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Abstract

Non-strategic firms with rational expectations make investment and emissions deci-

sions. The investment rule depends on firms’ beliefs about future emissions policies.
We compare emissions taxes and quotas when the (strategic) regulator and (nonstrategic)
firms have asymmetric information about abatement costs, and all agents use Markov Per-

fect decision rules. Emissions taxes create a secondary distortion at the investment stage,
unless a particular condition holds; emissions quotas do not create a secondary distor-
tion. We solve a linear-quadratic model calibrated to represent the problem of controlling

greenhouse gasses. The endogeneity of abatement capital favors taxes, and it increases
abatement.
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1 Introduction

The possible relation between carbon stocks and global warming has led to a renewed interest
in the problem of controlling emissions when there is asymmetric information about abatement
costs. If environmental damages are related to the stock of pollution, as with global warming,
the regulator’s problem is dynamic. Most of the current literature on this dynamic problem
assumes that nonstrategic firms solve a succession of static problems. If, however, a firm’s
abatement costs depend on the stock of abatement capital, the firm makes a dynamic invest-
ment decision as well as the static emissions decision. We study the regulatory problem with
asymmetric information when firms invest in abatement capital. Nonstrategic firms and the
regulator solve coupled dynamic problems.
For a variety of pollution problems, capital costs comprise a large part of total abatement

costs (Vogan 1991) and investment in abatement capital depends on the regulatory environment.
In these cases, the endogeneity of investment is an important aspect of the regulatory problem.
Several recent papers, (Buonanno, Carraro, and Galeotti 2001), (Goulder and Schneider 1999),
(Goulder and Mathai 2000), (Norhaus 1999), assume that the regulator can choose emissions
and also induce firms to provide the first-best level of investment, e.g. by means of an invest-
ment tax/subsidy.
We consider the situation where the regulator has a single policy, either an emissions tax

or a quota. This assumption is consistent with many regulations and proposals that involve an
emissions policy but ignore endogenous investment (e.g., the Kyoto Protocol). In virtually any
real-world problem, the regulator is likely to have fewer instruments than targets. Our model
is an example of this general disparity between the number of instruments and targets, and
therefore is empirically relevant. The restriction enables us to compare our results to those of
previous papers that study the asymmetric information, stock pollutant problem in the absence
of investment in abatement capital (Hoel and Karp 2001), (Hoel and Karp in press), (Karp
and Zhang 2002a) and (Newell and Pizer in press). We identify a previously unrecognized
difference between taxes and quantity restrictions, and we provide a simple means of solving
the regulatory problem when a certain condition holds. We now describe the problem in more
detail.
In each period the representative firm observes a cost shock that is private information. If

this cost shock is serially correlated, the regulator learns something about its current value by
observing past behavior. The firm knows the current value of the cost shock and therefore is
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better informed than the regulator. Both types of agents obtain information over time. We
assume that the regulator conditions the current emissions policy only on payoff-relevant in-
formation: aggregate capital and pollution stocks and (the regulator’s) beliefs about the cost
shock. The regulator cannot make binding commitments regarding future policies; that is, we
restrict policies to be Markov Perfect. Firms have rational expectations; they take the current
emissions policy as given and they understand how the regulator chooses future policies. The
non-atomic representative firm is not able to affect the economy-wide variables that determine
future policies. The firm therefore behaves non-strategically (but not myopically), and uses
Markov policies.
The regulator understands that future emissions policies affect the current shadow value of

abatement capital and thus affect current investment. Therefore, the regulator might want to
commit to future policies as a means of affecting current investment. This incentive is the
source of the familiar time-consistency problem. Our setting has the usual ingredients that lead
to this problem: the regulator has a second-best instrument (the emissions tax or quota) and he
wants to influence forward-looking agents. If the private level of investment is socially optimal,
then the regulator has no desire to alter it. In that case, there is no time-consistency problem
and we can obtain the equilibrium by solving an optimization problem that contains elements
of the regulator’s and the firms’ problems. If however, the regulator’s emissions policy creates
a secondary distortion at the investment stage, the time-consistency problem does arise. In
that case, the Markov restriction is binding and we need to solve an equilibrium problem (a
dynamic game between the regulator and non-strategic firms) rather than a relatively simple
dynamic optimization problem. In other words, the type of problem that we need to solve –
an equilibrium problem or an optimization problem – depends on whether the Markov Perfect
emissions policy (the tax or quota) causes a secondary distortion in investment.
We show that the time-consistency problem does not arise when the regulator uses an emis-

sions quota. It does arise when the regulator uses a tax, unless the primitive functions satisfy a
separability condition.
This result is useful for two reasons. First, when the separability condition holds, we

can solve the dynamic game by solving a much simpler dynamic optimization problem that
combines elements of the regulator’s and the firms’ optimization problems. The separability
condition holds for an important special case that has been used to study the problem of regulat-
ing both a flow and a stock pollutant under asymmetric information. We generalize this special
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case by including endogenous abatement capital. Second, under plausible circumstances the
separability condition does not hold. In these cases, an emissions tax creates a secondary
investment distortion, whereas the emissions quota does not. Thus, we have identified a differ-
ence between taxes and quotas that has previously been unnoticed.1

We apply our results to a global warming model in which the separability condition holds.
In addition to confirming the robustness of previous results, we show that the endogeneity of
abatement capital encourages stricter abatement, and that it favors the use of taxes over quotas.
Optimal abatement levels in our model are similar to levels proposed by the Kyoto Protocol.
The next two sections describe the problem. Section 4 establishes the time-consistency

results described above, and we show how to solve the game by solving a control problem.
Section 5 applies this method to a linear-quadratic model, and Section 6 specializes the model
in order to study the problem of greenhouse gasses. We review previous comparisons of taxes
and quotas in this linear-quadratic setting, and then discuss how these results change when
abatement capital is endogenous.

2 The Basics

The stock of pollutant at the beginning of period t is St−1 and the flow of emissions in period t
is xt. The fraction 0 ≤ ∆ ≤ 1 of the pollutant stock lasts into the next period, so the growth
equation for St is:

St = ∆St−1 + xt. (1)

The period t stock-related environmental damage equalsDt = D (St−1) ,withD
0
> 0, D

00
> 0.

We normalize the number of representative firms to unity. In this section we make no
distinction between the firm’s and the aggregate levels of emissions and investment. Investment
in period t becomes available in the subsequent period. The representative firm’s benefit from
emissions is a function of emissions, xt, abatement capital Kt−1, and a random cost shock θt :
Bt = B (Kt−1, θt, xt) .

