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Abstract: Recent empirical work has considered the prediction of inflation by combining 
the information in a large number of time series.  One such method that has been found to 
give consistently good results consists of simple equal weighted averaging of the 
forecasts over a large number of different models, each of which is a linear regression 
model that relates inflation to a single predictor and a lagged dependent variable.  In this 
paper, I consider using Bayesian Model Averaging for pseudo out-of-sample prediction 
of US inflation, and find that it gives more accurate forecasts than simple equal weighted 
averaging.  This superior performance is consistent across subsamples and inflation 
measures.  Meanwhile, both methods substantially outperform a naive time series 
benchmark of predicting inflation by an autoregression. 
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1. Introduction. 

Forecasting inflation is clearly of critical importance to the conduct of monetary policy, 

regardless of whether or not the central bank has a numerical inflation target.  A simple 

Phillips curve, which uses a single measure of economic slack such as unemployment to 

predict future inflation, is probably the most common basis of inflation forecasting.  The 

usefulness of the Phillips curve as a means of predicting inflation has however been 

questioned by several authors.  For example, Atkeson and Ohanian (2001) found that 

Phillips curve based forecasts of inflation give larger out-of-sample prediction errors than 

a simple random walk forecast of inflation, although this specific result is very sensitive 

to the sample period and to the choice of inflation measure (Sims (2002)).  Cecchetti, 

Chu and Steindel (2000) consider inflation prediction with individual indicators, 

including unemployment, and argue that none of these gives reliable inflation forecasts.  

Stock and Watson (2001, 2002a) consider prediction of inflation in each of the G7 

countries using a large number of possible models.  Each model has a single predictor 

(plus lagged inflation).  They find that most of the models they consider give larger out-

of-sample root mean square prediction error than a simple naive time series forecast 

based on fitting an autoregression to inflation.  When a model does have predictive power 

relative to the naive time series forecast, this tends to be unstable.  That is, the model that 

has good predictive power in one subperiod has little or no propensity to have good 

predictive power in another subperiod. 

 In recent years, researchers have however made substantial progress in 

forecasting inflation using large datasets (i.e. a large number of predictive variables), but 

where the information in these different variables is combined in a judicious way that 
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avoids the estimation of a large number of unrestricted parameters.  Bayesian VARs have 

been found to be useful in forecasting: these often use many time series, but impose a 

prior that many of the coefficients in the VAR are close to zero.  Approaches in which the 

researcher estimates a small number of factors from a large dataset and forecasts using 

these estimated factors have also been shown to be capable of superior predictive 

performance (Stock and Watson (1999, 2002b) and Bernanke and Boivin (2003)).  Stock 

and Watson (2001, 2002a) however argue that the best predictive performance is 

obtained by constructing forecasts from a very large number of models and simply 

averaging these forecasts.  Stock and Watson report that this gives the best predictive 

performance of international inflation (and also output growth), and that this is 

remarkably consistent across subperiods and across countries.  Although the basic idea 

that forecast combination outperforms any individual forecast is part of the folklore of 

economic forecasting, going back to Bates and Granger (1969), Stock and Watson 

underscore how consistent this is across time periods and variables being forecast.  It is of 

course crucial to the result that the researcher just average the forecasts (or take a median 

or trimmed mean).  It is in particular tempting to run a forecast evaluation regression in 

which the weights on the different forecasts are estimated as free parameters.  While this 

leads to a better in-sample fit, it gives less good out-of-sample prediction. 1 

 Stock and Watson (2001, 2002a) do not offer a definitive explanation for why 

simple averaging of forecasts does so well, but the finding is sufficiently strong and 

                                                 
1 Better out-of-sample predictive power is obtained if the weights in the forecast evaluation equation are 
instead estimated by ridge regression (Chan, Stock and Watson (1998), Stock and Watson (1999)).  Ridge 
regression is a shrinkage technique, so this is another example of how methods that avoid the estimation of 
a large number of unrestricted parameters give better forecasts. 
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general that forecasters ought to pay attention to this result, even without necessarily 

understanding exactly what is so effective about this particular form of shrinkage. 

 The result that equal weighted averaging gives the best forecasts is however odd.  

Indeed it cannot be correct as a general principal that equal weighted averaging of 

forecasts is always optimal.  For example, one can always just average the first two 

forecasts, call that a new forecast, and throw that back in the set of forecasts being 

considered.  If equal weighting is always best, then this new forecast will get an equal 

weight.  But this changes the weights on the original forecasts, which are no longer all 

equal.   While it is easy to say this, it is much harder to come up with a concrete 

alternative forecasting strategy that actually does better than simple averaging in terms of 

out-of-sample prediction of inflation.  That is the goal of this paper. 

 This paper considers the prediction of US inflation by Bayesian Model 

Averaging, a technique which was not considered by Stock and Watson (2001, 2002a).  

Bayesian Model Averaging has been developed mainly, but not exclusively, by 

statisticians as opposed to econometricians.  The idea is to consider prediction when the 

researcher does not know the true model, but has several candidate models.  A forecast 

can be constructed putting weights on the predictions from each model.  If these weights 

are all equal, then this is simple forecast averaging.  The researcher can however start 

from the prior that all the models are equally good, but then estimate the posterior 

probabilities of the models, which can be used as weights instead. 

 The contribution of this paper is to argue that Bayesian Model Averaging 

generally does better than simple equal weighted model averaging for predicting US 

inflation.  The result is remarkably consistent across measures of inflation, and across 
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different time periods.  Equal weighted model averaging substantially outperforms a 

naive time series forecast, but Bayesian Model Averaging does better again.  Since equal 

weighted model averaging has been found in the literature to give good forecasting 

performance, and is found by Stock and Watson (2001, 2002a) to give the best inflation 

forecasts of all the methods that they consider, I conclude that Bayesian Model 

Averaging goes straight to the top of the class, or at least should be taken very seriously 

in the toolkit of inflation forecasters. 

 One does not have to be a subjectivist Bayesian to believe in the usefulness of 

Bayesian Model Averaging, or of Bayesian shrinkage techniques more generally.  A 

frequentist econometrician can interpret these methods as pragmatic smoothing devices 

that can be useful for out-of-sample forecasting.  

 The plan for the remainder of the paper is as follows.  In section 2, I shall describe 

the idea of Bayesian Model Averaging.  The out-of-sample inflation prediction exercise 

is described in section 3.  Section 4 concludes. 

