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Background: Edaravone (EDR) is known for its free radical scavenging, antiapoptotic, 

antinecrotic, and anticytokine effects in neurological and non-neurological diseases. It is currently 

available clinically as Radicava® and Radicut®, intravenous medications, recently approved for 

the treatment of amyotrophic lateral sclerosis and cerebral infarction. However, the oral use 

of EDR is still restricted by its poor oral bioavailability (BA) due to poor aqueous solubility, 

stability, rapid metabolism, and low permeability. The present study reports the development of 

novel EDR formulation (NEF) using self-nanomicellizing solid dispersion (SNMSD) strategy 

with the aim to enable its oral use.

Materials and methods: The selection of a suitable carrier for the development of NEF 

was performed based on the miscibility study. The optimization of EDR-to-carrier ratio was 

conducted via kinetic solubility study after preparing SNMSDs using solvent evaporation 

technique. The drug–polymer carrier interaction and self-nanomicellizing properties of NEF 

were investigated with advanced characterization studies. In vitro permeation, metabolism, and 

dissolution study was carried out to examine the effect of the presence of a carrier on physico-

chemical properties of EDR. Additionally, the dose-dependent pharmacokinetic study of NEF 

was conducted and compared with the EDR suspension.

Results: Soluplus® (SOL) as a carrier was selected based on the potential for improving aque-

ous solubility. The NEF containing EDR and SOL (1:5) resulted in the highest enhancement 

in aqueous solubility (17.53-fold) due to amorphization, hydrogen bonding interaction, and 

micellization. Moreover, the NEF demonstrated significant improvement in metabolism, perme-

ability, and dissolution profile of EDR. Furthermore, the oral BA of NEF showed 10.2-, 16.1-, 

and 14.8-fold enhancement compared to EDR suspension at 46, 138, and 414 µmol/kg doses.

Conclusion: The results demonstrated that SNMSD strategy could serve as a promising way 

to enhance EDR oral BA and NEF could be a potential candidate for the treatment of diseases 

in which oxidative stress plays a key role in their pathogenesis.

Keywords: edaravone, Soluplus®, nanotechnology, oral bioavailability, metabolism, 

permeability

Introduction
Edaravone (EDR) is a well-established potent antioxidant and strong free radical 

scavenging drug, particularly in Japan since 2001 after receiving approval for acute 

ischemic stroke.1,2 Recently, it garnered global attention for gaining approval in the 

United States and Japan for amyotrophic lateral sclerosis (ALS) in years 2017 and 2015, 

respectively.3 Chemically, it is 3-methyl-1-phenyl-2-pyrazolin-5-one and belongs to 

the therapeutic class of central nervous system agents.4 The therapeutic activity of 

EDR is due to the removal of hydroxyl radical, modulation of inflammatory processes 

as well as neurodegenerative processes, apoptotic and necrotic cell death, nitric oxide 
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production, and matrix metalloproteinase levels.1,2 The 

unique feature of EDR is access to the brain through blood–

brain barrier due to its high lipophilicity and low molecular 

weight (174.203 g/mol); thus, its activity is not limited to 

vascular compartment.5 Its therapeutic potential against both 

neurological and non-neurological diseases was already 

proven from several in vitro and in vivo experiments includ-

ing stroke,5–7 Alzheimer’s disease,8,9 epilepsy,10 pneumo-

coccal meningitis,11 motor neuron disease,7,12,13 spinal cord 

injury,14 myocardial injury,15 liver injury,16 renal injury,17,18 

lung injury,19 cardiac fibrosis and dysfunction,20 chronic 

nephropathy,18 and retinal diseases.21

The oral route of administration is the most preferred by 

patients considering their compliance and comfort. Accurate 

and flexible dosing, easy production, economic, and higher 

stability are the key reasons for most frequent use of oral 

route for drug administration.22 EDR was proved to be orally 

active against the Alzheimer’s disease8 and cerebral aneu-

rysms.23 Moreover, Treeway, a biotech company, developed 

an unrevealed oral formulation of EDR to conduct clinical 

trials for ALS, which received orphan designation from 

regulatory agencies including European Medicines Agency 

(2014)24 and US Food and Drug Administration (USFDA) 

(2015).25 However, the current approved and available forms 

of EDR in the market are Radicava® and Radicut® (Mitsubishi 

Tanabe Pharmaceuticals, Osaka, Japan), the intravenous 

infusion solutions for parenteral administration. Rong et al26 

reported the poor absolute oral bioavailability (BA) (5.23%) 

of EDR. Besides, it was designated as class IV drug as per 

Biopharmaceutics Classification System (BCS) due to its 

poor aqueous solubility (1.85±0.15 mg/mL) and permeability 

(Peff =3.18±0.0706×10−7 cm/s).26,27 EDR is recognized as a 

substrate of P-glycoprotein (Pgp). Thus, despite being highly 

lipophilic in nature, poor intestinal permeability was reported 

with EDR. Pgp plays a major role in limiting drug absorption 

by enhancing Pgp-mediated efflux and consequently reducing 

the oral BA of EDR.26 The poor oral BA was the key reason 

for the failure of a clinical trial of potential candidates against 

alzheimer disease such as curcumin.28,29 Therefore, there is a 

need to conduct the clinical trials for its safety and efficacy 

study at large scale for the development of EDR as a thera-

peutic for the treatment of diseases in which oxidative stress 

plays a key role in their pathogenesis. To improve the oral 

BA of EDR, the complexation of EDR with hydroxypropyl-

sulfobutyl-β-cyclodextrin showed promising results by dis-

playing a 10.3-fold improvement by improving its solubility, 

dissolution, and permeability.26 However, the impact on 

aqueous stability as well as rapid metabolism was not studied. 

Furthermore, its commercial translation was not realized pos-

sibly due to the high molecular weight of cyclodextrin, the 

slow process of complexation, and the unstable condition of 

processing media.30 Besides, the novel oral delivery system of 

EDR based on co-solvency and pH modification technology 

showed limited success by improving oral BA by 5.71-fold.27 

Based on this, the liquid and solid lipid-based nanosystem 

(LNS) of EDR revealed 10.79- and 9.29-fold improvement in 

oral BA of EDR compared to EDR suspension, respectively, 

due to significant improvement in solubility, modulation of 

Pgp efflux pump, and inhibition of uridine 5-diphospho-

glucuronosyl-transferase (UGT) enzymes.31 However, solid 

dispersion-based formulation showed improvement in solubil-

ity, stability, and BA compared to lipid-based formulations in 

case of clopidogrel napadisilate.32 Also, the issues associated 

specifically with self-microemulsifying drug delivery system 

could restrict its chronic use including high surfactant concen-

tration, which causes gastrointestinal irritation and chemical 

instabilities of drugs.33 Hence, a novel oral formulation of 

EDR is necessary to offer a superior oral BA compared to 

currently available alternatives, suitability for chronic use, and 

have commercialization potential. Self-nanomicellizing solid 

dispersion (SNMSD) is the combination of widely accepted 

solid dispersions and nanomicelles’ strategies to improve the 

oral BA of challenging drugs. The dramatic improvement 

in oral BA of drugs including curcumin34,35 and ritonavir,36 

belonging to BCS class IV using SNMSD strategy by improv-

ing solubility, stability, and intestinal permeability.27,31 Use 

of SNMSD strategy to enhance the oral BA of EDR is yet 

to be studied as per our knowledge. Thus, it was explored to 

develop novel EDR formulation (NEF). The work reported 

here aimed to develop NEF using the SNMSD strategy and 

assessed for its solubility, stability, dissolution, metabolism, 

permeability, and BA.