We can think of the function B (·) as a restricted profit function in which input and output
prices are suppressed. Alternatively, we can interpret B (·) as the amount of abatement costs

1The “more likely” it is that the separability condition holds, the less significant is this potential difference
between taxes and quotas, and the more useful is our technique for solving the dynamic game. The converse also
holds.
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that the firm avoids. For the latter interpretation, define xbt as the Business-as-Usual (BAU)
level of emissions, i.e. the level of emissions under the status quo. Define at = xbt − xt as
the level of abatement, i.e. the reduction in emissions due to a new regulatory policy. The
additional abatement costs associated with the new regulations are At = A (Kt−1, θt, at). If
xbt is a function of (Kt−1, θt), we can rewrite the abatement cost function as A (Kt−1, θt, at) =

−B (Kt−1, θt, xt), with Aa (·) = Bx (·): marginal abatement costs equal the marginal benefit
of emissions.
The benefit function is increasing and concave in x and K and increasing in θ (BK > 0,

Bθ > 0, Bx > 0, BKK < 0, Bxx < 0). More abatement capital decreases the marginal cost of
abatement and therefore lowers the marginal benefit of pollution, so BxK < 0. A higher cost
shock increases the marginal benefits of abatement capital and emissions: BKθ ≥ 0, Bxθ ≥ 0.
At time t only the firm knows the value of the random cost shock θt; there is persistent

asymmetric information. All agents know the stochastic process for the cost shock, which we
assume is AR(1):

θt = ρθt−1 + µt, µt ∼ iid
¡
0, σ2µ

¢
, ∀t ≥ 1, (2)

with −1 < ρ < 1.2 The sequence {µt} (t ≥ 1) is generated by an i.i.d. random process with
zero mean and common variance σ2µ. At time 0 the regulator knows θ−1, so the subjective
expectation and variance of θ0 is

¡
ρθ−1, σ2µ

¢
. This assumption about the regulator’s initial

priors makes the problem stationary; it has no bearing on our results, but merely simplifies the
notation. At time t ≥ 1 the regulator’s variance for the current shock is σ2µ provided that he
has learned the value of the previous shock, θt−1.
The representative firm invests in abatement capital to reduce future abatement costs, i.e. to

increase future benefits from pollution. The flow of investment in period t is It. The fraction
of abatement capital that lasts into the next period is 0 ≤ δ ≤ 1, so the growth equation for Kt

is:
Kt = δKt−1 + It. (3)

The cost of investment, Ct = C (It, Kt−1), is increasing and convex in It. This convexity
means that abatement capital does not adjust instantaneously. A greater degree of convexity
implies that capital adjusts more slowly.

2Throughout the paper we refer to θ as a “cost shock”, as an abbreviation for “random cost parameter”. In
most economically meaningful circumstances, this parameter is positively serially correlated: ρ > 0.
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The endogeneity of the investment decision means that the marginal abatement cost func-
tion, Bx (·), changes endogenously. Slower adjustment of abatement capital means that it is
optimal to adjust emissions more slowly.

3 The Game

In this section it is helpful to distinguish between the representative firm’s level of capital and
the aggregate level of capital. We denote the former by k and the latter by kA. Where there is no
danger of confusion, we denote both usingK. Since we normalize the number of representative
firms to 1, kA = k = K. The representative firm understands that it controls k, and that this
variable affects its payoff directly, via the function B (·). This firm takes the aggregate level of
capital kA as exogenous; kA has no direct effect on the firm’s payoff. However, in a Markov
Perfect equilibrium, where the regulator conditions policies on payoff-relevant information, kA

affects the firm’s beliefs about future policies.
In order to avoid a proliferation of notation, we do not distinguish between the firm’s level

of emissions and the aggregate level of emissions. However, it is important to bear in mind that
the firm treats aggregate emissions, and therefore the aggregate pollution stock, as exogenous.
The regulator always uses taxes or always uses quotas. The period t policy is the tax pt

or the quota xt. At time t the regulator knows the aggregate capital stock kAt−1, the pollution
stock St−1 and (as we explain below), the lagged cost shock θt−1. These are the payoff-
relevant variables for the regulator. In a Markov Perfect rational expectations equilibrium,
the representative firm takes the current level of the regulatory policy (at time t) as given; it
understands that the policy at time τ > t will be a function of

¡
kAτ−1, Sτ−1, θτ−1

¢
. Since the

firm takes these conditioning variables to be exogenous, it treats future policies as exogenous.
This firm chooses investment It under both policies, and it chooses the level of emissions if the
regulator uses a tax.
In view of the timing conventions in the model, the regulator’s current (tax or quota) policy

influences the firm’s current emission, but not the current level of investment. Investment
depends on the firm’s beliefs about future policies.
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3.1 The Firm’s Emission and Investment Responses

The firm wants to maximize the expectation of the present value of the stream of cost saving
from polluting (B) minus investment cost (C) minus pollution tax payments (under taxes). The
constant discount factor is β, and we use the superscripts T and Q to distinguish functions and
variables under taxes and quotas. We assume that emissions are positive under taxes, and that
the optimal quota is always binding.3

Taxes. The firm’s value function under taxes, V T
¡
kt−1, θt, pt;St−1, kAt−1

¢
, solves the dy-

namic programming equation (DPE)

V T
¡
kt−1, θt, pt;St−1, kAt−1

¢
= maxxt,It{B (kt−1, θt, xt)− ptxt − C (It, kt−1)

+βEt

£
V T
¡
kt, θt+1, pt+1;St, k

A
t

¢¤},
subject to the equation of motion for the cost shock (2), the capital stock (3), and the pollution
stock (1). The firm’s expectation at t of θt+1 and pt+1 is conditioned on the payoff-relevant
variables

¡
kAt−1, θt, St−1

¢
.

The optimal level of emissions solves a static problem with the following first-order condi-
tion

Bx (kt−1, θt, xt)− pt = 0. (4)

Solving for x, we obtain the optimal emission response

x∗t = χ (kt−1, θt, pt) ≡ χt. (5)

The optimal level of investment equates the marginal cost of investment and the discounted
shadow value of abatement capital. Setting kA = k = K, the stochastic Euler equation is4

βEt

©
BK

¡
Kt, θt+1, χt+1

¢− CK (It+1,Kt) + δCI (It+1,Kt)
ª− CI (It,Kt−1) = 0. (6)

3As t→∞ the support of θt covers the real line. Thus, the assumption that emissions are positive under taxes
and that the quota is binding with probability 1 (for all t) requires that the marginal effect (on Bx) of θ become
small as θ→ −∞.

4For all of the control problems, we merely write the Euler equation since the derivations are standard. The
first order condition of the DPE with respect to It provides one equation. In this first order condition, the firm’s
expectation of pt+1 is independent of its investment. This independence reflects the fact that the firm is unable
to affect aggregate capital or pollution stock, and therefore cannot affect values of the variables that affect future
regulation. We differentiate the DPE with respect to kt−1, using the envelope theorem, to obtain a second equation.
Combining these two equations gives the stochastic Euler equation.
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This second-order difference equation has two boundary conditions, the current abatement cap-
italKt−1, and the transversality condition

lim
T→∞

Et

©
βT−tCI (IT , KT−1)KT

ª
= 0. (7)

Quotas. Firms are homogeneous and quotas are not bankable. Thus, under a quota policy,
there is no incentive to trade permits.5 The firm solves the DPE

V Q
¡
kt−1, θt, xt;St−1, kAt−1

¢
= maxIt{B (kt−1, θt, xt)− C (It, kt−1)

+βEtV
Q
¡
kt, θt+1, xt+1;St, k

A
t

¢ª
.

Again, the firm’s beliefs about the quota in the next period depend on
¡
kAt−1, θt, St−1

¢
.

The optimal level of investment solves the stochastic Euler equation

βEt {BK (Kt, θt+1, xt+1)− CK (It+1,Kt) + δCI (It+1,Kt)}− CI (It,Kt−1) = 0, (8)

and the transversality condition (7).
The investment rule Under both taxes and quotas, the current level of investment depends

on the firm’s beliefs about future policy levels, but it does not depend on the current policy
level. The firm has rational expectations about future policies; we discuss this policy rule in
the next section. Under either taxes or quotas, the representative firm’s equilibrium investment
rule at time t is a function of

¡
kt−1, θt;St−1, kAt−1

¢
. When there is no danger of confusion, we

write the investment rule as Ij (Kt−1, θt, St−1), j = T,Q (for tax or quota).