 

2. Bayesian Model Averaging 

The idea of Bayesian Model Averaging was set out by Leamer (1978), but has recently 

received a lot of attention in the statistics literature, including in particular Raftery, 

Madigan and Hoeting (1997), Hoeting, Madigan, Raftery and Volinsky (1999) and 

Chipman, George and McCulloch (2001).  It has also been used in a number of 

econometric applications, including output growth forecasting (Min and Zellner (1993), 

Koop and Potter (2003)), cross-country growth regressions (Doppelhofer, Miller and 

Sala-i-Martin (2000) and Fernandez, Ley and Steel (2001)) and stock return prediction 
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(Avramov (2002) and Cremers (2002)).  Avarmov and Cremers both report improved 

pseudo-out-of-sample predictive performance from Bayesian model averaging. 

 Consider a set of n models 1,... nM M .  The ith model is indexed by a parameter 

vector θ  - this is a different parameter vector for each model, but for compactness of 

notation I do not explicitly subscript θ  by i.  The researcher knows that one of these 

models is the true model, but does not know which one.2  The researcher has prior beliefs 

about the probability that the ith model is the true model which we write as ( )iP M , 

observes data D, and updates her beliefs to compute the posterior probability that the ith 

model is the true model:  

 
1

( | ) ( )( | )
( | ) ( )

i i
i n

j j j

P D M P MP M D
P D M P M=

=
Σ

 (1) 

where 
 ( | ) ( | , ) ( | )i i iP D M P D M P M dθ θ θ= ∫  

is the marginal likelihood of the ith model, ( | )iP Mθ  is the prior density of the parameter 

vector in this model and ( | , )iP D Mθ  is the likelihood.  Each model implies a forecast 

density 1,... nf f .  If we knew which model was the true model, we would pick the 

associated forecast density.  In the presence of model uncertainty, our forecast density is 

 *
1 ( | )n

i i if P M D f== Σ  

Likewise, each model implies a point forecast.  In the presence of model uncertainty, our 

point forecast weights each of these forecasts by the posterior for the model.3  This is all 

                                                 
2 The assumption that one of the models is true is of course unrealistic, though it may be a useful fiction for 
getting good forecasting results.   Recent theoretical work has considered Bayesian Model Averaging when 
none of the models is in fact true (see Bernardo and Smith (1994) and Key, Perrichi and Smith (1998)). 
3 This is the point forecast that minimizes mean square error.  Likewise, the density forecast *f is the best 
forecast evaluated by the logarithmic scoring rule (Raftery, Madigan and Hoeting (1997)). 
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there is to Bayesian Model Averaging.  The researcher needs only specify the set of 

models, the model priors, ( )iP M , and the parameter priors, ( | )iP Mθ .  The rest is just 

computation. 

 The models do not have to be linear regression models, but I shall henceforth 

assume that they are.  The ith model then specifies that 

 y X β ε= +  

where y  is a time series that the researcher is trying to forecast (such as inflation), X  is 

a matrix of predictors,β  is a px1 parameter vector, 1( ,... ) 'Tε ε ε=  is the disturbance 

vector and T is the sample size.  Motivated by the possibility of overlapping data in my 

subsequent application, I assume that the error term is an MA(h-1) process with variance 

2σ  such that 

 2( , ) , 1t t j
h jCov j h

h
ε ε σ−

−
= ≤ −  

 I shall define the models in the context of the empirical application below.  For 

the model priors, I shall assume that all models are equally likely, so that 1( )iP M
n

= .  

For the parameter priors, I shall take the natural conjugate g-prior specification for β  

(Zellner (1986)), so that the prior for β  conditional on 2σ  is 2 1(0, ( ' ) )N X Xφσ − .  For 

2σ , I assume the improper prior that is proportional to 21/σ .  This is a standard choice 

of the prior for the error variance, that was made by Fernandez, Ley and Steel (2001) and 

many others.  Routine integration (Zellner (1971)) then yields the required likelihood of 

the model 

 / 2 /
/ 2

( / 2)( | ) (1 ) p T h
i T

TP D M Sφ
π

− −Γ
= +  
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where 

 1' ' ( ' ) '
1

S Y Y Y X X X X Y φ
φ

2 −= −
+

 

Combining the model priors and parameter priors, equation (1) can then be evaluated for 

each model giving the posterior probability of each model and hence the weights to be 

assigned to forecast. 

 The prior for β  is centered around zero and so within each model the parameter 

is shrunken towards zero, which corresponds to no predictability.  The extent of this 

shrinkage is governed by φ .  A smaller value of φ  means more shrinkage, and makes the 

prior more informative, but this may help in out-of-sample forecasting.  Researchers 

often try to make the prior as uninformative as possible (corresponding to a high value of 

φ ), but at least in the inflation forecasting problem considered in this paper, a more 

informative prior turns out to give better predictive performance. 

 One way of thinking about the role of φ  is that it controls the relative weight of 

the data and our prior beliefs in computing the posterior probabilities of different models.  

If φ =0, then ( | )iP D M  is equal for all models and so the posterior probability of each 

model being true is equal to the prior probability.  The larger is φ , the more we are 

willing to move away from the model priors in response to what we observe in the data. 
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3. Application to U.S. Inflation Forecasting 

The application I consider is to forecasting U.S. inflation.  Following Stock and Watson 

(2001, 2002a), each model that will be used for forecasting is of the form 

 , ,t t h t t h t tZπ α γ ρπ ε+ −= + + +  (2) 

where ,t t hπ +  denotes the inflation rate from time t to time t+h, h  is the forecasting 

horizon, tZ  is a scalar predictor, and tε  is the error term, assumed to satisfy the 

restrictions above (so that it is a moving average process of order h-1).  Each model has a 

different scalar predictor and different parameters but I do not explicitly subscript these 

to denote their dependence on the model.  The forecasts will be compared with the naive 

time series model in which inflation is a simple autoregression 

 , ,t t h t h t tπ α ρπ ε+ −= + +  (3) 

The data I consider are quarterly from 1960Q1-2003Q2.  Four measures of inflation are 

used: CPI, Core CPI, the GDP deflator and the PCE deflator.  For the predictor tZ  in 

equation (2), I consider a total of 93 possible variables, as listed in the Appendix.  All of 

the variables are available for the whole sample period, yielding a balanced panel.  This 

gives a large number of alternative measures of economic slack and several asset prices.  

The predictors used are similar to those considered by Stock and Watson (1999, 2001, 

2002a). 

 I consider pseudo out-of-sample prediction of inflation using equal weighted 

averaging across the models defined by the different predictors in equation (2).  