Materials and methods
Materials
EDR was purchased from Aladdin Industrial Corporation 

(Shanghai, China). Soluplus® (SOL) and CAVASOL® W7 HP 

PHARMA (hydroxypropyl-β-cyclodextrin [HP-β-CD]) were 

gifted by BASF Australia Ltd (Melbourne, VIC, Australia) 

and Chemiplas Australia Pty Ltd (Melbourne, VIC, Australia), 

respectively. Potassium pyrophosphate, Tyrode’s solution, 

ascorbic acid, sodium carboxymethylcellulose, polyvinylpyr-

rolidone K 30 (PVP K30), polyethylene glycol (PEG) 4000, 

poloxamer 188, poloxamer 407, concentrated hydrochloric 

acid, perchloric acid, formic acid, disodium hydrogen 

phosphate, citric acid, uridine diphosphate glucuronic acid 
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(UDPGA) trisodium salt, alamethicin, d-glucaric acid 1,4-

lactone, and DMSO-d
3
 were purchased from Sigma-Aldrich 

Co. (St Louis, MO, USA). Acetic acid, phosphoric acid, 

sucrose, magnesium chloride, and sodium hydroxide pellets 

were obtained from Chem-Supply (Gillman, SA, Australia), 

boric acid was obtained from Optigen Scientific (Port Ade-

laide, SA, Australia), saline was obtained from Pfizer, Inc. 

(New York, NY, USA), and Pierce BCA Protein Assay Kit 

was obtained from Thermo Fisher Scientific (Waltham, MA, 

USA). High-performance liquid chromatography (HPLC) 

grade ethanol and methanol were purchased from EMD 

Millipore (Billerica, MA, USA). High-purity water using a 

Milli-Q water purification system (Millipore Ultrapure Water 

System; EMD Millipore) was used throughout the study. All 

other reagents were of analytical grade.

Formulation development and 
optimization of NEF
Selection of a suitable carrier for the development 
of NEF
The carrier selection was performed based on the miscibility 

study as described previously.37 The solutions of polymeric 

carriers including SOL, HP-β-CD, PVP K30, PEG 4000, 

poloxamer 407, and poloxamer 188 were prepared at differ-

ent concentrations including 2.5, 5, 7.5, and 10% (w/v) using 

water. An excess amount of EDR was added to each polymeric 

solution in glass vials and allowed to shake in a mechanical 

shaker (Axyos Technologies, Brisbane, QLD, Australia) for 

24 h with 150 rpm at ambient temperature.27 Subsequently, 

each sample was filtered through 0.45 µm polyvinyl difluoride 

(PVDF) syringe filter and diluted with appropriate dilution by 

mobile phase. For the assay of EDR, the analytical method 

from the Japanese Pharmacopeia was used as per the previous 

study with minor modification.75 The analysis of samples was 

conducted using the ultraviolet (UV)–visible spectrophotom-

eter detector – HPLC method with a mobile phase consisting 

of water, methanol, and acetic acid (100:100:1) with 1 mL/

min flow rate and 20 µL injection volume at 240 nm.27

Preparation of SNMSD using solvent evaporation 
(SE) technique
SE method was used to prepare the SNMSDs of EDR and 

SOL, a selected polymer from miscibility study, as described 

by Wang et al.38 EDR and SOL at the ratio of 1:1, 1:2.5, 

1:5, 1:7.5, 1:10, 1:12.5, and 1:15 were dissolved in ethanol. 

Subsequently, the mixture was allowed to evaporate under 

the vacuum (500–600 mbar) using a rotatory evaporator at 

55°C–60°C. SNMSDs were then scraped using a spatula, 

pulverized in the mortar-pestle and passed through 250 µm 

sieve. All prepared SNMSDs were kept overnight in the 

desiccator for drying and stored in a refrigerator at 4°C until 

use for further studies.

Kinetic solubility study
The selection of SNMSD as a NEF was based on the kinetic 

solubility study. SNMSDs or EDR was added in an excess 

amount to 2 mL of simulated intestinal fluid (SIF), pH 6.8, in 

glass vials.39 The solubility study was conducted as described 

previously, and samples were collected at predetermined 

time intervals.27

Characterization of NEF
Comparison of solubility of NEF with unformulated 
EDR and physical mixture (PM)
To prepare PM, EDR and SOL in the ratio of 1:5 were mixed 

using pestle mortar until a homogeneous mixture was obtained 

and passed through 250 µm sieve.40 The improvement in aque-

ous solubility of EDR with PM and NEF was investigated 

in simulated body fluids (SBFs) such as simulated gastric 

fluid (SGF) (pH 1.2), SIF (pH 6.8 and pH 7.4), and water as 

described previously and compared with the EDR.27

Determination of active content in solid dispersion
The NEF equivalent to 1 mg of EDR was dissolved in 1 mL 

of methanol. The solution was further analyzed by using 

previously developed HPLC method. The loading ability 

and loading efficiency were determined based on the weight 

ratio of EDR to SOL in NEF and the amount of EDR loaded 

in the NEF from the initial value used for the preparation, 

respectively.41

Investigating drug–polymer interaction 
with advanced characterization
Differential scanning calorimetry (DSC) study
DSC analysis was carried out by using Discovery DSC 

(Model 2920; TA Instruments, New Castle, DE, USA). DSC 

was performed for the samples including EDR, SOL, PM, 

and NEF. The samples (2–4 mg) were taken in the aluminum 

open crucible, and an empty crucible was used as blank. 

