the delivery 

of the quercetin through oral intake, thereby enhancing its 

antidiabetic activities. Recently, PLGA-loaded quercetin 

NPs were developed with a particle size of ~179 nm, show-

ing improved bioavailability in a streptozotocin-induced 

diabetic rat model. This study confirmed that in spite of 

reduced dosage and dosing times, the antidiabetic potential 

of the quercetin can be improved by using PLGA delivery 

systems.94 Few other nanodelivery approaches have also 

been developed to improve the bioavailability of quercetin 

for other chronic diseases, including brain bioavailability. 

Quercetin nanorods were recently developed and character-

ized, showing improved antidiabetic activity along with cer-

tain organ functions restored.116 This has further confirmed 

that nanodelivery systems can improve the bioavailability 

of such compounds in various organs.

A few studies have compared various delivery methods 

in terms of the efficacy of quercetin delivery, such as solid 

lipid NPs, NLC, and nanoemulsions, systems for quercetin 

indicate that NLC has improved the bioaccessibility of quer-

cetin in an in vitro model. Furthermore, this opens up many 

research avenues to conduct quercetin-based nanocarrier 

development to improve oral delivery of these compounds 

with a lower dose and enhanced protectivity. This can limit 

the drug loading efficiency to patients and will be developed 

as a future medicine with lower carrier toxicity to diabetic 

patients.

Nano-baicalin
Baicalin is a novel antidiabetic bioactive compound that is 

found specifically in certain plants, namely scutellaria, and it 

has potential bioactivity against T2DM.118–123 These bioactive 

compound are highly hydrophobic, which limits their bio-

availability through oral delivery systems and in turn limits 

their functional activity. Many novel delivery approaches 

have been developed to improve its bioavailability.124,125 

Recently, a nano-based delivery approach was carried out 

to improve the bioavailability by using a NLC delivery sys-

tem. A baicalin-loaded nano-lipid carrier delivery system 

was developed with a uniform particle size of ~92 nm, and 

it showed higher antidiabetic activity than conventional 

baicalin, which in turn will limit the drug dosage levels.17 

Similarly, another approach was done to improve the 

bioavailability of those compounds through NLC systems 

with a particle size of ~244 nm, which showed a sustained 

release of the bioactive compound with improved activity.59 

A baicalin nanoemulsion was also studied for its bioavail-

ability through oral delivery. Baicalin-loaded nanoemulsion 

showed a 7 times increase in bioavailability than the free 

suspension, which could be useful for various treatments 

including T2DM. The storage stability of the baicalin-

loaded nanoemulsion was also studied for 6 months, and 

the results showed greater stability with a uniform particle 

size.126 In another study, baicalin-loaded nanoliposome with 

a particle size of ~375 nm showed a higher bioavailability in 

many target organs, including kidney, liver, and pancreas.127 

Various nanodelivery approaches show that baicalin can be 

successfully delivered using novel oral delivery systems in 

the future to treat chronic diseases, including T2DM.

Nano-curcumin
For centuries, curcumin has been used in food and medicine 

Asia due to its efficacy against T2DM.128–131 However, it 

has low potential through oral delivery due to the low water 

solubility and stability in gastrointestinal environment.132–136 

Nanodelivery systems are an alternative approach that can 

improve the stability of those compounds with improved bio-

availability of curcumin.137–150 Curcumin-loaded PLGA NPs 

were constructed with a particle size of 281 nm, and these 

have shown a higher bioavailability through oral delivery in 

the diabetic rat model, delaying cataracts.151 The self-nanoe-

mulsifying curcumin delivery system was developed, has a 

particle size of ~213 nm, and has shown improved protection 

of diabetic neuropathy through oral delivery systems in male 

Sprague Dawley rats.152 Several other nanodelivery systems 

have shown a higher bioavailability for curcumin, delaying 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2017:12 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

1103

Nanodelivery systems for type 2 diabetes mellitus

the progression of T2DM. Recently, a curcumin-loaded 

food grade nanoemulsion for oral delivery developed with 

a particle size of 110 nm showed a higher bioavailability at 

lower dosage levels.153 In another study, curcumin-loaded 

PLGA NP was prepared for oral delivery with a particle size 

of ~158 nm, and it showed enhanced solubility and bioavail-

ability. The oral bioavailability of nano-formulated curcumin 

showed a 22 times increase over conventional curcumin.154 

Curcumin nano-micelles were also constructed for oral 

delivery with a particle size of ~17 nm, and these showed a 

2 times increase in bioavailability.155 Nevertheless, further 

research is necessary to assess the efficacy of the highly 

bioavailable nano-curcumin in T2DM.