Concretely, the equal weighted averaging h-step ahead forecast is given by 
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 1 ,
1 ˆ ˆ ˆn

i t t t t t h tZ
n

α γ ρ π= −Σ + +  (4) 

where ˆtα , t̂γ  and ˆtρ  are the OLS estimates of the parameters of equation (2) obtained 

using only data from date t and earlier.  Meanwhile, the Bayesian Model Averaging 

forecast is given by  

 1 ,ˆ ˆ ˆ( | )( )n
i t i t t t t t h tP M D Zα γ ρ π= −Σ + +  (5) 

where ( | )t iP M D  is the posterior probability that model i is the true model, computed 

using only data from date t and earlier, exactly as described in section 2 above.4  As a 

benchmark, I also consider the naive time series forecast 

 ,t t t h tα ρ π −+  (6) 

where tα  and tρ  are the OLS estimates of the parameters of equation (3) obtained using 

only data from date t and earlier. 

 For each quarter from 1971Q1 on, I computed the out-of-sample mean square 

prediction error of the equal weighted averaging forecast in equation (4) and the Bayesian 

Model Averaging forecast in equation (5), both relative to the out-of-sample mean square 

prediction error from the naive forecast in (6).  For the Bayesian Model Averaging, the 

forecasts are computed as described in the previous section, with the prior probabilities 

for all models being equal, for 20,5,2,1,0.5φ = .  A relative mean square prediction error 

less than one means that the forecast outperforms the naive time series forecast. 

                                                 
4 The model prior is that all models are equally likely and the prior for the parameters is centered around 
zero.  The latter is admittedly an odd prior in this context if it is really thought of as genuine prior beliefs 
about inflation.  However, I think of the prior only as a pragmatic device to counteract the dangers of 
overfitting.  Thinking of it this way, if applying this same prior to all the models gives good out-of-sample 
prediction (as I find it does), then it is a useful prior.   Notice that in equation (5), the Bayesian approach is 
only used to determine the relative weights assigned to the different models - within each individual model, 
the forecast is constructed using  OLS estimates of the parameters in equation (2), not the posterior means. 
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 To investigate the possibility of forecast instability (forecasts working well in one 

subperiod but not another), I also computed these relative out-of-sample mean square 

prediction errors in two subsamples: for 1971Q1-1986Q4 and for 1987Q1-2003Q2. 

 The results are reported in Tables 1, 2, 3 and 4, for prediction of CPI inflation, 

CPI core inflation, GDP deflator inflation and PCE deflator inflation, respectively.  These 

results use all the predictors enumerated in the appendix for a total of 93 models.  It is 

also possible to compute the relative out-of-sample mean square prediction errors using 

only asset prices as predictors, which is useful because these are available in real-time 

and are not subject to revision, although there are only 23 such models.  The results, 

using asset prices only are reported in Tables 5, 6, 7 and 8 for prediction of CPI inflation, 

CPI core inflation, GDP deflator inflation and PCE deflator inflation, respectively.  The 

key results from these Tables are as follows: 

 

1. Both the equal weighted forecasts and the Bayesian Model Averaging forecasts nearly 

always have a relative mean square prediction error below one, indicating that both 

forecasts are consistently outperforming the naive time series benchmark.  The 

improvement relative to the benchmark is typically substantial. 

 

2. Bayesian Model Averaging nearly always outperforms equal weighted model 

averaging (as well as the naive time series benchmark).  This is a consistent result across 

for all four inflation measures, for both the 1971Q1-1986Q4 and 1987Q1-2003Q2 
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subperiods5, and for prediction with all predictors and asset prices only.  The only 

exceptions are for large values of φ (low shrinkage) and at short horizons.  The margin by 

which Bayesian Model Averaging outperforms equal weighted model is often substantial.  

As an example, forecasting CPI inflation at a 4-quarter ahead horizon, simple equal 

weighted model averaging gives a 20% reduction in mean square prediction error relative 

to the naive time series benchmark. but Bayesian Model Averaging with φ=5 gives a 

25.5% reduction relative to this benchmark.  

 

3. Bayesian Model Averaging is very similar to equal weighted model averaging for 

small values of φ (high shrinkage).  Raising φ usually improves the forecasting power of 

Bayesian Model Averaging up to a point.  But a sufficiently large value of φ eventually 

leads to less good forecasting performance (I do not report results for φ above 20).  The 

predictive power of Bayesian Model Averaging for φ=20 can be good, but can be a bit 

erratic.  Overall, perhaps the best results obtain for φ=2 and φ=5. 

 

4. The margin by which both equal weighted averaging and Bayesian Model Averaging 

outperform the naive time series benchmark grows with the horizon, at least up to a 

horizon of about 4-6 quarters. 

 

5. The margin by which both equal weighted averaging and Bayesian Model Averaging 

outperform the naive time series benchmark is greater when using all predictors than 

when using asset prices only. 

                                                 
5 Bayesian Model Averaging outperforms equal weighted averaging and the naive time series benchmark in 
both subperiods, but the margin of improvement is greater in the second subperiod, which could be the 
result of having a longer span of data on which to base the forecasts. 
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6. These results are not qualitatively different across the four alternative inflation 

measures. 

 A natural question to ask is what fraction of the time the Bayesian Model 

Averaging gives a forecast that turns out to be better than that from equal weighted model 

averaging, in the sense of being closer to the subsequent realized inflation rate.  In Table 

9, I report the proportion of times that Bayesian Model Averaging gives the more 

accurate out-of-sample forecast, over the whole period 1971Q1-2003Q2 for all four 

inflation measures when using all possible predictors.  In Table 10, I report the proportion 

of times that Bayesian Model Averaging gives the more accurate out-of-sample forecast 

using asset prices alone.  The elements of Tables 9 and 10 are mostly above 0.5, 

substantially so at longer horizons, indicating that Bayesian Model Averaging is usually 

more accurate than equal weighted averaging.  This result is consistent across different 

inflation measures, and applies both when using all predictors and when using asset 

prices alone. 

 It is in fact easy to conduct a statistical test of the null hypothesis that Bayesian 

Model Averaging and equal weighted averaging are equally likely to give forecasts that 

are closer to the actual inflation rate (i.e. that the population probability being estimated 

in Tables 9 and 10 is in fact 0.5).  Under this null hypothesis, the proportion of times that 

Bayesian Model Averaging gives a more accurate forecast is approximately *(0.5, )
4
hN
T

 

where *T  denotes the number of out-of-sample observations.  Using this approximation, I 

do a two-tailed 10% test of the null hypothesis and denote the cases for which the 

hypothesis is rejected with an asterisk in Tables 9 and 10.  The null is generally rejected 
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for all the inflation series, at least at the horizons of 3 quarters and above and with φ of 5 

or less.  