Thermograms of each sample were recorded at the heating 

rate of 10°C/min, in the temperature range of 40°C–250°C 

under the flow (50 mL/min) of nitrogen gas.31,39

X-ray diffraction (XRD) study
XRD patterns were recorded for the samples including 

EDR, SOL, PM, and NEF to study the solid characteristics. 
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The XRD instrument (PANalytical, Empyrean X-ray dif-

fractometer) was used, and diffractograms were taken by 

using CuKα radiation (λ=1.5418  Å), 40  kV voltage, and 

40 mA current. The scanning rate was 2° per minute in the 

2θ of 2°–50°.31,39

Scanning electron microscopy (SEM) study
Surface morphology was studied by using an instrument, 

Zeiss Microscopy Merlin with GEMINI II column. SEM 

study was carried out for the samples including EDR, SOL, 

and NEF. Each sample was mounted on the double-sided 

adhesive tape. The photomicrographs were obtained at 

the voltage of 0.7  kV and examined at the magnification 

of 2,000×.31,39

Fourier transform infrared (FTIR) spectroscopy study
FTIR spectroscopy was carried out using a conventional 

potassium bromide (KBr) pellet method and a PerkinElmer 

Spectrum 400 spectrometer. The study was performed for 

the samples including native EDR, SOL, PM, and NEF. 

Briefly, 2–4 mg of samples were mixed with 100–150 mg 

of KBr and made pellet using the pressure of 8 tonnes for 

10–15 s. The KBr pellet was placed in the sample holder. 

FTIR spectra were obtained between 400 and 4,000 cm−1 at 

the scanning rate of 2 cm−1.38

1H nuclear magnetic resonance (NMR) study
Bruker AVANCE III 500 MHz was used to record the 1H 

NMR spectra at the frequency of 500 MHz. The samples 

including EDR and NEF were prepared by dissolving in 

DMSO-d
3
 followed by transferring to thin 5 mm diameter 

tubes prior to measurement. The data analysis was performed 

using the Topspin 3.2 software.42

Assessment of self-nanomicellizing 
properties of NEF
Preparation of EDR-loaded micelles solution of NEF
An accurate quantity of NEF (equivalent to 15 mg EDR) 

was dispersed in 10  mL of water and kept on the mag-

netic stirrer for stirring at 500 rpm up to 3 h. The resultant 

mixture was then filtered through 0.45 µm PVDF filter to 

get the homogeneous micellar solution and to remove the 

unloaded EDR.43

Characterization of EDR-loaded micelles
The Zetasizer Nano ZS (Malvern Instruments, Malvern, UK) 

was used to measure the particle size, polydispersity index 

(PDI), and zeta potential of the above prepared micellar 

solution based on the principle of photon correlation spectros-

copy. In addition, a Philips CM 100 Transmission Electron 

Microscope fitted with an SIS MegaView II CCD camera 

was used to determine morphological characteristics using 

transmission electron microscopy (TEM) analysis. Briefly, 

a tiny drop of micellar solution was kept on the copper grid 

followed by drying overnight and analyzed by the Image 

Analysis Software.

To determine drug loading and entrapment efficiency of 

micelles, EDR-loaded micellar solution was freeze-dried. 

Before freeze drying, the micellar solution was kept in a deep 

freezer maintained at −80°C for 24 h (MDF-U74V-PE; Pana-

sonic Healthcare Co., Ltd., Tokyo, Japan). The sample was 

then freeze-dried using lyophilizer (Labconco Corporation, 

Kansas City, MO, USA) at −44°C and 8×10−3 M bar for 36 h. 

The freeze-dried powder was further dissolved in methanol 

and analyzed by using previously developed HPLC method. 

The percentage of drug loading and percentage of entrapment 

efficiency were determined based on the weight ratio of EDR 

in micelles to total mass of micelles and the amount of EDR 

loaded in micelles from the initial mass of EDR used for the 

preparation of micelles, respectively.43

Stability study
Stability study of EDR-loaded micelles was performed at 

various stability conditions including hydrolytic, thermal, 

and photolytic, up to 24 h as described previously.27 For 

hydrolytic condition, 2  mL of each solution (pH 2–10) 

was filled in the glass bottle and covered with aluminum 

foil to protect from light and kept at 25°C. The solution 

was kept under various conditions, which included 4°C, 

25°C/60% relative humidity (RH), and 40°C/75% RH for 

determining the stability against temperature. The EDR 

micellar solution was kept in the KBF ICH 720 (E2) – a 

constant climate chamber as per the International Council 

for Harmonization (ICH) guideline to determine the stability 

when exposed to light. The samples were taken out at prede-

termined time points and analyzed with HPLC.27

Physical stability study of NEF as per ICH 
guideline
The stability study of NEF was carried out by evaluating 

the percentage of drug content and aqueous solubility up 

to 8 weeks as per ICH guideline.27 The stability conditions 

include 4°C, 25°C/60% RH, and 40°C/75% RH. The NEF 

was filled in the glass vials, sealed, and stored in the stability 

chamber after covering with aluminum foil. The aliquots 
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were collected at predetermined time intervals and analyzed 

by HPLC method.

In vitro permeation and metabolism 
study of NEF
In vitro permeation and metabolism study were carried out 

as per our previous study.27,31 Male Wister rats (180–200 g) 

were used to prepare everted sacs of gut for the assay. Each 

sac was filled with 2 mL of Tyrode’s solution having the 

EDR concentration of 287.02 µmol with or without borneol 

(1.30  mmol) and NEF (equivalent to EDR concentration 

287.02 µmol). The amount of EDR and EDR glucuronide 

(EDR-G) metabolites and the rate of permeation were deter-

mined and compared.

In vitro dissolution study
A dissolution study was performed for EDR and NEF by 

using United States Pharmacopeia (USP) type II (paddle) 

apparatus at 37°C and 50 rpm.34 EDR and NEF were placed 

in the dissolution flask containing 900  mL of dissolution 

media including SGF (pH 1.2) and SIF (pH 6.8). The 

samples were collected and replaced with an equal volume 

of the dissolution media at different time points 5, 15, 30, 

45, 60, 90, and 120 min. Each sample was further filtered 

through 0.45 µm PVDF syringe filters followed by dilution if 

required with mobile phase. The amount of the drug released 

at each time point was determined by previously developed 

HPLC method. SNMSD could be categorized under con-

trolled release formulation; the use of various mathematical 

models in describing drug release from solid dispersion 

including zero-order, first-order, Higuchi, Hixson–Crowell, 

and Korsmeyer–Peppas models was well recognized and 

reported.44–47 Specifically, a solid dispersion using SOL 

could improve dissolution due to solid-state transformation 

as well as micellization. The use of zero-order, first-order, 

Higuchi, Hixson–Crowell, and Korsmeyer–Peppas models 

has been successfully described for drug release from SOL-

based solid dispersion.47,48 Thus, the results obtained from the 

HPLC analysis were fitted into the different release kinetic 

models including first order, zero order, Hixson–Crowell, 

Higuchi matrix, and Korsmeyer–Peppas to determine the 

release kinetic. In addition, the release profile of native EDR 

and NEF was compared by calculating the dissimilarity (f1) 

and similarity (f2) factors to understand the impact of pH on 

release. The formulas to determine the best suitable release 

kinetic model and dissimilarity and similarity factors are 

mentioned in Table S1. Dissolution profiles are considered 

to be similar if the f1 and f2 values are ,15 and 50–100, 

respectively.