3.2 The Regulator’s Problem

The regulator’s payoff equals the payoff to the representative firm net of taxes, minus environ-
mental damages. The regulator maximizes the expectation of the present discounted value of
the flow of the payoff, i.e. the expectation of

∞X
t=0

βt (B (Kt−1, θt, xt)− C (It, Kt−1)−D(St−1)) .

5In a model without abatement capital, Karp and Zhang (2002a) show how trade in permits amongst heteroge-
nous firms enables the regulator to learn the value of the cost shock. Without trade in permits (and in the absence
of investment decisions), the regulator does not know the previous cost shock when choosing the current quota;
in this case, taxes have an informational advantage, relative to quotas. As we point out in the text, when the firm
invests in abatement capital, the regulator does not need tradeable quotas in order to learn the cost shock.
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His policy (always a tax or always a quota) can be a function of (only) payoff-relevant variables:
the current stocks of pollution and capital, and the regulator’s current information about the cost
shock. Under taxes the regulator knows that equation (5) determines emissions. Under either
policy, he knows that investment is given by Ij (Kt−1, θt, St−1), j = T,Q.
The regulator takes as given the investment rule and (under taxes) the emissions rule. At

time t the regulator observes the aggregate stocks St−1, Kt−1. If ρ = 0, the regulator learns
nothing about the current cost shock by observing firms’ past behavior. The past cost shock
provides information about the current shock if and only if ρ 6= 0. Under taxes, the regula-
tor learns the previous cost by observing the response to the previous tax (via equation (5)).
Provided that BKθ 6= 0 the regulator who uses quotas can learn the previous cost shock by
observing the level of investment in the previous period, i.e. by inverting the investment func-
tion IQ (·). From equation (8) , BKθ 6= 0 means that current investment depends on the firm’s
beliefs about future cost shocks. When ρ 6= 0 these beliefs – and therefore current investment
– depend on the current cost shock.
If BKθ 6= 0, as we hereafter assume, taxes and quotas give the regulator the same infor-

mation about the previous cost shock, and thus about the current cost shock. Neither policy
has an informational advantage. Of course, using observed emissions (under taxes) to infer
the past cost variable requires only that the regulator solve the first order condition of a static
problem. Using observed investment (under quotas) to infer the past cost variable requires
that the regulator knows the function IQ (Kt−1, θt, St−1); that requires the solution of the entire
equilibrium. Thus, although both policies have the same informational content (unless ρ 6= 0
and BKθ = 0), this information is easier to extract under taxes.

The regulator’s decision rule is a function zi (Kt−1, θt−1, St−1) , j = T,Q that determines
the current tax (j = T ) or quota (j = Q) as a function of his current information, given his
beliefs about the firm’s decision rules.

3.3 The Equilibrium

Both the regulator and the representative firm solve stochastic control problems; the exact prob-
lem that one agent solves depends on the solution to the other agent’s problem. The rational
expectations equilibrium investment rule for the firm depends on the regulator’s policy rule, and
that policy rule depends on the equilibrium investment rule. The investment and the regulatory
decision rules generate a random sequence of pollution and capital stocks. Agents have rational
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expectations about these random variables.
An equilibrium consists of a (possibly non-unique) pair of decision rules Ij∗ (Kt−1, θt, St−1)

and zj∗ (Kt−1, θt−1, St−1) for j = T,Q that are mutually consistent; the superscript “∗” indi-
cates equilibrium functions. Hereafter we refer to Ij∗ (Kt−1, θt, St−1), and zi∗ (Kt−1, θt−1, St−1)

as Markov Perfect policy rules.
Modern computational methods make it possible to (approximately) solve these kinds of

dynamic equilibrium problems, i.e. to find a fixed point in function space (Judd 1998), (Marcet
and Marimon 1998), (Miranda and Fackler 2002). These fixed point problems are not trivial,
especially when the state space has more than one dimension – it has three in our problem.

4 Finding the Markov Perfect Equilibrium

In many cases, the type of model described in the previous section must be solved as an equi-
librium problem rather than as an optimization problem. The next subsection explains why
this complication might arise. Using an auxiliary control problem in which the regulator has
two policy instruments, we then identify conditions under which the model can be solved as a
straightforward optimization problem.

4.1 The Time-Consistency Problem

In general, the regulator might want to announce a rule that would determine future levels of the
tax or quota. The purpose of such an announcement would be to alter the firm’s investment rule
– as distinct from altering a stock that appears as an argument of the investment rule. The in-
ability to make binding commitments, and the Markov assumption, exclude this possibility. In
a rational expectations equilibrium, current investment depends on beliefs about future policies,
and these beliefs and policies depend on the pollution stock. By choice of the current quota
or tax level, the regulator affects the future pollution stock, which can affect future investment.
Under our assumptions, the only means by which the regulator can influence future levels of
investment is by influencing the future level of the pollution stock.
Consider a simpler problem without asymmetric information, where a representative firm

with rational expectations makes investment decisions. The firm’s optimal decisions depend
on its beliefs about future regulations, and the regulator wants to influence the firm’s decisions.
If the regulator has a first best policy (defined as one that does not cause secondary distortions),
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he can induce the firm to select exactly the decisions that the regulator would have used, had
he been in a position to choose them directly. In that case, the regulatory problem can be
solved as standard optimization problem. If, however, the regulator has only a second-best
policy, the familiar time-consistency problem arises. (See Xie (1997) for a recent discussion
of this problem, and references.) The Markov restriction is binding in this setting, so finding
the equilibrium requires solving an equilibrium problem rather than a standard optimization
problem.
The presence of asymmetric information in our model leads to the possibility of time-

inconsistency of the optimal emissions tax or quota. We know from the literature on principal-
agent problems that with asymmetric information, non-linear policies are generally superior to
either the linear tax or the quota: neither the linear tax nor the quota is typically the information-
constrained first best policy. We showed above that the firm’s investment depends on its beliefs
about future policies. Since the regulator has two targets, (emissions and investment) and
only one instrument (which is typically inferior to some non-linear policy), it appears that the
regulator might want to use future emissions taxes or quotas to influence the firm’s current in-
vestment decision. In that case, the information-constrained first best tax or quota would be
time-inconsistent: the ability to make commitments about future taxes or quotas would enable
the regulator to achieve a higher payoff than under the Markov restriction. If this were the case,
we would not be able to obtain a Markov Perfect equilibrium merely by solving a dynamic op-
timization problem, but would instead have to solve the equilibrium problem described in the
previous section.

4.2 An Auxiliary Control Problem

This subsection describes an auxiliary control problem that helps identify conditions under
which the Markov Perfect equilibrium can be obtained by solving an optimization problem.
In this control problem, in each period the regulator sets an emissions tax or quota using the
same information as in the game; later in the same period he observes the current cost shock
and then chooses investment directly. (In contrast, in the game the regulator chooses only an
emissions policy.) The ability to control current investment directly, knowing the current cost
shock, eliminates any incentive to use future emissions policies to control current investment.
In this setting, it does not matter whether the regulator chooses investment directly (e.g. by

command and control), or decentralizes this decision by means of an investment tax/subsidy.
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In the former case, firms make no investment decision, and in the latter case, firms merely carry
out the optimal investment decision induced by the investment tax/subsidy.
As an aid to intuition, it is useful to think of decentralizing the optimal investment deci-

sion (from the auxiliary problem) using an investment tax/subsidy. The optimal investment
tax/subsidy is identically 0 if and only if Markov Perfect rules are equivalent to the optimal
policy rules in the auxiliary problem. With an identically zero investment tax, agents have ex-
actly the same optimization problem as in the game. It is optimal to use a non-zero investment
tax/subsidy if and only if the Markov Perfect policies do not solve the auxiliary problem.
TheMarkov Perfect equilibrium investment rule is conditioned on (Kt−1, θt, St−1), whereas

the emissions tax or quota is conditioned on (Kt−1, θt−1, St−1). Consequently, in the auxiliary
problem we need to consider a two-stage optimization within each period. At the beginning
of the period the regulator knows (Kt−1, θt−1, St−1) and chooses the emissions policy (a tax
or quota); the regulator then learns θt and chooses the level of investment (equivalently, the
investment tax/subsidy).
It does not matter whether this time-line is “plausible”. We use this problem only as a

means of finding conditions under which the Markov Perfect rules can be obtained by solving
a control problem. If the Markov Perfect investment rule is equivalent to the investment rule
in the auxiliary problem, then a regulator who had to choose investment (or an investment
tax/subsidy) before knowing θt would obviously prefer to allow firms to choose investment;
i.e., the regulator would use a zero investment tax/subsidy.
We describe the auxiliary control problem when the regulator uses an emissions quota, and

then when he uses an emissions tax.