 This test may not be very powerful, but since it rejects the null, lack of power is 

not relevant.  Meanwhile, it affords a very simple way of testing the significance of the 

improvement which Bayesian Model Averaging offers over simple equal weighted 

averaging.  Significance testing by a standard bootstrap might be quite tricky.  One could 

proceed by fitting a vector autoregression to inflation and all of the predictors and use 

this to generate bootstrap samples of inflation and the different predictors.  But the 

number of predictors is so large that this is unlikely to work well. 

 Each of the models I have considered consists of a single predictor (plus a 

constant and a lagged dependent variable).  This keeps the exercise close to that 

considered by Stock and Watson (2001, 2002a).  However, it is nonstandard in Bayesian 

Model Averaging methodology.  A more standard Bayesian Model Averaging approach 

would use all possible permutations of predictors, generating a large number of candidate 

models.  The computational burden of such an approach is considerable.  If λ  is the 

number of predictor variables, there will be a total of 2λ  models.  Given my dataset of 

inflation predictors, it is impossible to evaluate the posterior probability for all of these 

models. Madigan and York (1995) and Geweke (1996) discuss simulation based methods 

for implementing Bayesian Model Averaging that are practical with an extremely large 

number of models.  I do not however implement this. 

 In a different application of Bayesian Model Averaging to exchange rate 

forecasting (Wright (2003)), I consider exchange rate prediction using both (i) all 

possible single-predictor models and (ii) models consisting of all possible permutations 
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of these predictors.  I find that considering all possible permutations of predictors, 

although computationally harder to deal with, gives forecasts that are no better and 

perhaps even a little worse. 

 

4. Conclusion and Future Research 

A theme of much recent empirical work on inflation forecasting is that the judicious 

pooling of information from a large number of indicators provides the best approach to 

predicting inflation.  One method that has been particularly promising is to simply 

average the forecasts from a large number of models, each of which has a single predictor 

variable.  In this paper, I have considered instead using Bayesian Model Averaging for 

U.S. inflation forecasting and found that it fairly consistently outperforms this equal 

weighted forecast averaging.  This result is consistent across different subperiods and 

across different inflation measures. 

 Equal weighted forecast averaging is a benchmark that has been found to provide 

good forecasts of inflation (and of many other variables).  Stock and Watson (2001, 

2002a) indeed argue that it is the best method for predicting inflation in the US and other 

G-7 countries among a wide range of forecasting methods that they consider.  So, since 

Bayesian Model Averaging does better than equal weighted averaging in predicting US 

inflation, it should be taken very seriously as a method for forecasting inflation.  I do not 

mean to claim by this that Bayesian Model Averaging as I have implemented it in this 

paper is necessarily the best thing that a researcher could ever do.  It may be possible to 

get still better forecasts by incorporating nonlinear models in the exercise, by 
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incorporating Greenbook and private sector survey forecasts of inflation, by considering 

models with more than one predictor, or by using different shrinkage techniques.  

 The researcher using Bayesian Model Averaging has to select some prior 

hyperparameters, and the promising results obtain for values of these hyperparameters 

that imply considerable shrinkage.  One approach would be to select prior 

hyperparameters at each point in time that maximize the historical pseudo-out-of-sample 

forecasting performance.6   This kind of adaptive estimation strategy seems appropriate if 

one views Bayesian Model Averaging simply as a pragmatic forecasting device, as I do.  

A purist Bayesian would however reject this approach because it gets the conditioning 

wrong by allowing the prior to depend on the data. 

 Inflation forecasting is of direct interest to those who set monetary policy, but also 

of interest to researchers in empirical macroeconomics.  For example, researchers are 

often interested in estimating a forward-looking Taylor rule of the form 

 0 1 1 , 4t t t t t g t tr r E g vπµ µ µ π µ− += + + + +  (7) 

where tr  is the short-run interest rate, tE  denotes the expectations operator at time t and 

tg  is the output gap (see, for example, Clarida, Gali and Gertler (2000)).  The expectation 

of future inflation is not observable.  The standard empirical strategy is to rewrite (7) as 

 *
0 1 1 , 4t t t t g t tr r g vπµ µ µ π µ− += + + + +  

where *
, 4 , 4( )t t t t t t tv v Eπµ π π+ += − −  and then to estimate the coefficients from this 

regression.  The future realized inflation in this regression will however clearly be 

endogenous and so researchers look for instruments that will be correlated with , 4t tπ + , but 

                                                 
6 This is similar in spirit to the empirical Bayes methodology, considered in the context of model selection 
by George and Foster (2000).  The empirical Bayes approach selects prior hyperparameters so as to 
maximise the marginal likelihood of these hyperparameters. 
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uncorrelated with *
tv .  They are looking for instruments that have predictive power for 

future inflation, but that are in the information set at time t.  The more predictive power 

for future inflation a variable has, the stronger an instrument it is.  The inflation forecast 

provided by Bayesian Model Averaging is therefore likely to be an excellent instrument 

allowing equation  (7) or similar related equations to be estimated reliably. 

 One caveat with the results in this paper is that although I have shown that 

Bayesian Model Averaging would have worked well in out-of-sample prediction over the 

last 30 years, I cannot be confident that it will continue to work well in the future.  

Inflation is now at a lower level than it has been for the last 30 years and there is at least a 

possibility that there is some substantive nonlinearity leading inflation to behave 

differently at very low levels.7  This caveat of course applies to equal weighted averaging 

and to other inflation forecasting methods too.  Indeed one of the strengths of the 

Bayesian Model Averaging method is that I have found its superior performance relative 

to both a naive time series model and to equal weighted forecast averaging to be stable in 

the sense that it applies over at least two different subperiods.  