In vivo pharmacokinetic study
The animal study was carried out as per the previous report 

using the male Sprague Dawley rats (300±25 g) and was 

approved by the Animal Ethics Committee of the University 

of South Australia under South Australian Animal Welfare 

Act 1985.27 The dose-dependent pharmacokinetic study of 

NEF was conducted and compared with the EDR suspension 

prepared using 0.5% sodium carboxymethylcellulose. Based 

on our previous publications, the standard deviation (SD) 

was determined within the 20% of mean. Thus, the sample 

size n=6 was calculated for the detection of difference of 

25% between groups at the β level of 80% and the α level 

of 5%.27,31 Four groups of rats (n=6) were orally administered 

with the EDR suspension of 172 µM/kg and NEF equivalent 

to 46, 138, and 414 µM/kg of EDR. The plasma samples have 

been collected at the predetermined time interval of 0, 5, 15, 

30, 45, 60, 90, 12, 180, 240, 300, 360, 420, and 480 min. 

EDR was extracted from the plasma by using the mixture of 

Mcllvaine buffer (pH 5.4) and dichloromethane-n-pentane 

(3:7, v/v) as mentioned in our study.27 EDR concentration in 

each sample was measured using the liquid chromatography-

tandem mass spectrometry method, and Phoenix WinNonlin 

software was used to calculate the pharmacokinetic param-

eters.27 The study has been conducted for 8 h as the level of 

EDR was below detection limit after 8 h.

Statistical analysis
Mean and SD were used to present all values. The statistical 

analysis of data was conducted using GraphPad Prism 6. 

Data were evaluated for normal distribution first using 

Shapiro–Wilk test. Based on the results, further analysis 

was performed using Student’s t-test for two groups, or 

one-way or two-way analysis of variance (ANOVA) for 

multiple groups. P-values ,0.05 were considered statisti-

cally significant.

Results and discussion
Development of formulation and 
optimization of NEF
Poor solubility, dissolution, metabolism, and permeability 

are determined as challenges that resulted in poor oral BA 

of EDR.27 The SNMED strategy is the combination of solid 

dispersion and nanomicelles strategies, which are the part of 

the most exciting area to curb the issues that restrict drug’s 

absorption and displayed a potential for overall improvement 
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in the BA. It is the system where drug molecule disperses 

in the polymeric carrier similar to solid dispersion-based 

formulation.49,50 The role of polymeric carrier is critical for 

drug solubilization, stabilization, improving dissolution, 

permeability, and absorption.34,51 Therefore, miscibility 

study was used to finalize the most suitable polymer for the 

development of NEF. Furthermore, the ratio of drug to car-

rier was chosen based on the kinetic solubility study. Also, 

the solubility of optimized NEF was compared with a PM 

of EDR and carrier with the similar amount used in NEF to 

evaluate the impact of the presence of polymeric carrier on 

the solubility profile of EDR.

Selection of suitable carrier for the development 
of NEF
A number of carriers were shortlisted from the literature 

based on their potential to overcome the hurdles in the 

development of a novel oral delivery system such as PVP 

K30, SOL, PEG 4000, poloxamer 188, and poloxamer 

407.38,39 In addition to abovementioned polymers, HP-β-CD 

was considered as a control based on its proven ability to 

improve the solubility and dissolution of EDR.52 The reported 

aqueous solubility of EDR was 1.85±0.15  mg/mL.27 The 

increment in the aqueous solubility of EDR was observed 

with increasing the percentage of polymer content (w/v). The 

regression coefficient (R2) values for PVP K30, SOL, PEG 

4000, HP-β-CD, poloxamer 188, and poloxamer 407 are 

0.997, 0.994, 0.951, 0.971, 0.917, and 0.989, respectively. 

The polymers such as PVP K30 and SOL suggested the best 

linear relationship in the enhancement of solubility with the 

polymer concentration compared to other polymers. Also, 

10% SOL showed 4.67-fold improvement in the aqueous 

solubility of EDR, whereas with the same concentration 

of HP-β-CD, PVP K30, PEG 4000, poloxamer 188, and 

poloxamer 407 presented 3.49-, 2.22-, 1.73-, 1.74-, and 2.14-

fold enhancement, respectively (Figure 1A). The solubility 

enhancement of EDR with SOL is statistically significantly 

greater than HP-β-CD, which justified the selection of SOL 

for the development of NEF.

There are a number of reasons based on the literature and 

experiments which might explain the superior performance 

of SOL over another carrier including hydrogen bonding 

interactions with EDR as it has two hydrogen donor and two 

acceptor groups while EDR has two hydrogen donor groups 

and ability to form solid solution with EDR, which makes 

EDR available in a dissolved state,53 can act as a precipita-

tion inhibitor, keeps the supersaturated condition for at least 

24 h based on the results of kinetic solubility study,39 and 

can favor micellar solubilization.39

Kinetic solubility study
The ratio of EDR to SOL was optimized based on the kinetic 

solubility study. The maximum and equilibrium solubility 

and time for precipitation were determined for each ratio. 

The SD showing highest solubility without precipitation was 

considered for the development of NEF.39 The crystalline 

EDR displayed equilibrium aqueous solubility and maxi-

mum solubility (1.85±0.15 mg/mL27 and 2.29±0.32 mg/mL, 

respectively). Additionally, the precipitation was seen after 

30 min, which could be a reason for the difference in the 

values of maximum solubility and equilibrium solubility. 

With a good agreement to miscibility study, the solubility of 

EDR was significantly enhanced with the increasing concen-

tration of SOL in up to 1:5 EDR-to-SOL ratio. Approximately 

5- and 11-fold improvements in aqueous solubility were 

observed with SDs having 1:1 and 1:2.5 ratios, while the 

SD with 1:5 ratio showed the highest solubility enhancement 

(17.5-fold) compared to all ratios used for the optimization 

study (Figure 1B). Interestingly, lower solubility was detected 

with 1:7.5, 1:10, 1:12.5, and 1:15 ratios compared to 1:5 ratio 

but significantly higher in comparison with crystalline EDR 

with ~11-, 9-, 6.6-, and 6.5-fold, respectively. The decreasing 

solubility after certain drug-to-polymer ratio could be due 

to reaching beyond supersaturation stage, which was also 

observed in the previous study with SOL, PEG 4000, and 

PVP K30 polymers.38 No precipitation was noticed with all 

ratios, suggesting the critical role of SOL as a precipitation 

inhibitor by maintaining supersaturation condition for the 

desired period. The binary solid dispersion system of EDR 

and SOL with 1:5 ratio was considered as an NEF.