4.2.1 Quotas

The regulator solves the following DPE:

J Q (Kt−1, St−1, θt−1) = maxxt Eθt|θt−1{B (Kt−1, θt, xt)−D (St−1)

+maxIt
£−C (It,Kt−1) + βJ Q (Kt, St, θt)

¤} (9)

subject to equations (1) and (3). The first order condition for the optimal quota is

Eθt|θt−1{Bx (Kt−1, θt, xt) + βJ Q
S (Kt, St, θt)} = 0 (10)

and the Euler equation for investment under quotas is

βEθt+1|θt {BK (Kt, θt+1, xt+1)− CK (It+1,Kt) + δCI (It+1,Kt)}− CI (It, Kt−1) = 0. (11)
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The transversality condition is

lim
T→∞

EθT |θt
©
βT−tCI (IT ,KT−1)KT

ª
= 0. (12)

4.2.2 Taxes

Using the firm’s emission response function (5), the regulator in the auxiliary problem solves
the following DPE

J T (Kt−1, St−1, θt−1) = maxpt Eθt|θt−1{B (Kt−1, θt, x∗t )−D (St−1)+

maxIt
£−C (It, Kt−1) + βJ T (Kt, St, θt)

¤} (13)

subject to equations (1), (3) and (5). We use the definition

Ht ≡
£
Bx (Kt−1, θt, x∗t ) + βJ T

S (Kt, St, θt)
¤
,

and the abbreviation χt ≡ χ (Kt−1, θt, pt) = x∗t . The function Ht is the social benefit of an
additional unit of emissions. With this notation, we can write the first-order condition with
respect to pt as

Eθt|θt−1

½
Ht

∂χt
∂pt

¾
= 0, (14)

and the stochastic Euler equation for investment as

βEθt+1|θt
n
BK

¡
Kt, θt+1, x

∗
t+1

¢− CK (It+1,Kt) + δCI (It+1,Kt) +Ht+1
∂χt+1
∂Kt

o
−CI (It, Kt−1) = 0.

(15)

The transversality condition is equation (12).

4.3 Social Optimality of the Markov Perfect Rules

Here we find conditions under which the solution to the auxiliary control problem is a Markov
Perfect equilibrium to the original game. We refer to the following as the “separability con-
dition” since it requires that ∂

∂θ
Bxx =

∂
∂θ
BxK = 0 when evaluated at the optimal level of

emissions:

Condition 1 (Separability) Bxx and BxK , evaluated at the optimal x∗, are both independent
of the cost variable θ.

We have
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Lemma 1 The separability condition is equivalent to the following two conditions: (a) ∂χ(Kt−1,θt,pt)
∂pt

is independent of θt. (b) ∂χ(Kt−1,θt,pt)
∂Kt−1

is independent of θt, where pt is the time t emissions tax .

Proof. Totally differentiating the first-order condition (4) gives

∂χt
∂pt

=
1

Bxx (Kt−1, θt, x∗t )
,

∂χt
∂Kt−1

= −BxK (Kt−1, θt, x∗t )
Bxx (Kt−1, θt, x∗t )

.

Condition (a) holds if and only if Bxx (Kt−1, θt, x∗t ) is independent of θt. This independence
means that Condition (b) holds if and only if BxK (Kt−1, θt, x∗t ) is independent of θt.
Our main result is the following

Proposition 1 (i) When the regulator uses emissions quotas, the solution to the auxiliary prob-
lem (9) is a Markov Perfect equilibrium to the original game. (ii) When the regulator uses
emissions taxes, the solution to the auxiliary problem (13) is a Markov Perfect equilibrium to
the original game if and only if the separability condition holds.

The proof, contained in Appendix 1, verifies that the equilibrium conditions in the games and
in the auxiliary problems are identical under the conditions stated in the Proposition.

4.3.1 Significance of the proposition

When the regulator uses quotas to control emissions, the Markov Perfect investment rule is
(information-constrained) socially optimal. If the regulator uses taxes to control emissions, the
Markov Perfect investment rule is socially optimal if and only if the separability condition is
satisfied. This condition depends only on the benefit function B (·), not on the damage or the
investment cost function. Under the two conditions in Proposition 1, the investment tax that
would support the optimal investment (from the auxiliary problem) is identically 0.
Proposition 1 identifies a previously unnoticed difference between taxes and quotas. When

the separability condition does not hold, the regulator who uses an emissions tax to control pol-
lution creates a secondary distortion in investment. In these circumstances, private investment
is optimal under an emissions quota but not under an emissions tax.
The Proposition also provides a simple way of obtaining the equilibrium for the game when

the separability condition holds. This method requires only solving a dynamic optimization
problem rather than a dynamic equilibrium problem.
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4.3.2 Interpretation of the Separability Condition

We first identify the secondary distortion under emissions taxes, and we explain why it vanishes
if the separability condition holds. This discussion also explains why emissions taxes and
quotas typically have different effects, as regards the secondary distortion.
In order to identify the secondary distortion, we follow the standard procedure of com-

puting the investment tax/subsidy that supports the information-constrained first best invest-
ment policy. Suppose that firms face an investment tax st, so their single period payoff is
B(·)−C (·)− stIt− ptxt. We can write the Euler equation for the capital stock corresponding
to this problem, and compare it to the optimal investment policy under an emissions tax, equa-
tion (15). We omit the details, but the comparison implies that the investment tax supports the
socially optimal level of investment if and only if6

−st + βδEθt+1|θtst+1 = βEθt+1|θt

½
Ht+1

∂χt+1
∂Kt

¾
. (16)

The left side of equation (16) equals the effect of the tax sequence on the marginal incentive
to invest in the current period. Under the investment tax, an additional unit of investment costs
the firm st in the current period, but reduces the cost of tax payments by δEtst+1 in the next
period. The right side of equation (16) is the present value of the expectation of the secondary
distortion. Ht+1 is the marginal value to society of an additional unit of emissions in the next
period, and ∂χt+1

∂Kt
equals the change in emissions in the next period caused by an additional

unit of investment in the current period. Thus, the term in brackets in equation (16) is the
value to society of the lower future emissions caused by the additional investment. This benefit
is external to the firm. The optimal investment tax sequence induces the firm to internalize
the present value of the expectation of this additional social benefit of investment – i.e., to
internalize the externality.
The optimal emission quota does not create a secondary distortion. Under the quota, the

expected social benefit of an additional unit of emissions is zero in each period (equation (10)).
The socially optimal rule for determining investment, equation (11), involves only the current
and future expected marginal investment and abatement costs. The socially optimal balance of
these costs is identical to the balance that firms choose.
The optimal tax, in contrast, requires that an marginal change in the tax has zero expected

social value (equation (14)) . This condition is not, in general, equivalent to the requirement that
6The right side of equation (16) equals the function τ , used in the proof of Proposition 1.
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the expected social marginal benefit of emissions (Ht) is zero. The expected social marginal
benefit of an additional unit of emissions is zero if and only if Bxx is independent of θ (equiva-
lently, if and only if ∂χ

∂p
is independent of θ). This independence implies that EtHt = 0.