                                                 
7 It would be possible to use Bayesian Model Averaging to obtain a density forecast for inflation, and to 
compute a probability of deflation arising over a given horizon.  While such an exercise would clearly be of 
contemporary policy relevance, the concern that inflation and the variance of inflation might behave 
differently at very low levels would perhaps be especially pertinent here.   
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Appendix: List of Predictors 
Predictor Transformation(s) 
Industrial Production Total FDL 
Industrial Production Total Products FDL 
Industrial Production Final Products FDL 
Industrial Production Consumer Goods FDL 
Industrial Production Consumer Durables FDL 
Industrial Production Consumer Nondurables FDL 
Industrial Production Business Equipment FDL 
Industrial Production Intermediate Materials FDL 
Industrial Production Nondurable Goods Materials FDL 
Industrial Production Manufacturing FDL 
Purchasing Managers’ Index Level 
Capacity Utilization Level 
NAPM Production Index Level 
Personal Income Less Transfers FDL 
Help Wanted Index FDL 
Ratio of Help Wanted Index to Number Unemployed Log 
Number of Employed FDL 
Number of Employed, Nonagricultural FDL 
Unemployment Rate, 16+ Level 
Unemployment Rate,  Level 
Unemployed less than 5 weeks Level 
Unemployed 5-14 weeks Level 
Unemployed more that 15 weeks Level 
Unemployed 15-26 weeks Level 
Nonfarm Payroll Employment FDL 
Private Nonfarm Payroll Employment FDL 
Nonfarm Payrolls, Goods Producing FDL 
Nonfarm Payrolls, Goods Producing Production Workers FDL 
Nonfarm Payrolls, Construction FDL 
Nonfarm Payrolls, Manufacturing FDL 
Nonfarm Payrolls, Durable Goods Manufacturing FDL 
Nonfarm Payrolls, Nondurable Goods Manufacturing FDL 
Nonfarm Payrolls, Service Producing FDL 
Nonfarm Payrolls, Wholesale and Retail Trade FDL 
Nonfarm Payrolls, Finance, Insurance & Real Estate FDL 
Nonfarm Payrolls, Services FDL 
Nonfarm Payrolls, Government FDL 
Average Weekly Hours Level 
Average Weekly Hours, Overtime Level 
NAPM Employment Index Level 
Aggregate Hours, Manufacturing FDL 
Aggregate Hours, Mining FDL 
Aggregate Hours, Construction FDL 
Real Personal Consumption, Total FDL 
Real Personal Consumption, Durables FDL 
Real Personal Consumption, Nondurables FDL 
Real Personal Consumption, Services FDL 
Real Personal Consumption, New Cars FDL 
Real Personal Consumption, Retail FDL 
Housing Starts, Total Log 
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Housing Starts, Northeast Log 
Housing Starts, Midwest Log 
Housing Starts, South Log 
Housing Starts, West Log 
Mobile Homes, Manufacturers’ Shipments Log 
NAPM Inventories Index Level 
NAPM New Orders Index Level 
NAPM Supplier Deliveries Index Level 
New Orders, Consumer Goods and Materials FDL 
New Orders, Nondefense Capital Goods FDL 
Money Stock, M1 SDL 
Money Stock, M2 SDL 
Money Stock, M3 SDL 
Money Stock, Real M2 SDL 
Monetary Base SDL 
Total Reserves SDL 
NAPM Prices Paid Level 
Average Hourly Earnings, Construction SDL 
Average Hourly Earnings, Manufacturing SDL 
Michigan Index of Consumer Sentiment Level 
  
Asset Prices  
Prime Rate FD, Spread over Fed Funds 
3 month T bill rate FD, Spread over Fed Funds 
6 month T bill rate FD, Spread over Fed Funds 
1 year Treasury constant maturity yield FD, Spread over Fed Funds 
5 year Treasury constant maturity yield FD, Spread over Fed Funds 
10 year Treasury constant maturity yield FD, Spread over Fed Funds 
Moody’s AAA Corporate Yield FD, Spread over Fed Funds 
Moody’s BAA Corporate Yield FD, Spread over Fed Funds 
Fed Funds Rate FD 
NYSE Composite Index FDL 
S&P Composite Index FDL 
S&P Dividend Yield Level 
S&P Price Earnings Ratio Level 
Oil Price FDL 
Gold Price FDL 
Notes: FD means first differences, FDL means first differences of the logs, SDL means 
second differences of the logs. 
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Table 1: Out-of-Sample Mean Square Error of Averaged Forecasts of CPI 
(relative to naive time series benchmark) 

Horizon Bayesian Model Averaging Simple Avg. 
(quarters) φ=20 φ=5 φ=2 φ=1 φ=0.5  

       
1971Q1-2003Q2 

1 0.950 0.944 0.947 0.948 0.949 0.950 
2 0.852 0.869 0.879 0.884 0.886 0.889 
3 0.736 0.775 0.800 0.810 0.816 0.823 
4 0.705 0.745 0.772 0.785 0.792 0.800 
5 0.720 0.753 0.777 0.788 0.795 0.803 
6 0.734 0.766 0.787 0.798 0.804 0.811 
7 0.752 0.784 0.804 0.814 0.819 0.825 
8 0.768 0.803 0.821 0.829 0.834 0.839 
       

1971Q1-1986Q4 
1 0.945 0.937 0.938 0.939 0.940 0.941 
2 0.826 0.850 0.862 0.867 0.870 0.873 
3 0.697 0.750 0.778 0.790 0.796 0.803 
4 0.689 0.736 0.765 0.778 0.785 0.793 
5 0.725 0.758 0.781 0.792 0.798 0.805 
6 0.750 0.781 0.800 0.809 0.814 0.820 
7 0.771 0.802 0.819 0.827 0.831 0.836 
8 0.786 0.820 0.836 0.842 0.846 0.850 
       

1987Q1-2003Q2 
1 0.961 0.963 0.969 0.972 0.974 0.975 
2 0.952 0.941 0.944 0.946 0.948 0.949 
3 0.934 0.905 0.909 0.913 0.916 0.919 
4 0.820 0.810 0.826 0.837 0.844 0.852 
5 0.676 0.704 0.738 0.757 0.768 0.781 
6 0.576 0.624 0.671 0.696 0.710 0.726 
7 0.570 0.621 0.667 0.690 0.704 0.719 
8 0.598 0.646 0.686 0.706 0.718 0.731 

Notes: Both Bayesian Model Averaging and simple equal-weighted averaging use 93 
models corresponding to all predictors listed in the appendix.  Elements in bold 
correspond to cases where Bayesian Model Averaging outperforms simple equal-
weighted averaging.  Elements in italics correspond to cases where simple equal-
weighted averaging does better.  
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Table 2: Out-of-Sample Mean Square Error of Averaged Forecasts of Core CPI 
(relative to naive time series benchmark) 