Characterization of NEF
Comparison of solubility of NEF with unformulated 
EDR and PM
There was a significant enhancement in aqueous solubility 

of EDR observed with PM (3.88-fold) and NEF (17.53-fold) 

(Figure 1C). The NEF displayed 4.51-fold greater solubility 

improvement compared to PM. Partial amorphization 

could be a potential reason for the low solubility of EDR 

with PM compared to NEF.54 The solubility of EDR in 

SGF (pH 1.2) was significantly greater (4.46-fold), while 

SIF (pH 6.8 and 7.4) showed an insignificant difference 

compared to solubility in water. The PM and NEF showed 

significant enhancement in the solubility of EDR in all SBFs. 
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The exceptional performance of NEF was further investigated 

with advanced characterization study of NEF.

Determination of active content in solid dispersion
NEF is an amorphous solid dispersion, which can be defined 

as a molecular mixture of poorly water-soluble drugs and 

hydrophilic carriers.55 The manufacturing process of solid 

dispersion should ideally allow entire amount of EDR to 

be mixed with SOL to form NEF. The drug loading and 

efficiency as applied to other formulations such as nano-

particles will be not applied with solid dispersion-based 

formulations. To determine the proportion of EDR in NEF 

to understand the loss of EDR in manufacturing, we have 

used methanol technique. The proportion of EDR in NEF 

was 16.52%±0.16% (w/w), which is 99.03%±0.42% of the 

initial amount. No significant loss of EDR was observed 

during the manufacturing by SE technique.

Investigating drug–polymer interaction 
with advanced characterization
Change in solid-state characteristics from crystalline to 

amorphous, hydrogen bonding interaction, and micellization 

are perhaps potential reasons for the dramatic improvement 

in EDR aqueous solubility with NEF.31 To evaluate our 

hypothesis, DSC, XRD, and SEM studies were conducted to 

determine if any change happened in solid-state characteris-

tics of EDR and SOL when compared to optimized NEF.31,39 

Also, the possibility of hydrogen bonding between EDR and 

SOL was assessed from FTIR and 1H NMR analyses.41 The 

micellization property of NEF was studied by evaluating its 

β

Figure 1 Formulation development and optimization of NEF.
Notes: Miscibility study of EDR with various polymers (A), optimization of EDR-to-SOL ratio for the development of NEF (B), and solubility assessment of EDR, PM, and 
NEF in SGF (pH 1.2) and SIF (pH 6.8 and 7.4) (C) (mean ± SD, n=3).
Abbreviations: EDR, edaravone; HP-β-CD, hydroxypropyl-β-cyclodextrin; NEF, novel EDR formulation; PM, physical mixture; PEG 4000, polyethylene glycol 4000; 
PVP K30, polyvinylpyrrolidone K 30; SD, standard deviation; SOL, Soluplus®; SGF, simulated gastric fluid; SIF, simulated intestine fluid.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Drug Design, Development and Therapy 2018:12submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2058

Parikh et al

aqueous solution for the parameters such as particle size, zeta 

potential, and PDI by zetasizer and TEM analyses.56

DSC study
The thermal behavior of EDR, SOL, PM, and NEF is shown 

in Figure 2A. The characteristic melting endothermic peak at 

128.39°C was recorded with pure EDR, which confirmed the 

crystalline nature of EDR used in the preparation of devel-

oping NEF. SOL did not display any thermal event due to 

amorphous nature of the polymer reported in the literature.57 

Less intense endothermic peak was seen in the case of PM, 

which might be due to the partial amorphization because of 

the force used in mixing during preparation with mortar and 

pestle or dilution effect of SOL. The disappearance of the 

sharp melting endothermal peak of EDR in the thermogram 

of NEF revealed the complete alteration of the solid state of 

EDR from crystalline to amorphous.

XRD study
The solid-state characteristic of NEF was further confirmed 

with XRD study by comparing diffractograms of pure EDR, 

SOL, PM, and NEF. Pure EDR showed sharp characteris-

tics peaks at 11.2, 13.7, 14.7, 20.1, and 21.4 2θ assuring its 

crystalline nature, whereas amorphous nature of SOL was 

confirmed from its diffractogram without any characteristic 

peaks (Figure 2B). The decrease in the intensity of all char-

acteristic peaks of pure EDR in the diffractogram of PM 

verified the results of partial conversion to amorphous or dilu-

tion effect of SOL from DSC study (Figure 2B). However, 

diffractogram of NEF exhibited apparently absent of all peaks 

of pure EDR, which indicated complete amorphization of 

EDR in NEF (Figure 2B). SOL has been previously shown 

to have the unique capability of interacting with the drug 

molecules via H-bonds as it has two each of hydrogen donor 

and acceptor groups in each chain.58 SOL could interact with 

Figure 2 (Continued)
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the EDR crystal surfaces, especially with the 2θ values of 

11.2, 13.7, 14.7, 20.1, and 21.4° and disruption of the crystal 

lattice and order.59 The results of XRD analysis show a good 

agreement with the DSC study.

SEM study
The SEM analysis was performed to determine the surface 

micrographs of pure EDR, SOL, and NEF. The large agglom-

erate particles with ordered size and shape were observed in 

the micrograph of pure EDR, which indicated its crystalline 

nature (Figure 2C). Moreover, irregular-shaped particles 

were seen in the micrograph of SOL revealing its amorphous 

nature (Figure 2D). Furthermore, the micrograph of NEF 

demonstrated particles with relatively rough surface and dis-

ordered shape, which specified the amorphous nature of EDR 

in NEF without any traces of crystalline EDR (Figure 2E). 

The surface characteristics of NEF facilitate the quick and 

efficient dissolution of NEF upon contact with aqueous 

fluids.60 The confirmation of complete amorphization of EDR 

in NEF from SEM results is consistent with the results of 

DSC and XRD analyses.