Even if this independence holds, Ht is a random variable, a function of θ. If ∂χ
∂K
is also a

function of θ (i.e., if BxK is not independent of θ), then the social marginal benefit of emissions
is correlated with ∂χ

∂K
. In that case, the expected marginal value to society of the lower future

emissions caused by the additional investment (i.e., the secondary distortion, measured by the
right side of equation (16)) is non-zero. Here, the investment externality is non-zero. Conse-
quently, both Bxx and BxK must be independent of θ in order for the investment externality to
vanish under emissions taxes.

5 The Linear-Quadratic Model

The linear-quadratic model has been widely used both for qualitative and numerical analysis.
Here we provide the linear-quadratic model that includes endogenous investment.7

The representative firm’s benefit function is

B (Kt−1, θt, xt) = f0 + (f1 + ψθt)Kt−1 − f2
2
K2

t−1 + (a− φKt−1 + θt)xt − b

2
x2t

with f1 > 0, f2 > 0, b > 0, ψ ≥ 0, φ ≥ 0. The function B (·) (which includes the rental cost
of capital) satisfies the separability condition. The cost of changing the level of capital is8

C (It) =
d

2
(It)

2 , d > 0.

Environmental damages are also quadratic:

D(St−1) =
g

2

¡
St−1 − S̄

¢2
7The condition on B (·) mentioned in footnote 3 does not hold for the linear-quadratic model. Therefore, we

can only guarantee that the assumptions of positive emissions under the tax and of a binding quota hold for finite t
with high probability. This fact is one of many reasons why the linear-quadratic model can be viewed only as an
approximation to the “real world”.

8We can replace the investment cost function with a quadratic function of net rather than gross investment,
so that adjustment costs are zero in the steady state. This slightly more plausible model does not lead to any
interesting changes in analysis below. However, it complicates the problem of calibrating the model. Therefore
we discuss only the model in which adjustment depends on gross investment.
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where S̄ is the stock level that minimizes damages.
The following Remark collects a number of useful facts about the comparison of policies.

These results will be obvious to readers familiar with the linear-quadratic control problem, so
we state them without proof:

Remark 1 In this linear-quadratic model with additive errors, the Principle of Certainty Equiv-
alence holds. The expected trajectories of all stock and flow variables are the same under taxes
and quotas. The higher moments of these trajectories differ under the two policies. Neither
the policy ranking nor the magnitude of the payoff difference depends on the information state
(Kt−1, St−1, θt−1). The magnitude (but not the sign) of the difference in payoffs depends on the
variance of cost, σ2µ.

In the static version of this problem, damages are caused by the flow of pollution, shocks are iid,
and there is no abatement capital. The static linear-quadratic model has properties analogous to
those listed in Remark 1. In both the static and the dynamic problems, these properties make it
possible to compare policies using a minimum of information (e.g., without using information
on the magnitude of uncertainty or stocks).

5.1 Regulated Emissions and Investment

For the linear-quadratic model we obtain an explicit equation for the emissions rule (equation
(5)) under taxes:

x∗t = et − φ

b
Kt−1 +

θt
b
; et ≡ a− pt

b
.

A higher cost variable increases current emissions, and a higher tax or a higher stock of abate-
ment capital decreases emissions.
Using standard methods (e.g. Chapter 14 of Sargent (1987)) we can solve the firm’s Euler

equation ((6) under taxes and (8) under quotas) to write current investment as a linear function
of current capital (Kt−1) and the firm’s expectations of the future cost variables and policies
(taxes or quotas). The optimal investment under emissions taxes is

I∗t =
λβf1

dδ(1−λβ) + (λ− δ)Kt−1

+λβ
dδ
Et

h¡
ψ − φ

b

¢P∞
j=0 (λβ)

j θt+1+j − φ
P∞

j=0 (λβ)
j et+1+j

i
where 0 < λ < 1 is the smaller root of the quadratic equation λ2 + h

β
λ + 1

β
= 0 and

h ≡ −
h
1
δ
+ β

dδ

³
f2 − φ2

b

´
+ βδ

i
. A lower expected future tax (i.e., a higher value of et+j) de-

creases current investment. A higher expected future cost shock increases (decreases) current
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investment if ψ− φ
b
is positive (negative). SinceBKθ = ψ > 0, a higher expected cost shock in-

creases the expected marginal benefit of capital – and thus increases the marginal shadow value
of capital. This effect encourages investment. However, a higher expected cost shock increases
expected emissions, reducing the expected marginal benefit of capital (BxK = −φ < 0) and
discouraging investment. These offsetting effects are exactly balanced if ψ = φ

b
, in which case

the cost shock has no effect on investment, under emissions taxes.
The optimal investment under emissions quotas is

I∗t =
µβf1

dδ(1−µβ) + (µ− δ)Kt−1

+µβ
dδ
Et

h
ψ
P∞

j=0 (µβ)
j θt+1+j − φ

P∞
j=0 (µβ)

j xt+1+j
i (17)

where 0 < µ < 1 is the smaller root of the quadratic equation µ2 + w
β
µ + 1

β
= 0 and

w ≡ − ¡1
δ
+ βf2

dδ
+ βδ

¢
. Higher expected quotas decrease investment, and higher expected cost

shocks increase investment. With quotas, cost shocks have an unambiguous effect, because the
firm treats future emissions quotas as exogenous.

5.2 A Limiting Case: Flow Externality

If∆ = 0 the model collapses to the case of a flow externality, in which emissions in the current
period cause damages only in the next period: D(St−1) = D(xt−1). By defining D̃(xt) =
βD (xt) we can write the difference between the benefits and costs of current emissions as
B (Kt−1, θt, xt)− D̃(xt). This simplification eliminates a state variable (S), making it possible
to obtain some analytic results. We can solve the dynamic programming equations under taxes
and quotas and compare the payoffs. (Details of the calculations are available on request).
We noted in Section 3.2 that both policies enable the regulator to acquire the same informa-

tion about the current cost variable if either of these conditions hold: (a) ρ = 0; or (b) ρ 6= 0 and
ψ 6= 0. The last inequality implies that the regulator learns the lagged value of θ by observing
investment under quotas – see section 3.2 and equation (17). We show that in either of these
two cases, the policy ranking does not depend on the parameters associated with abatement
capital. If, however, neither of these two conditions hold (and if in addition quotas are not
traded) taxes have an informational advantage. In that case, the policy ranking does depend on
the parameters associated with abatement costs.
If ρ = 0, or if ρ 6= 0 and ψ 6= 0, the payoff difference under taxes and quotas, is

J T − J Q =
σ2µ

2b (1− β)

µ
1− βg

b

¶
.
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This expression reproduces a result in Weitzman (1974)’s static model and in two dynamic
models ((Hoel and Karp in press) and (Karp and Zhang 2002a)).
If ρ 6= 0 and ψ = 0, and quotas are not traded, the regulator learns the past cost variable

under taxes but not under quotas. Here the payoff difference equals

J T − J Q =
σ2u

2b (1− β)

·
Γ+

µ
1− βg

b

¶¸
(18)

The function Γ > 0 (see appendix) embodies the informational advantage of taxes; Γ depends
on f2, d and δ (among other parameters).
We summarize the implications of these expressions in the following:

Remark 2 For a flow pollutant (∆ = 0): (i) When taxes and quotas have the same informa-
tional content (i.e., if (a) ρ = 0, or if (b) ρ 6= 0 and ψ 6= 0), the policy ranking depends only on
the relative slopes (appropriately discounted) of the marginal benefit and damage functions. (ii)
When taxes have an informational advantage (i.e., when neither conditions (a) or (b) in part (i)
hold and quotas are not traded) the policy ranking also depends on the parameters associated
with abatement capital.