Nano-emodin
Emodin is a novel natural antidiabetic compound that is found 

in many herbs, including Japanese knotweed, buckthorn, and 

rhubarb, and it has an effective therapeutic effect in diabetes-

associated diseases.156–162 Emodin also plays an active role 

in treating diabetic nephropathy and neuropathy at earlier 

stages. However, due to the high first pass metabolism and 

greater hydrophobicity of emodin, it cannot be efficiently 

delivered through oral means, limiting the bioavailabil-

ity and bioaccessibility of the compound.163–169 A novel 

delivery approach was carried out using various delivery 

technologies, including nanoemulsions and nanotransfers, 

and some showed efficient delivery of emodin through 

oral means, which in turn enhances its efficacy. Recently, 

emodin-loaded magnesium hollow silicate nanocarriers were 

studied for their efficacy in treating angiogenesis associated 

with diabetic retinopathy. The NPs, with an average mean 

size of ~400 nm, showed higher efficacy in delivery and 

greater protective characteristics against angiogenesis.170 

Emodin-loaded nano-transferosome was also studied against 

obesity, a causative factor for T2DM. The size of emodin 

loaded nano-transferosome was of ~292 nm with encap-

sulation efficacy of ~69%, and these showed a relatively 

higher effect in terms of antiobesity activity,171 which is an 

alternative approach to reduce the risk for T2DM. A few 

other nanodelivery approaches have also been conducted 

to improve the oral stability of emodin-like nanoemulsion. 

The emodin-loaded nanoemulsion was constructed with a 

particle size of ~10–30 nm, and it showed sustained release 

in vitro, which could be a possible alternative delivery 

approach for a functional compound, such as emodin.172 

The same research group also studied the bioavailability of 

an emodin-loaded nanoemulsion in rats. The distribution of 

nano emodin was found to be higher in the liver and lung, 

whereas lower in the brain with a higher mean resident 

time.173 The above approach can be used for nanodelivery 

systems to improve the bioavailability of emodin in vari-

ous target organs, thereby enhancing its bioactivity against 

chronic disease, such as T2DM.

Nano-naringenin
Naringenin is a flavonoid compound that is present in many 

citrus fruits and their related beverages, and it has shown 

a high antidiabetic potential in many cellular and animal 

models.174–180 Due to their higher potential activity in many 

chronic diseases, they are widely used to prepare novel 

beverages. However, due to the limited oral bioavailability 

and stability of those compounds, alternative nano-based 

delivery technologies have been recently studied to assess 

their efficacy.181–185 A naringenin-based nanoemulsion was 

developed with a particle size of ~50 nm, showing the 

enhanced bioavailability of naringenin through oral delivery. 

The enhanced bioavailability of naringenin was most likely 

due to its higher solubility through self-emulsion nanodeliv-

ery systems, which can improve its therapeutic application.186 

Naringenin-loaded NPs were prepared with a mean particle 

size of ~66 nm, and these showed a higher bioavailability 

through oral delivery, thereby improving its hepatoprotective 

activity in rat models.187 Similarly, naringenin-loaded solid 

lipid NPs were constructed with particle sizes ranging from 

~60 to 80 nm, and these showed a higher cellular uptake.188 

In another study, naringenin-loaded chitosan nanoparticles 

were constructed with a particle size of ~407 nm, and these 

showed higher encapsulation efficiency of ~70% with 

improved antioxidant activity for in vitro cell models.184 

Although many nanodelivery approaches were accessed for 

their oral bioavailability potential in various related disease 

models, their potential for T2DM animal model and its related 

diseases is still limited.

Nano-morin
Morin is a phyto-derived bioflavonoid seen in many fruits, 

vegetables, and herbs, and it has shown multiple potential 

activities against diabetes and its associated diseases.189–193 

Its potential activities include reducing lipogenesis, oxida-

tive stress, gluconeogenesis, and inflammation. A higher 

hepatoprotective activity was also reported for morin in 

certain studies, which indicated it can reduce hyperlipi-

demia. In addition, morin has an insulin-mimetic effect, and 

it is widely accepted to be a naturally derived antidiabetic 

drug.194,195 Due to its poor oral solubility, its bioavailability 

is limited, resulting in lower effects. However, an increased 
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dosage may result in toxicity. To overcome such disadvan-

tages, novel nanodelivery approaches have been studied 

to improve its bioavailability through oral delivery.196–198 

Recently, morin-loaded self-nanoemulsifying nanodelivery 

systems were developed and studied for their oral bioavail-

ability. The improved oral bioavailability of these compounds 

was observed to lead to an improved bioactivity to treat 

many chronic diseases.197 In another approach, morin was 

successfully formulated using mixed micelles with a particle 

size of ~90 nm. The nanosized morin-loaded mixed micelles 

showed a 3.6 times increase in cellular uptake compared 

to native compounds, with a higher permeability rate of 

by ~2.4 times, which in turn improves the bioavailability in 

systematic circulation.199 In another approach, morin-loaded 

solid lipid nanoparticles were studied for their efficacy in 

the oral bioavailability, confirming that a lower particle 

size improves the permeability of the compound through 

an intestine membrane with a prolonged release of the 

compound.200 Many successful, nanoscale techniques have 

been used to improve the bioavailability of morin during 

oral delivery; this helps researchers to study their potential 

in chronic disease models, includes type 2 diabetes and its 

associated diseases.