FTIR and 1H NMR study
The hydrogen bond interaction could be possible between EDR 

and SOL due to the presence of hydrogen donor and acceptor 

chemical groups in their chemical structure.27,43 Therefore, the 

interaction between EDR and SOL was investigated using 

FTIR and 1H NMR. FTIR spectra of pure EDR, SOL, PM, 

and NEF are displayed in Figure 3A–D, respectively. Pure 

EDR (Figure S1) showed peaks at 3,200–3,600 cm−1 corre-

sponding to N-H and O-H stretching, 1,580–1,627 cm−1 in 

regard to C=N stretching, and 2,850–3,100 for aliphatic and 

aromatic C-H stretching. SOL displayed peaks representing 

O-H stretching and aliphatic C-H stretching, which were 

similar to EDR. The stretching corresponding to carbonyl 

group was additionally observed at 1,670–1,820 cm−1 in SOL 

spectra. The shifting or broadening of peaks between 3,200 

and 3,600 cm−1 was witnessed in FTIR spectra of NEF, which 

indicated the involvement of chemical groups present in EDR 

and SOL such as N-H and O-H in hydrogen bonding. Addi-

tionally, a similar observation was seen between 1,670 and 

1,820 cm−1 that confirm the participation of carbonyl group 

of SOL in hydrogen bonding. Shifting of chemical shifts was 

Figure 2 DSC, XRD, and SEM characterization study.
Notes: DSC thermographs (A) and X-ray diffractograms (B) of EDR, SOL, PM, and NEF, SEM photomicrographs of EDR (C), SOL (D), and NEF (E). (A) and (B) Data from 
Parikh et al.27,31 (C) Reprinted from Drug Deliv, 24(1), Parikh A, Kathawala K, Tan CC, Garg S, Zhou XF, Lipid-based nanosystem of edaravone: development, optimization, 
characterization and in vitro/in vivo evaluation, 962–978, Copyright © 2017, with permission from Elsevier. The results of DSC, XRD, and SEM of SOL were used as a control 
for other projects.
Abbreviations: EDR, edaravone; DSC, differential scanning calorimetry; NEF, novel EDR formulation; PM, physical mixture; SEM, scanning electron microscopy; 
SOL, Soluplus®; XRD, X-ray diffraction.
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Figure 3 FTIR and NMR characterization study.
Notes: FTIR spectra of EDR (A), SOL (B), PM (C), and NEF (D) and 1H NMR spectra of EDR (E) and NEF (F). The result of FTIR of SOL was used as a control for other 
projects.
Abbreviations: EDR, edaravone; FTIR, Fourier transform infrared; NEF, novel EDR formulation; NMR, nuclear magnetic resonance; PM, physical mixture; SOL, Soluplus®.
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also observed in the results of 1H NMR of NEF compared to 

pure EDR, which could be considered as a proof of hydrogen 

bonding interaction between the drugs and polymer as per 

the previous publication (Figure 3E and F and Table S2).41 

SOL has two each of hydrogen donor and acceptor groups 

while EDR has two hydrogen donor groups. As the optimized 

ratio of EDR to SOL for the development of NEF is 1:5, five 

times more SOL molecules are present in the NEF, which 

could facilitate six hydrogen bonding interactions. From the 

results of FTIR and NMR studies, the strong hydrogen bond-

ing interaction between EDR and SOL was confirmed, which 

could interact with the EDR crystal surfaces, especially with 

the 2θ values of 11.2, 13.7, 14.7, 20.1, and 21.4 and disruption 

of the crystal lattice and order. The formation of hydrogen 

bond between drug and polymer in preparation could restrict 

the solid-state change from amorphous to crystalline during 

the storage and provide physical stability to the formula-

tion.61 Similar results have been reported previously in solid 

dispersion-based preparations.41,60

Assessment of self-nanomicellizing 
properties of NEF
SOL, a graft copolymer of poly(vinyl caprolactam)–

poly(vinyl acetate)–poly(ethylene glycol), could form 

micelles over the concentration of 7.6 mg/L.56 The micellar 

system of SOL showed dramatic improvement in oral BA 

of drugs such as quercetin56 and cyclosporine A43 and the 

therapeutic efficacy of drugs such as doxorubicin,62 α-lipoic 

acid,63 and carvedilol.64 Thus, the self-nanomicellizing prop-

erties of NEF after dissolving NEF in aqueous media were 

investigated. The particle size is the most critical parameter 

as ,100 nm could enhance cellular uptake of drugs and also 

facilitate the transport across the intestinal membrane by 

paracellular or transcellular routes.56 The average particle 

diameter of 73.46±3.15 nm, the PDI of 0.12±0.04, and the 

zeta potential of −4.98±1.56 mV were observed using zeta-

sizer. A TEM photograph of micelles of NEF revealed the 

spherical droplets with the good agreement of particle size 

measured by zetasizer (Figure 4A). Additionally, micellar 

formulation remained stable with and without 20-fold dilu-

tion with dissolution media such as SGF (pH 1.2) and SIF 

(pH 6.8) after 24  h. The narrow size distribution, which 

prevents particle growth due to Ostwald ripening, could 

also justify the good stability of micelles in dissolution 

media.65 The percentage of drug loading and percentage of 

entrapment efficiency of micelles were 0.143 and 95.46, 

respectively.

Moreover, the uniform dispersion of NEF in various 

aqueous buffer systems from pH 2 to 8, SBF, and water 

confirmed nearly complete encapsulation of EDR in micelles. 

The complete encapsulation could provide protection to 

EDR against the degradation or metabolism in the presence 

of gastrointestinal contents.66 Thus, the stability of EDR in 

micelles at different pH and temperatures, in the presence 

of light, and in SBF such as SGF (pH 1.2) and SIF (pH 6.8) 

was examined for 24 h. There was no significant degrada-

tion (,3% degradation) of EDR that was detected in all 

conditions, while crude EDR showed dramatic degradation 

at alkaline conditions (pH 8–10).27 These results confirmed 

the complete amorphization, strong hydrogen bonding 

interaction, and micellization, which made NEF an excellent 

candidate for further development.
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Figure 4 TEM characterization study and stability study of NEF.
Note: TEM image of micellar solution of NEF (A) and stability assessment of NEF as per ICH guideline (B) (mean ± SD, n=3).
Abbreviations: EDR, edaravone; ICH, International Council for Harmonization; NEF, novel EDR formulation; SD, standard deviation; TEM, transmission electron microscopy.
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Physical stability study of NEF as per ICH 
guideline
No significant difference in the percentage of drug con-

tent and the aqueous solubility of EDR was witnessed 

(Figure 4B). Therefore, it might be stored at #40°C for at 

least 8 weeks. The strong hydrogen bond interaction between 

EDR and SOL could favor the physical stability of EDR in 

NEF and prevent the conversion of solid state from amor-

phous to crystalline.61

In vitro metabolism and permeation study
EDR was previously recognized as a substrate of UGT 