The next section considers the problem of a stock-related pollutant. There, even when
neither policy has an informational advantage, the policy ranking does depend on the parameters
associated with abatement capital – in contrast to Remark 2.i. Here we explain why stock and
flow pollutants have this qualitative difference.
As Remark 1 notes, the expected levels of emissions and of investment are the same under

taxes and quotas. The first order condition for investment (using equation (9) or (13)) is

−CI (It,Kt−1) + βJ i
K (Kt, St, θt) = 0, i = T,Q.

The linear-quadratic structure with additive variables implies thatJ T
K (Kt, St, θt) ≡ J Q

K (Kt, St, θt):
the investment rules under taxes and quotas, conditional on (Kt−1, St, θt), are identical.
For a stock pollutant, J i

K,S 6= 0, so investment at time t depends on the pollution stock at the
beginning of the next period, St. That pollution stock depends on current emissions; therefore,
emissions in period t affect investment in period t. Conditional on the regulator’s information
at the beginning of a period, the current level of emissions is random under taxes and is a
choice variable under quotas. Therefore, conditional on the information at the beginning of
a period, the distribution function for the current level of investment differs under the two
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policies. The expected payoff difference therefore depends on the parameters associated with
abatement capital.
In contrast, with a flow pollutant, the current level of emissions has no effect on future

payoffs. The shadow value of capital J i
K depends only on (Kt, θt). With a flow pollutant, the

current investment and current emissions decisions are decoupled. Therefore, the value to the
regulator of the difference in emissions under taxes and quotas does not depend on investment
costs.

6 An Application to Global Warming

With a stock externality problem such as greenhouse gasses, we have three state variables
(greenhouse gasses, the capital stock, and the expected cost shock) and therefore cannot ob-
tain an analytic solution. However, using Proposition 1, it is straightforward to solve the tax
and quota problems numerically. The resulting control problem is almost standard, except
that new information arrives within a period, so there are two stages of optimization within a
period. This fact accounts for the nested maximization in equations (9) and (13). For the
linear-quadratic model, we can solve each of these dynamic programming problems by solving
a matrix Riccati equation. (Details are available upon request.)

6.1 Model Calibration

Table 1 describes the model. In order to calibrate the general linear quadratic model described
in the previous section, we assume that benefits are equal to the value of abatement cost that the
firm avoids by increasing emissions. Abatement costs are a quadratic function of abatement,
xbt − xt (row 6), where the BAU emissions xbt is a decreasing linear function of abatement
capital (row 5). A higher level of abatement capital makes it cheaper to reduce emissions,
and also decreases the marginal abatement costs. The cost variable θ̃ (which is proportional to
the random variable θ used above) changes the level of BAU emissions and therefore changes
marginal abatement costs. Row 7 of Table 1 repeats the general linear quadratic model; the
final row gives the parameter restrictions under which this general model reproduces the special
model described in the rows 2- 6 of the table.9 If m1 = 0, capital does not affect abatement

9We ignore the effect of θ̃ on the constant term since the constant has no effect on the regulator’s control.
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1. Pollutant stock growth St − S̄ = ∆
¡
St−1 − S̄

¢
+ xt.

2. Environmental damage D (St−1) =
g
2

¡
St−1 − S̄

¢2
.

3. Abatement capital growth Kt = δKt−1 + It.

4. Investment cost C (It) =
d
2
I2t .

5. “Business as usual” emissions xbt = m0 −m1Kt−1 + θ̃t.

6. Abatement cost A (xt) =
b
2

¡
xbt − xt

¢2
.

7. “General” benefit function
B (Kt−1, θt, xt) = f0 + (f1 + ψθt)Kt−1 − f2

2
K2

t−1 + (a− φKt−1 + θt)xt − b
2
x2t .

Parameter restriction:
0 ≤ ∆ ≤ 1, g > 0, 0 ≤ δ ≤ 1, d > 0, m0 > 0, m1 ≥ 0, b > 0.

Relation of parameters:
θt = bθ̃t, f0 = − b

2
m2
0, f1 = bm0m1, f2 = bm2

1, a = bm0, φ = bm1, and ψ = φ
b
= m1.

Table 1: The Model of Global Warming.

costs. This limiting case reproduces previous linear-quadratic models of a stock pollutant (Karp
and Zhang 2002a). (When ρ 6= 0 taxes have an informational advantage in this limiting case.)
Table 2 lists baseline parameter values. In presenting the simulation results, we use the

parameter π, defined as the percentage loss in Gross World Product due to a doubling of green-
house gasses. This parameter is linearly related to g, the slope of marginal damages. Our base-
line parameters assume that π = 1.33, an estimate that has been widely used (Nordhaus 1994b).
For comparison, we also discuss results when π = 3.6 (the average of expert opinions, reported
in Nordhaus (1994a)) and π = 21 (the maximum of these expert opinions).
Appendix 3 explains our calibration of the abatement costs (rows 3-6 of Table 1). Our

companion paper (Karp and Zhang 2002b)10 describes the calibration of the growth and damage
functions (rows 1 and 2 of Table 1) and of the equation for the random shock (equation (2)).
Appendix 4 (not intended for publication) reviews this material.
10That paper studies the problem in which the regulator learns about the relation between pollution stocks and

environmental damages; there we ignore abatement capital.
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Parameter Note Value

β a continuous discount rate of 5% 0.9512
∆ pollutant stock persistence 0.9917

δ capital stock persistence 0.85
π the percentage loss in GWP from doubling S̄ 1.33
g slope of the marginal damage 0.0022

billion $/(billion tons of carbon)2

b slope of the marginal abatement cost, 26.992
billion $/(billion tons of carbon)2

d slope of the marginal investment cost, billion $ 703.31
m0 intercept of the BAU emissions, 12.466

billion tons of carbon

m1 slope of the BAU emissions, 0.7266
(billion tons of carbon)/(billion $)

ρ cost correlation coefficient 0.90

σµ standard deviation of cost shock, 1.7275
$/(ton of carbon)

xb0 current CO2 emissions into the atmosphere 5.20

billion tons of carbon
S̄ preindustrial stock, billion tons of carbon 590
S−1 current pollutant stock, billion tons of carbon 781

K−1 initial capital stock, billion $ 10

Table 2: Parameter Values for the Baseline Model.

6.2 Numerical Results

We begin by summarizing results from earlier static and dynamic models that exclude abate-
ment capital. We then discuss new results – those directly related to abatement capital.