Horizon Bayesian Model Averaging Simple Avg. 
(quarters) φ=20 φ=5 φ=2 φ=1 φ=0.5  

       
1971Q1-2003Q2 

1 1.046 0.973 0.964 0.962 0.962 0.962 
2 0.834 0.859 0.873 0.880 0.883 0.887 
3 0.732 0.772 0.799 0.811 0.817 0.824 
4 0.710 0.753 0.782 0.795 0.802 0.809 
5 0.729 0.769 0.794 0.805 0.811 0.817 
6 0.743 0.783 0.804 0.813 0.818 0.824 
7 0.759 0.800 0.819 0.827 0.831 0.836 
8 0.772 0.815 0.833 0.840 0.844 0.848 
       

1971Q1-1986Q4 
1 1.059 0.981 0.969 0.967 0.966 0.966 
2 0.843 0.871 0.885 0.890 0.893 0.897 
3 0.736 0.786 0.812 0.823 0.829 0.836 
4 0.722 0.773 0.799 0.811 0.817 0.824 
5 0.754 0.793 0.813 0.822 0.827 0.833 
6 0.772 0.807 0.824 0.831 0.835 0.840 
7 0.788 0.822 0.837 0.843 0.847 0.850 
8 0.797 0.835 0.849 0.855 0.859 0.862 
       

1987Q1-2003Q2 
1 0.907 0.897 0.911 0.917 0.920 0.923 
2 0.651 0.631 0.663 0.681 0.691 0.702 
3 0.669 0.561 0.600 0.624 0.637 0.652 
4 0.543 0.487 0.551 0.582 0.599 0.617 
5 0.413 0.469 0.548 0.582 0.600 0.618 
6 0.381 0.489 0.565 0.596 0.612 0.629 
7 0.424 0.544 0.607 0.633 0.647 0.661 
8 0.492 0.597 0.648 0.668 0.680 0.691 

Notes: See the notes to Table 1. 
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Table 3: Out-of-Sample Mean Square Error of Averaged Forecasts of GDP Deflator 
(relative to naive time series benchmark) 

Horizon Bayesian Model Averaging Simple Avg. 
(quarters) φ=20 φ=5 φ=2 φ=1 φ=0.5  

       
1971Q1-2003Q2 

1 0.995 0.985 0.984 0.984 0.984 0.984 
2 0.940 0.944 0.947 0.947 0.948 0.948 
3 0.824 0.856 0.866 0.870 0.872 0.874 
4 0.753 0.797 0.814 0.820 0.824 0.827 
5 0.721 0.772 0.792 0.799 0.803 0.807 
6 0.712 0.762 0.783 0.791 0.795 0.800 
7 0.715 0.764 0.783 0.791 0.795 0.799 
8 0.726 0.770 0.788 0.795 0.799 0.803 
       

1971Q1-1986Q4 
1 1.006 0.988 0.986 0.986 0.986 0.986 
2 0.949 0.950 0.951 0.951 0.951 0.951 
3 0.830 0.865 0.874 0.876 0.878 0.879 
4 0.767 0.815 0.828 0.833 0.835 0.838 
5 0.749 0.795 0.809 0.815 0.818 0.821 
6 0.746 0.788 0.802 0.808 0.811 0.814 
7 0.753 0.790 0.803 0.809 0.811 0.814 
8 0.763 0.797 0.808 0.813 0.815 0.818 
       

1987Q1-2003Q2 
1 0.964 0.976 0.979 0.979 0.980 0.980 
2 0.901 0.921 0.930 0.933 0.935 0.936 
3 0.788 0.792 0.818 0.828 0.833 0.839 
4 0.632 0.648 0.696 0.716 0.726 0.737 
5 0.483 0.569 0.635 0.661 0.675 0.689 
6 0.423 0.547 0.617 0.645 0.659 0.675 
7 0.420 0.556 0.624 0.651 0.665 0.680 
8 0.443 0.573 0.637 0.663 0.676 0.691 

Notes: See the notes to Table 1. 
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Table 4: Out-of-Sample Mean Square Error of Averaged Forecasts of PCE Deflator 
(relative to naive time series benchmark) 

Horizon Bayesian Model Averaging Simple Avg. 
(quarters) φ=20 φ=5 φ=2 φ=1 φ=0.5  

       
1971Q1-2003Q2 

1 0.982 0.972 0.970 0.970 0.969 0.969 
2 0.911 0.912 0.915 0.916 0.917 0.918 
3 0.822 0.844 0.856 0.861 0.864 0.867 
4 0.758 0.791 0.809 0.818 0.822 0.827 
5 0.726 0.765 0.786 0.796 0.801 0.807 
6 0.720 0.760 0.782 0.792 0.797 0.803 
7 0.728 0.769 0.789 0.798 0.803 0.809 
8 0.743 0.783 0.802 0.810 0.814 0.819 
       

1971Q1-1986Q4 
1 0.982 0.967 0.965 0.964 0.963 0.963 
2 0.892 0.896 0.900 0.902 0.903 0.904 
3 0.801 0.828 0.842 0.848 0.851 0.854 
4 0.749 0.785 0.804 0.812 0.817 0.822 
5 0.731 0.769 0.790 0.799 0.804 0.809 
6 0.735 0.772 0.791 0.800 0.805 0.810 
7 0.749 0.785 0.802 0.810 0.814 0.819 
8 0.766 0.801 0.817 0.823 0.827 0.831 
       

1987Q1-2003Q2 
1 0.981 0.981 0.981 0.981 0.981 0.981 
2 0.970 0.963 0.963 0.963 0.963 0.963 
3 0.928 0.924 0.929 0.931 0.933 0.934 
4 0.825 0.834 0.849 0.857 0.861 0.866 
5 0.682 0.724 0.757 0.772 0.780 0.789 
6 0.581 0.652 0.696 0.716 0.727 0.739 
7 0.552 0.632 0.680 0.701 0.713 0.726 
8 0.560 0.637 0.682 0.703 0.714 0.726 

Notes: See the notes to Table 1. 
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Table 5: Out-of-Sample Mean Square Error of Averaged Forecasts of CPI using 
Asset Prices Only 

(relative to naive time series benchmark) 
Horizon Bayesian Model Averaging Simple Avg. 