enzymes.26 Thus, it rapidly undergoes extensive metabolism, 

which results in poor oral BA.27,31 The inhibition of glucuroni-

dation is the critical requirement in improving the oral BA 

of EDR. Borneol is known for its inhibitory effect on 

glucuronidation and considered as a positive control in 

investigating the inhibitory effect of excipients on glucuroni-

dation.67 Thus, similar to our previous studies, borneol was 

considered as a positive control in the current study.27,31

The novel oral delivery system and LNS of EDR showed 

5.71- and 10.79-fold improvements in the oral BA of EDR, 

respectively, due to the inhibitory effect of surfactants on 

glucuronidation and the Pgp efflux of EDR during metabo-

lism and permeability.27,31 Based on such information, the 

impact of SOL on the glucuronidation of EDR was studied 

in rat liver microsomes. The significant inhibitory effect of 

SOL (45.64%) compared to borneol (37.56%) was observed 

(Figure 5A). The potential of SOL-based NEF was further 

tested on the permeability and metabolism of EDR during 

permeation across the small intestine using the everted 

intestine sac technique. The inhibitory effect of SOL was 

also witnessed as NEF displayed 2.73-fold greater transfer 

amount of EDR compared to crude EDR and statistically 

significant compared to borneol (Figure 5B). Additionally, 

NEF presented 41.67 and 15% less amount of EDR-G on the 

serosal side compared to crude EDR and borneol, respectively 

(Figure 5C). Moreover, it presented 59.9% and 44.2% fewer 

molar ratio of EDR-G to EDR compared to crude EDR and 

borneol, respectively, which indicated a statistically signifi-

cant effect of SOL present on the NEF glucuronidation of 

EDR (Figure 5D). There were 2.96-fold higher transfer rate of 

EDR from NEF and 2.65-fold greater with borneol compared 

to crude EDR (Figure 5E). The inhibitory effect of SOL on 

Pgp efflux and ,100 nm of micelles generated from NEF 

could also enhance the permeability of EDR across the small 

intestine.56 The results confirmed the significant improvement 

in the metabolism and permeability profile of EDR with NEF 

due to the inhibitory effect of SOL on glucuronidation.

In vitro drug dissolution
The result of dissolution study of EDR and NEF is shown 

in Figure 6A. EDR showed 100% release within 15 min in 

SGF compared to 85% release in 120 min in SIF, which 

indicated pH-dependent release. It was further examined by 

comparing the dissolution profiles using f1 and f2 factors. 

The determined f2 value (similarity factor) and f1 value 

(dissimilarity factor) are 14 and 26, respectively, which 

confirmed the impact of pH of the media on EDR release. 

As per our previous report, EDR exhibited significantly 

higher pH-dependent solubility in SGF (8.26±1.42 mg/mL) 

than in SIF (1.89±0.51 mg/mL).31 The difference in dissolu-

tion results of crude EDR in SGF and SIF could be based 

on solubility data. Moreover, crude EDR followed Hixson–

Crowell and Korsmeyer–Peppas release kinetic models in 

SGF and SIF, respectively (Table 1). Additionally, in SIF, it 

followed an anomalous transport (non-Fickian) mechanism, 

which could be controlled by factors other than diffusion. 

The sedimentation and wetting of the EDR at interface could 

control the release of EDR in SIF.

The dissolution of NEF in SGF and SIF was 100% within 

15 and 30 min, respectively. There was a significant improve-

ment in the dissolution of NEF detected in SIF compared 

to crude EDR, whereas no dramatic change was witnessed 

between the dissolution profile of crude EDR and NEF in 

SGF except at 5 min. The amorphization, hydrogen bond-

ing interaction, and micellization could play a vital role in 

the improvement of dissolution behavior of EDR from NEF 

compared to crude EDR. Additionally, the f2 (65) and f1 (3) 

values confirmed the similar dissolution profiles of EDR in 

SGF and SIF, which suggested the minimum impact of pH 

on EDR release from NES. Moreover, the first-order release 

kinetic model was best fitted with the dissolution profiles of 

NEF. Thus, the rate of EDR release depends on the amount 

of EDR retained in NEF.68

EDR exhibited pH-dependent solubility in SGF (8.26±1.42 

mg/mL) and SIF (1.89±0.51 mg/mL), respectively.31 We 

have used 900  mL of dissolution media including SGF 

(pH 1.2) and SIF (pH 6.8) in the dissolution study. The 

fast release of EDR and EDR from NEF could be due to 

sufficient solubility and the large amount of dissolution 

media. Moreover, NEF is the amorphous solid dispersion, 

which can be defined as molecular mixture of EDR and 

SOL. Based on DSC and XRD results, there was no sig-

nificant amount of free EDR present in NEF. Moreover, 

during the process of micelles’ formation after dispersing 

NEF into dissolution media, EDR can be either encapsu-

lated in micelles or remained in unloaded form. Based on 

the results of drug loading and entrapment efficiency of 
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micelles, ~96% of EDR was found encapsulated in micelles. 

Thus, there should be a nonsignificant contribution from 

unloaded EDR in dissolution results. Additionally, a number 

of studies of solid dispersion-based formulation containing 

SOL showed the quick release of drugs (within 5 min).60,69,70 

It could be due to the ability of SOL of forming solid 
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Figure 5 The impact of SOL on permeability and metabolism of EDR.
Notes: Inhibitory effect of SOL (1%) on EDR glucuronidation in a microsomal incubation assay (A), the amount (in percentage) of EDR (B) and EDR-G (C) in serosal 
side at predetermined time interval, molar ratio between EDR-G and EDR (D), and transfer rate of EDR in the serosal side (E) (mean ± SD, n=3). *P,0.05, **P,0.01, and 
***P,0.001. One-way ANOVA and Tukey’s test or unpaired t-test (two tailed). Data from Parikh et al.27,31

Abbreviations: ANOVA, analysis of variance; EDR, edaravone; EDR-G, EDR glucuronide; NEF, novel EDR formulation; SD, standard deviation; SOL, Soluplus®.

solutions, which makes the drug available in a dissolved 

state in quick time, resulting in an improved BA, once in the 

body. Moreover, SOL is hydrophilic in nature resulting in 

a better wettability of the drug. Furthermore, micellization 

is another mechanism that could contribute to the quick  

release of drug.39
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In vivo pharmacokinetic study
The developed formulation in part I of the study would 

undergo the assessment of dose-dependent therapeutic 

effect against the Alzheimer’s disease in part II of the study. 

Thus, three different doses of NEF were considered for the 

pharmacokinetic study. The plasma concentration against 

time, pharmacokinetic parameters, and statistical analysis of 

pharmacokinetic parameters are displayed in Figure 6B and 

Tables 2 and S3, respectively. A significant increase in C
max

 

was observed at all doses of NEF compared to EDR suspen-

sion, while NEF did not show any difference in T
max

. These 

results are consistent with the result of dissolution study as 

NEF displayed quick release in both media similar to EDR 

suspension release in SGF. Also, NEF showed significantly 

longer t
1/2

 compared to EDR suspension, which could be 

due to the inhibitory effect of SOL on EDR glucuronidation. 