6.2.1 Previous results

Previous papers study the relation between the policy ranking and parameters in the linear-
quadratic model with additive errors (Hoel andKarp in press), (Karp and Zhang 2002a), (Newell
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and Pizer in press). Those papers show that the difference in payoffs under optimal taxes and
quotas, J T − J Q, is decreasing in g

b
. The intuition is the same as in Weitzman (1974)’s static

model. A larger value of g means that damages are more convex in S. In view of Jensen’s
inequality, as damages become more convex it becomes more important to control emissions
exactly (as under a quota) rather than to choose only the expected value of emissions (as under a
tax). A higher value of b makes it more important for the firm to be able to respond to changes
in the cost variable by changing emissions. It is able to respond under a tax but not under a
quota.
There is a critical value of g

b
above which quotas are preferred. This critical value is

decreasing in both β and∆. When more weight is put on future costs and benefits (higher β),
or when the stock is more persistent (higher ∆), it is more important to control the exact level
of emissions (as under quotas) rather than the first moment of emissions (as under taxes).
The previous papers calibrate models using parameter values that are consistent with pub-

lished estimates of the abatement costs and environmental damages associated with greenhouse
gasses. These studies find that taxes dominate quotas for the control of greenhouse gasses.
These qualitative results also hold for our parameterization of the model with endogenous

abatement capital. This robustness is worth noting, but our analysis adds nothing to the intu-
ition for these results, and therefore we do not discuss them further. Instead, we emphasize the
comparative statics and dynamics associated with endogenous abatement costs.

6.2.2 The role of abatement capital

There are three important parameters related to abatement capital: δ, d, and m1. We consider
the first two briefly, and then concentrate on the third. In all cases, we perform the obvious
experiment of varying one of these parameters, holding all others constant. This experiment
has a shortcoming that we discuss later, where we consider a second type of experiment.
We explained why a more durable pollution stock (higher ∆) decreases the preference for

taxes. However, a more durable capital stock (higher δ) increases the preference for taxes.
Under taxes, the firm responds to a cost shock by changing the level of emissions. Under both
taxes and quotas, the firm responds to a cost shock by changing the level of capital, provided that
ρ 6= 0.11 The adjustment mechanism via capital provides a partial substitute for the inability
11If ρ = 0, the current cost shock provides no information about the future cost shocks. Since current investment

reduces abatement costs only in future periods, the firm’s investment does not depend on the current cost shock if
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Figure 1: Dependence of expected payoff difference on cost-related parameters

to change emissions under quotas. A large value of δ means that current investment has long-
lasting effects, tending to make capital less flexible. The decreased flexibility associated with
larger values of δ increases the value of being able to respond to cost variables by changing
emissions. A larger value of δ therefore increases the advantage of taxes.
A lower value of m1 (a decrease in the marginal effect of capital on BAU emissions) or

a larger value of d (an increase in the adjustment cost for abatement capital), favors quotas.
Figure 1 shows the relation between the difference in payoffs (the value of using taxes mi-
nus the value of using quotas) and the parameters d and m1 for three values of π, holding all
other parameters constant. (Recall that π is the percentage loss in global world product due to
a doubling of greenhouse gasses.) When environmental damages are moderate (π = 1.33 or
π = 3.6) the difference in payoffs is insensitive to changes in d andm1; for large environmental
damages (π = 21) the change in either parameter has a noticeable affect on the payoff differ-
ence. Previous linear-quadratic models that do not include investment capital are a special case
of the model here, obtained by letting d → ∞ or m1 → 0. Those models tend to understate
the advantage of using taxes.
As d increases, capital increasingly resembles a fixed input; as m1 decreases, abatement

capital has less effect on the marginal benefit of pollution. A larger value of d or a smaller
value ofm1 both imply less flexibility of marginal abatement costs. This diminished flexibility

ρ = 0.
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favors quotas, just as does the diminished flexibility in marginal abatement costs associated
with a smaller value of b (the slope of Bx).
In all cases, the present discounted value of the payoff difference under taxes and quotas is

approximately 1 billion dollars, implying an annualized cost of about 50 million dollars. Our
parameterization of abatement costs assumes that the annualized cost of stabilizing emissions
is about 1 percent of income, or 290 billion dollars. Thus, the payoff difference of the two
policies is less than 0.02% of the estimated costs of stabilizing emissions.
The small difference in the expected payoffs may be due largely to the Principle of Certainty

Equivalence, mentioned in Section 5: the expected stock trajectories are identical under taxes
and quotas – only higher moments differ. Uncertainty in our calibrated model (but not in
the general formulation) arises only because BAU emissions are uncertain. Given the (small)
magnitude of this particular type of uncertainty, the higher moments of stocks simply are not
very important. Models that do not satisfy the Principle of Certainty Equivalence find a larger
payoff difference under taxes and quotas (Hoel and Karp 2001), (Pizer 1999).
The relations between the equilibrium decision rules and levels of the state variables are as

expected. The optimal quota (which equals the expected level of emissions under the optimal
tax) decreases with the level of pollution and with the capital stock and increases with the
lagged cost shock (for ρ > 0, as in our calibration). Equilibrium investment is an increasing
function of the stock of pollution and a decreasing function of capital stock. Firms understand
that a higher pollution stock will lead to lower future equilibrium emissions, increasing the
marginal value of investment. A higher aggregate capital stock encourages the regulator to
reduce future emissions, increasing the value of investment. However, the representative firm’s
level of capital equals the aggregate level. For a given quota or tax, a higher capital stock
reduces the marginal value of investment. The net effect of higher capital stocks is to reduce
investment.
For our baseline parameters, the optimal quota during the initial period is 4.77 GtC, an

8.3% decrease from the BAU level. It is interesting to compare this level of abatement with
the Kyoto Protocol proposals. The Protocol required industrialized countries to reduce their
collective emissions of greenhouse gasses by 5.2% of 1990 levels by the year 2012. Targets
for individual countries varied; the reduction for the US was to have been 7%. (UNFCC 1997).
In 2001 the US rejected the Kyoto Protocol. A number of prominent economists supported

this rejection on the grounds that satisfying the Protocol would be too expensive. Our results
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Figure 2: Changes in expected pollution flows and stocks relative to BAU levels

suggest that the proposed levels of abatement might have been close to optimal. Our simu-
lation results do not provide independent evidence supporting the Kyoto Protocol, since our
calibration uses the same kinds of assumptions that form the basis for the targets in the Pro-
tocol. However, our results suggest that the targets in the Protocol are at least approximately
consistent with an optimizing model based on widely held assumptions.
As we mentioned above, the comparative dynamics associated with a change in a single

parameter value might be misleading. For example, when we decrease m1 holding other pa-
rameters constant, we change the BAU level of emissions and the abatement costs associated
with a particular emissions trajectory, in addition to changing the marginal effect of capital on
abatement costs. Here we consider a slightly different experiment: When we varym1 we make
offsetting changes inm0 in order to maintain current BAU emissions at 5.2, and we require that
the year 2100 BAU emissions are consistent with a particular IPCC scenario.
Our baseline calibration (m1 = 0.7266) makes our model consistent with the IPCC IS92a

scenario that projects BAUCO2 stocks of 1500 GtC in the year 2100 – an approximate doubling
of stocks relative to pre-industrial levels. For comparison we also choose parameters that are
consistent with the IS92c scenario of a 35% increase in CO2 concentration (m1 = 0.0416) and
with the IS92e scenario of a 170% increase in CO2 concentration (m1 = 1.6622).
Figure 2 graphs optimal abatement levels, i.e. the difference in the BAU and the optimal

levels of emissions (the left panel) and the difference between BAU and the regulated pollution
stock (the right panel), as a function of time. The three graphs in each panel correspond
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to the three values of m1. In all cases, abatement increases over time. Both the level and
the change over time of abatement is greatest when abatement capital has a large effect on
marginal abatement costs (m1 is large). This result is further evidence that the consideration of
endogenous investment in abatement capital increases the optimal level of abatement.