(quarters) φ=20 φ=5 φ=2 φ=1 φ=0.5  
       

1971Q1-2003Q2 
1 0.953 0.939 0.935 0.937 0.939 0.941 
2 0.881 0.895 0.910 0.917 0.920 0.924 
3 0.925 0.885 0.893 0.898 0.901 0.904 
4 0.918 0.883 0.889 0.894 0.897 0.900 
5 0.914 0.883 0.886 0.890 0.892 0.895 
6 0.884 0.873 0.878 0.882 0.885 0.888 
7 0.866 0.871 0.879 0.884 0.887 0.890 
8 0.871 0.881 0.889 0.894 0.897 0.899 
       

1971Q1-1986Q4 
1 0.951 0.938 0.934 0.935 0.936 0.938 
2 0.873 0.887 0.900 0.906 0.909 0.913 
3 0.931 0.876 0.881 0.885 0.888 0.891 
4 0.933 0.885 0.888 0.891 0.893 0.896 
5 0.937 0.894 0.892 0.894 0.895 0.897 
6 0.908 0.888 0.889 0.891 0.892 0.894 
7 0.891 0.889 0.893 0.896 0.898 0.900 
8 0.897 0.901 0.905 0.908 0.909 0.911 
       

1987Q1-2003Q2 
1 0.959 0.941 0.940 0.943 0.945 0.948 
2 0.912 0.928 0.948 0.956 0.961 0.966 
3 0.896 0.934 0.955 0.963 0.968 0.972 
4 0.809 0.864 0.899 0.914 0.921 0.929 
5 0.714 0.788 0.836 0.856 0.867 0.878 
6 0.654 0.727 0.777 0.800 0.813 0.826 
7 0.632 0.700 0.750 0.773 0.785 0.799 
8 0.630 0.694 0.741 0.764 0.776 0.790 

Notes: Both Bayesian Model Averaging and simple equal-weighted averaging use 23 
models corresponding to asset price predictors only.  Elements in bold correspond to 
cases where Bayesian Model Averaging outperforms simple equal-weighted averaging.  
Elements in italics correspond to cases where simple equal-weighted averaging does 
better.  
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Table 6: Out-of-Sample Mean Square Error of Averaged Forecasts of Core CPI 
using Asset Prices Only 

(relative to naive time series benchmark) 
Horizon Bayesian Model Averaging Simple Avg. 

(quarters) φ=20 φ=5 φ=2 φ=1 φ=0.5  
       

1971Q1-2003Q2 
1 1.033 0.968 0.943 0.936 0.933 0.931 
2 0.842 0.843 0.847 0.849 0.850 0.852 
3 0.801 0.803 0.808 0.811 0.813 0.816 
4 0.821 0.806 0.810 0.814 0.816 0.819 
5 0.848 0.824 0.824 0.827 0.828 0.830 
6 0.821 0.822 0.827 0.829 0.831 0.833 
7 0.811 0.828 0.837 0.841 0.843 0.845 
8 0.825 0.846 0.856 0.861 0.863 0.866 
       

1971Q1-1986Q4 
1 1.043 0.977 0.950 0.942 0.939 0.936 
2 0.859 0.855 0.857 0.858 0.858 0.859 
3 0.827 0.819 0.820 0.822 0.824 0.826 
4 0.858 0.831 0.829 0.831 0.832 0.834 
5 0.892 0.853 0.848 0.848 0.849 0.850 
6 0.863 0.853 0.853 0.854 0.855 0.856 
7 0.852 0.860 0.865 0.867 0.868 0.870 
8 0.864 0.879 0.886 0.889 0.890 0.892 
       

1987Q1-2003Q2 
1 0.926 0.871 0.871 0.875 0.878 0.882 
2 0.523 0.602 0.660 0.684 0.696 0.709 
3 0.414 0.558 0.622 0.646 0.658 0.671 
4 0.315 0.478 0.554 0.583 0.597 0.612 
5 0.288 0.447 0.521 0.550 0.565 0.580 
6 0.300 0.437 0.504 0.531 0.545 0.560 
7 0.338 0.450 0.509 0.533 0.547 0.561 
8 0.381 0.473 0.524 0.546 0.558 0.571 

Notes: See the notes to Table 5. 
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Table 7: Out-of-Sample Mean Square Error of Averaged Forecasts of GDP Deflator 
Using Asset Prices Only 

(relative to naive time series benchmark) 
Horizon Bayesian Model Averaging Simple Avg. 

(quarters) φ=20 φ=5 φ=2 φ=1 φ=0.5  
       

1971Q1-2003Q2 
1 0.970 0.961 0.959 0.958 0.958 0.958 
2 0.962 0.948 0.947 0.947 0.947 0.947 
3 0.913 0.915 0.918 0.918 0.919 0.919 
4 0.850 0.872 0.881 0.884 0.886 0.888 
5 0.806 0.836 0.850 0.856 0.859 0.862 
6 0.787 0.823 0.840 0.847 0.850 0.854 
7 0.786 0.825 0.843 0.850 0.853 0.857 
8 0.799 0.835 0.851 0.857 0.860 0.863 
       

1971Q1-1986Q4 
1 0.982 0.962 0.958 0.956 0.956 0.955 
2 0.980 0.952 0.948 0.946 0.946 0.945 
3 0.930 0.921 0.919 0.918 0.918 0.917 
4 0.874 0.882 0.885 0.886 0.887 0.888 
5 0.839 0.853 0.859 0.862 0.863 0.865 
6 0.826 0.845 0.853 0.857 0.858 0.860 
7 0.828 0.850 0.859 0.862 0.864 0.866 
8 0.842 0.862 0.870 0.873 0.874 0.876 
       

1987Q1-2003Q2 
1 0.940 0.956 0.961 0.962 0.963 0.964 
2 0.888 0.932 0.946 0.951 0.954 0.956 
3 0.800 0.881 0.910 0.920 0.925 0.930 
4 0.647 0.786 0.844 0.864 0.875 0.885 
5 0.518 0.691 0.773 0.802 0.817 0.831 
6 0.455 0.642 0.732 0.765 0.782 0.798 
7 0.455 0.631 0.717 0.750 0.766 0.783 
8 0.474 0.633 0.711 0.741 0.756 0.772 

Notes: See the notes to Table 5. 
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Table 8: Out-of-Sample Mean Square Error of Averaged Forecasts of PCE Deflator 
Using Asset Prices Only 

(relative to naive time series benchmark) 
Horizon Bayesian Model Averaging Simple Avg. 