No significant difference in t
1/2

 value between the NEF groups 

with different doses was observed. Moreover, NEF exhibited 

dramatic increment in AUC
0–t

 and 10.24- (46 µM/kg), 16.08- 

(138  µM/kg), and 14.78- (414 µM/kg) fold enhancement 

in relative BA compared to EDR suspension. There was a 

significant difference in BA noticed between the groups of 

NEF with doses 46–138 and 414 µM/kg. EDR displays high 

protein binding (91.0%–91.9%), and it is possible that at the 

higher doses, protein-binding sites are saturated so that EDR 

remains free and available for metabolism and excretion.71,72 

The similar dose-dependent absorption via intraperitoneal 

route was also reported.73

The solubilizing amount of EDR in the vehicle used 

for pharmacokinetic study might significantly affect the 

outcome. Thus, determination of solubilized EDR in a total 

of 1.5  mL of vehicle used for oral administration in rats 

was performed. The dissolved part of EDR in the supplied 

vehicle was 31 and 100% with EDR suspension and NEF, 

respectively, for all doses. The presence of solubilized EDR 

in greater amount could be one of the reasons for significant 

improvement in oral BA.27 Moreover, with regard to disso-

lution results, both NEF and EDR showed fast dissolution 

(100%) within 15 min in the 900 mL of dissolution media. 

The reported fluid content in the gastrointestinal tract of the 

fasted rat is 3.2±1.8 mL.74 Therefore, EDR could precipitate 

in the rat stomach, even though it exhibits an exceptional 

Table 1 Results of the release kinetics of EDR and NEF in SGF and SIF, respectively

Formulation Medium First order Zero order Hixson–Crowell Higuchi matrix Korsmeyer–Peppas

EDR SGF 0.834 0.6077 0.9216 0.8501 0.8636
SIF 0.9609 0.7947 0.9718 0.97 0.9895

NEF SGF 0.9982 0.6988 0.9212 0.9061 0.9171
SIF 0.9862 0.5925 0.8807 0.8514 0.9078

Abbreviations: EDR, edaravone; NEF, novel EDR formulation; SGF, simulated gastric fluid; SIF, simulated intestine fluid.

Figure 6 In vitro dissolution study and in vivo oral bioavailability study of NEF.
Notes: In vitro dissolution study of EDR and NEF in SGF and SIF (A) and plasma profile vs time curve for the EDR suspension and NEF (46, 138, and 414 µmol/kg) in Sprague 
Dawley rats after oral administrations (B) (mean ± SD, n=6). Data from Parikh et al.27,31

Abbreviations: EDR, edaravone; NEF, novel EDR formulation; SD, standard deviation; SGF, simulated gastric fluid; SIF, simulated intestine fluid.
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dissolution profile in SGF. Similar results were observed in 

the kinetic solubility study where precipitation of EDR was 

noticed after 30 min in the absence of SOL. SOL is well rec-

ognized with its characteristic as a precipitation inhibitor by 

maintaining supersaturation. Thus, NEF could perform better 

in terms of in vivo dissolution. Moreover, we have shown 

that NEF displayed a 2.4-fold decrease in the glucuronida-

tion of EDR and a 2.73-fold greater transfer amount of 

EDR across the small intestine compared to nonformulated 

EDR. The inhibitory effect of SOL on glucuronidation, 

Pgp efflux, and ,100 nm of micelles generated from NEF 

could also enhance the metabolism and permeability of EDR 

across the small intestine. Also, improvement in dissolution, 

metabolism, and permeability profile could have played 

a vital role in the exceptional performance of NEF in the 

pharmacokinetic study compared to EDR suspension as per 

our previous reports.27,31

Conclusion
The poor oral BA of EDR due to poor aqueous solubility, 

dissolution, and permeability could hamper its optimum 

therapeutic use. To improve its BA, EDR-loaded NEF was 

developed using the SNMSD-based strategy. The impact on 

physicochemical characteristics of EDR, such as aqueous 

solubility, stability, and dissolution, as well as metabolism 

and permeability, was assessed. SOL as a polymer was 

selected based on its potential for improving solubility and 

stability. The optimized formulation, NEF, showed 17.5-fold 

improvement in SGFs. The mechanism of improvement of 

solubility and stability was extensively studied, and amor-

phization, hydrogen bonding interaction, and micellization 

were determined as significant contributors. Moreover, NEF 

showed better performance in in vitro metabolism and intesti-

nal permeability study compared to crude EDR. Furthermore, 

oral pharmacokinetic studies in rats showed that NEF was 

~16-fold bioavailable compared to unformulated EDR. The 

exceptional enhancement of oral BA of NEF compared to 

EDR suspension could be due to an improvement in solubil-

ity, dissolution, and permeability. Our studies proved that the 

developed NEF is a promising candidate for further study in 

oxidative stress-associated diseases.
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Supplementary materials

Table S1 Mathematical models used to describe drug dissolution curves

Equation Model Description

Qt = ln Q0 + K1t
Qt = Q0 + K0t
Q1/3

0 − Q1/3t = KCt
Qt = KHt1/2

Qt/Q∞ = KKt
n

First order
Zero order
Hixson–Crowell
Higuchi matrix
Korsmeyer–Peppas

Qt: amount of drug dissolved in time t, Q0: initial amount 
of drug in the solution, t: time, Q∞: amount of drug 
dissolved in time ∞, and K1, K0, KC, KH, and KK are the 
rate constants for first order, zero order, Hixson–
Crowell, Higuchi matrix, and Korsmeyer–Peppas, 
respectively

Release profiles comparison

f
R T
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j jj
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−
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Dissimilarity factor (f1) n: sampling number, Rj and Tj: percentage dissolved of the 
reference and test products at each time point j
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j j
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Figure S1 Structure of EDR (3-methyl-1-phenyl-2-pyrazolin-5-one).
Abbreviation: EDR, edaravone.

Table S2 Change in the position of chemical shifts of EDR and NEF in 1H NMR spectroscopy

EDR (chemical shift) NEF (chemical shift) Change

11.543 11.459 0.084
7.755 7.706 0.049
7.417 7.422 −0.005
7.195 7.193 0.002
5.381 5.356 0.025
2.136 2.107 0.029

Abbreviations: EDR, edaravone; NEF, novel EDR formulation; NMR, nuclear magnetic resonance.

Table S3 Statistic analysis of the pharmacokinetic parameters

Group P-value for t1/2 P-value for F0–t P-value for Tmax

EDR suspension (172 µM/kg) vs NEF (46 µM/kg) 0.0252 ,0.0001 0.9979
EDR suspension (172 µM/kg) vs NEF (138 µM/kg) 0.0005 ,0.0001 0.9958
EDR suspension (172 µM/kg) vs NEF (414 µM/kg) ,0.0001 ,0.0001 0.9914
NEF (46 µM/kg) vs NEF (138 µM/kg) 0.3147 0.0076 .0.9999
NEF (46 µM/kg) vs NEF (414 µM/kg) 0.0714 0.0448 0.9995
NEF (138 µM/kg) vs NEF (414 µM/kg) 0.8305 0.8460 .0.9999

Notes: t1/2, half-life; Tmax, peak time.
Abbreviations: EDR, edaravone; NEF, novel EDR formulation.
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