Nano-genistein
Genistein is a soy isoflavonoid with potential antidiabetic 

activities through various actions, including antioxidant 

activity, glucose-stimulated insulin secretion, estrogen 

receptor agonist, and β-cell proliferation at various con-

centration levels.201–207 Regular consumption of genistein-

rich foods has shown improved beneficial activities in 

many chronic diseases. Soy isoflavone-incorporated health 

drinks are permitted in the US for their improved beneficial 

actions.208,209 However, the lower solubility and loss of bio-

activity through oral delivery has led to less bioavailability 

of genistein in various animal studies. In addition, a higher 

dosage leads to other complications and toxicity.209,210 In 

recent years, a few nanoscale techniques have been imple-

mented to overcome the toxicity and higher dosage effects, 

improving the oral delivery of genistein.211–213 Genistein-

loaded polymeric micelles showed a higher bioavailability 

for genistein through oral delivery, with a particle size 

of ~27.76 nm. The bioavailability of the genistein micelles 

was greatly improved through oral delivery, and it was 

most likely due to the higher solubility of the compound 

and improved permeability.214 In another approach, the oral 

delivery of genistein was successfully improved through 

self-emulsifying phospholipid preconcentrates of genistein 

with sizes ranging from 165 to 425 nm, showing a higher 

permeability rate of ~12%, which in turn improved the bio-

activity.215 An alternative approach co-loading two natural 

bioactive compounds, such as curcumin and genistein, was 

studied in an NLC delivery system, and it showed significant 

activity with higher stability and solubility of each com-

pound. Although many approaches have been carried out 

to improve the bioavailability of genistein in many chronic 

diseases, but the applicability to type 2 diabetes mellitus 

animal model is still limited.

Nano-hesperidin
Hesperidin is another phyto-derived flavonoid compound 

that possesses multiple antidiabetic activities through con-

trolled glucose and lipid levels along with higher antioxidant 

activities, thereby reducing the cellular damage and insulin 

resistance levels.216–220 This compound is highly bioavailable 

in lemon fruits and their juices. The lower bioavailability 

of those compounds through oral delivery leads to lower 

beneficial effects at higher doses.221–223 Many nanotechno-

logical approaches have been carried out to improve their 

bioavailability, thereby improving the beneficial antidiabetic 

effects of those compounds. Hesperidin nanocrystals were 

prepared with a particle size of 3.96 nm, and these showed 

an improved stability that could be useful in many functional 

applications.224,225 In another approach, hesperidin-loaded 

solid lipid nanoparticles and NLCs were successfully devel-

oped with a lower particle size, and these showed improved 

stability in functional food that could be useful to treat various 

diseases through their functional activities.224 Furthermore, 

hesperetin-loaded NPs with a particle size of ~55–180 nm 

were also studied for their efficacy in sustained release of the 

compound.226 The in vitro cell study showed that hesperetin 

had sustained release of the compound with a higher anti-

oxidant activity.

Nano-daidzein
Daidzein is another potential antidiabetic compound from 

soy-based food products, and in various animal studies, it 

exerted its antidiabetic activity by enhancing the glucose 

and lipid metabolism.227–234 Due to their limited bioavail-

ability through high hydrophobicity, nanolipid carrier-based 

technologies have been recently used to improve the bioavail-

ability for oral delivery. A lipid-based nanodelivery approach 

was recently developed to improve the effect of daidzein 

through oral delivery, and the daidzein-loaded lipid carrier 

was found to have a 6.8 times increase in bioavailability.235 

In another approach, a daidzein-loaded self-assembly 
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nanodelivery system showed higher bioavailability than in 

free suspension.236 The above research shows that potential 

antidiabetic compounds with lower gastric bioavailability 

can be successfully delivered orally by using lipid-based 

nanodelivery systems.

Conclusion
In this review, we have discussed various food grade nanode-

livery systems to effectively deliver antidiabetic compounds 

with a much more novel approach in treating T2DM. This 

has been used to overcome many complications in traditional 

treatment of phyto-derived bioactive compounds with a 

lower potential antidiabetic effect due to the lower stability 

of those compounds in gastrointestinal systems and during 

absorption. Phyto-derived bioactive compounds have been 

loaded into nanoparticles for oral delivery in various antidi-

abetic animal models, and the results have shown improved 

stability, bioavailability, and sustained antidiabetic effects. 

Certain studies confirm that the coadministration of two or 

more antidiabetic compounds through nanodelivery systems 

lowers the drug load and provides improved beneficial 

activities, without altering the stability and bioaccessibility 

between those compounds. In addition, most carriers used 

in the delivery of phyto-based bioactive compounds are 

highly biodegradable because they contain natural materi-

als, and this can reduce the toxicity of the carrier systems. 

Several phytobioactive compounds loaded into nanodeliv-

ery systems are currently in clinical trials, and once these 

compounds are commercially marketed, nano phyto-based 

bioactive compounds will be available as novel medicines to 

treat many chronic diseases, including T2DM. This review 

confirms that most phyto-derived antidiabetic compounds 

can be successfully formulated using various nanodelivery 

approaches to improve the efficacy and provide sustained 

beneficial effects.
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