(quarters) φ=20 φ=5 φ=2 φ=1 φ=0.5  
       

1971Q1-2003Q2 
1 0.994 0.990 0.988 0.987 0.987 0.986 
2 0.981 0.963 0.963 0.964 0.964 0.965 
3 0.943 0.920 0.924 0.926 0.928 0.929 
4 0.886 0.888 0.897 0.901 0.904 0.907 
5 0.857 0.864 0.875 0.880 0.883 0.887 
6 0.848 0.859 0.869 0.874 0.877 0.880 
7 0.845 0.861 0.872 0.877 0.880 0.883 
8 0.851 0.870 0.880 0.885 0.888 0.891 
       

1971Q1-1986Q4 
1 1.013 1.000 0.996 0.994 0.993 0.992 
2 0.993 0.961 0.958 0.958 0.958 0.958 
3 0.947 0.912 0.914 0.916 0.917 0.918 
4 0.897 0.887 0.893 0.897 0.899 0.901 
5 0.877 0.872 0.877 0.881 0.883 0.886 
6 0.873 0.871 0.875 0.879 0.880 0.883 
7 0.872 0.876 0.881 0.884 0.885 0.887 
8 0.879 0.887 0.892 0.894 0.896 0.897 
       

1987Q1-2003Q2 
1 0.958 0.970 0.973 0.974 0.974 0.975 
2 0.943 0.972 0.981 0.983 0.985 0.986 
3 0.920 0.961 0.975 0.980 0.982 0.985 
4 0.805 0.889 0.922 0.934 0.940 0.946 
5 0.678 0.801 0.854 0.874 0.884 0.894 
6 0.624 0.752 0.811 0.834 0.846 0.858 
7 0.618 0.738 0.797 0.820 0.832 0.845 
8 0.621 0.734 0.790 0.813 0.825 0.837 

Notes: See the notes to Table 5. 
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Table 9: Fraction of Quarters when Bayesian Model Averaging gives Closer 
Prediction than Simple Equal Weighted Model Averaging 

All Predictors 
Horizon (qtrs)  φ=20   φ=5   φ=2  φ=1 φ=0.5 

      
CPI 

1 0.48 0.49 0.48 0.47 0.47 
2 0.52 0.53 0.57 0.58 0.58 
3 0.61 0.58 0.59 0.58 0.58 
4 0.60 0.63 0.66* 0.66* 0.66* 
5 0.68* 0.70* 0.70* 0.69* 0.70* 
6 0.68* 0.71* 0.72* 0.72* 0.72* 
7 0.71* 0.74* 0.75* 0.75* 0.75* 
8 0.72* 0.75* 0.75* 0.74* 0.74* 
      

CPI Core 
1 0.54 0.59* 0.61* 0.62* 0.64* 
2 0.58 0.65* 0.65* 0.66* 0.66* 
3 0.60 0.64* 0.66* 0.69* 0.71* 
4 0.59 0.65* 0.67* 0.68* 0.68* 
5 0.62 0.68* 0.69* 0.70* 0.70* 
6 0.67 0.72* 0.73* 0.74* 0.75* 
7 0.72* 0.75* 0.75* 0.75* 0.76* 
8 0.75* 0.78* 0.78* 0.77* 0.76* 
      

GDP Deflator 
1 0.53 0.58* 0.57 0.57 0.58* 
2 0.56 0.59 0.60 0.61* 0.61* 
3 0.54 0.52 0.55 0.56 0.56 
4 0.61 0.65* 0.68* 0.68* 0.67* 
5 0.66 0.68* 0.68* 0.69* 0.69* 
6 0.67 0.71* 0.71* 0.71* 0.72* 
7 0.72* 0.76* 0.78* 0.79* 0.78* 
8 0.77* 0.80* 0.80* 0.79* 0.79* 
      

PCE Deflator 
1 0.43 0.45 0.45 0.45 0.45 
2 0.44 0.47 0.49 0.49 0.50 
3 0.58 0.57 0.59 0.60 0.62 
4 0.62 0.68* 0.68* 0.68* 0.68* 
5 0.68* 0.71* 0.73* 0.74* 0.74* 
6 0.72* 0.75* 0.77* 0.77* 0.78* 
7 0.75* 0.78* 0.79* 0.79* 0.79* 
8 0.75* 0.80* 0.79* 0.79* 0.79* 

Notes: An asterisk denotes that the proportion is significantly different from 0.5 using a 
10% two-tailed test as described in the text. 
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Table 10: Fraction of Quarters when Bayesian Model Averaging gives Closer 
Prediction than Simple Equal Weighted Model Averaging 

Asset Prices Only 
Horizon (qtrs)  φ=20   φ=5   φ=2  φ=1 φ=0.5 

      
CPI 

1 0.44 0.48 0.50 0.50 0.51 
2 0.52 0.55 0.55 0.57 0.57 
3 0.58 0.64* 0.66* 0.66* 0.66* 
4 0.63 0.66* 0.66* 0.65* 0.65* 
5 0.61 0.62 0.63 0.63 0.63 
6 0.65 0.66 0.67 0.67 0.67 
7 0.66 0.68 0.68 0.68 0.69 
8 0.65 0.69 0.69 0.69 0.70 
      

CPI Core 
1 0.44 0.48 0.54 0.55 0.55 
2 0.55 0.58 0.58 0.55 0.55 
3 0.63* 0.68* 0.68* 0.68* 0.68* 
4 0.65* 0.70* 0.72* 0.71* 0.71* 
5 0.67* 0.69* 0.71* 0.71* 0.72* 
6 0.71* 0.73* 0.74* 0.75* 0.75* 
7 0.73* 0.77* 0.78* 0.78* 0.78* 
8 0.69 0.75* 0.76* 0.77* 0.78* 
      

GDP Deflator 
1 0.52 0.55 0.53 0.55 0.55 
2 0.57 0.58 0.60 0.60 0.60 
3 0.55 0.58 0.58 0.58 0.58 
4 0.65* 0.66* 0.68* 0.68* 0.68* 
5 0.67* 0.70* 0.70* 0.71* 0.71* 
6 0.67 0.68* 0.70* 0.70* 0.70* 
7 0.71* 0.72* 0.74* 0.74* 0.75* 
8 0.71* 0.74* 0.75* 0.75* 0.75* 
      

PCE Deflator 
1 0.53 0.52 0.52 0.52 0.52 
2 0.55 0.54 0.55 0.55 0.55 
3 0.65* 0.66* 0.66* 0.65* 0.65* 
4 0.68* 0.68* 0.68* 0.68* 0.69* 
5 0.64 0.67* 0.68* 0.68* 0.68* 
6 0.68* 0.68* 0.68* 0.68* 0.68* 
7 0.70* 0.71* 0.71* 0.71* 0.71* 
8 0.71* 0.72* 0.73* 0.73* 0.73* 

Notes: An asterisk denotes that the proportion is significantly different from 0.5 using a 
10% two-tailed test as described in the text. 
 