7 Conclusions

We studied the problem of optimally controlling a stock externality under asymmetric infor-
mation about abatement costs. Non-strategic firms have rational expectations about future
policies, and they make investment decisions in abatement capital. The regulator is able to use
either emissions taxes or quotas, but he is not able to make credible commitments about levels
of future emissions policies. We considered a Markov Perfect equilibrium, i.e. one in which
agents condition their beliefs on payoff-relevant variables.
When the regulator uses quotas, the inability to make binding commitments (the Markov

Perfect restriction) is not binding. In general, this inability to make commitments does reduce
the regulator’s payoff when he uses emissions taxes. These taxes create a secondary distortion
in investment. Thus, we have identified a previously unnoticed difference between taxes and
quotas.
If a “separability condition” holds, the firm’s emission response to the tax and to the level of

capital are both independent of the cost shock. In this case, the secondary distortion associated
with taxes vanishes. If the regulator uses quotas, or if he uses taxes and the separability condi-
tion holds, we can obtain the Markov Perfect equilibrium by solving an optimization problem
rather than an equilibrium problem.
The linear quadratic model satisfies the separability condition. In this model, if damages

are caused by a flow, we obtain closed-form expressions for the policy ranking. When neither
policy has an informational advantage – the typical case – the policy ranking is independent of
parameters associated with abatement capital (for a flow pollutant). This independence does
not hold when damages are caused by the stock rather than the flow of pollution.
We calibrated the linear-quadratic model to describe the problem of global warming. We

confirmed that previous results hold in the more general setting where abatement capital is
endogenous. In addition, we showed that the endogeneity of abatement capital increases both
the level of abatement, and the preference for taxes. We also found that our estimates of optimal
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abatement levels are similar to target levels in the Kyoto Protocol.

8 Appendix

The appendix consists of four parts. Section 1 contains the proof of Proposition 1. Section
2 provides the formulae for Γ used in equation (18). Section 3 contains information on cali-
brating adjustment costs. Section 3 contains other calibration information similar to that used
in Karp and Zhang (2002b). Section 4 is not intended for publication, but is included here to
enable the referee to evaluate the calibration.

8.1 Proof of Proposition 1

We use Jj (·) (j = T,Q) to denote the regulator’s value function in the dynamic game (where
the regulator chooses only an emissions policy), and J j (·) (j = T,Q) to denote the regulator’s
value function in the corresponding auxiliary problem (where the regulator chooses an emis-
sions policy and then chooses investment after observing the current cost variable). We want
to find conditions under which the equilibrium capital and pollution stocks are identical in the
Markov Perfect equilibrium to the game and in the auxiliary problem. Equivalently, we want to
find conditions under which the optimal investment tax/subsidy is identically 0 in the auxiliary
problem.
(i) QuotasWhen the regulator uses an emissions quota, the Euler equations for investment

in theMarkov perfect equilibrium (equation (8)) and investment in the auxiliary problem (equa-
tion (11)) are identical, as are the corresponding transversality conditions. We need to confirm
that the Euler equations for the pollution stock are also identical in the two settings.
In the Markov Perfect equilibrium with quotas the regulator solves the following DPE:

JQ (Kt−1, St−1, θt−1) = maxxt Eθt|θt−1{B (Kt−1, θt, xt)−D (St−1)− C
³
IQt , Kt−1

´
+βJQ

³
δKt−1 + IQt ,∆St−1 + xt, θt

´
},

subject to the private investment rule IQt ≡ IQ (Kt−1, θt, St−1), which is independent of the
current quota level xt. The stochastic Euler equation for pollution stock is:

Eθt|θt−1Bx (Kt−1, θt, xt)− βD
0
(∆St−1 + xt)− β∆Eθt+1|θt−1Bx (Kt, θt+1, xt+1) = 0.
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The transversality condition is

lim
T→∞

EθT |θt−1
©
βT−tBx (KT−1, θT , xT )ST

ª
= 0.

A straightforward calculation confirms that the corresponding Euler equation and transversality
condition in the auxiliary problem are identical to the last two equations. (To obtain the Euler
equation in the auxiliary problem we differentiate the DPE (9) with respect to St−1, using the
envelope theorem; we combine the resulting equation with the first order condition equation
(10).)
(ii) Taxes We first consider the equations that determine the evolution of capital stock.

Inspection of the Euler equations for capital (equation (6) in the Markov Perfect equilibrium
and equation (15) in the auxiliary problem) establishes that these are identical if and only if the
function τ , defined as

τ t ≡ βEθt+1|θt

½
Ht+1

∂χt+1
∂Kt

¾
,

is identically 0. We therefore find necessary and sufficient conditions for τ t ≡ 0. Note that the
assumptions that BxK < 0 and BKK < 0 imply that ∂χt+1

∂Kt
6= 0.

By Lemma 1, the separability condition is equivalent to

Condition 2 (a) ∂χ(Kt−1,θt,pt)
∂pt

is independent of θt. (b) ∂χ(Kt−1,θt,pt)
∂Kt−1

is independent of θt.

We therefore need only show that Condition 2 is necessary and sufficient for τ t ≡ 0. We first
consider sufficiency. If Condition (2a) holds, the first-order condition (14) implies

Eθt|θt−1 {Ht} = 0, ∀t. (19)

If Condition (2b) also holds, we can write τ t as

τ t ≡ β

µ
∂χt+1
∂Kt

¶
Eθt+1|θt {Ht+1} .

Using equation (19), the last equality implies that τ t ≡ 0. Clearly the transversality conditions
in the two problems are the same.
The necessity of the separability condition follows from the previous argument. If either

part of Condition 2 does not hold the function τ is not identically 0. (Of course the equality
τ = 0 might hold for some values of the information state, but we need the stronger condition
that the equality hold identically, i.e., for all possible values of the information state.)
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To complete the proof, we need only check that the Euler equations and transversality con-
ditions for the pollution stock are also the same in the two problems. In the Markov Perfect
equilibrium with taxes, the regulator solves the following DPE:

JT (Kt−1, St−1, θt−1) = maxpt Eθt|θt−1
©
B (Kt−1, θt, χt)−D (St−1)− C

¡
ITt , Kt−1

¢
+βJT

¡
δKt−1 + ITt ,∆St−1 + χt, θt

¢ª
,

(20)

subject to emissions χt given by equation (5), and the private investment rule ITt ≡ IT (Kt−1, θt, St−1).
ITt is independent of the current tax level pt as discussed in Section 3;

∂χt
∂pt
is independent of θt

because of Condition 1. Thus the first order condition for the optimal tax is

Eθt|θt−1
©
Bx [Kt−1, θt, χ (Kt−1, θt, pt)] + βJTS [Kt,∆St−1 + χ (Kt−1, θt, pt) , θt]

ª
= 0. (21)

Differentiating the DPE (20) with respect to St−1, using the envelope theorem, and combining
the resulting equation with the first order condition (21) gives the stochastic Euler equation for
the pollution stock in the dynamic game:

Eθt|θt−1
©
Bx [Kt−1, θt, χ (Kt−1, θt, pt)]− βD

0
[∆St−1 + χ (Kt−1, θt, pt)]

ª
−β∆Eθt+1|θt−1Bx [Kt, θt+1, χ (Kt, θt+1, pt+1)] = 0

. (22)

The transversality condition is

lim
T→∞

EθT |θt−1
©
βT−tBx [KT−1, θT , χ (KT−1, θT , pT )]ST

ª
= 0.

Again, it is straightforward to obtain the Euler equation for pollution stocks in the auxiliary
problem. We differentiate equation (13) with respect to St−1, using the envelope theorem.
Combining the resulting equation with the first order condition (19) leads to the stochastic
Euler equation for the pollution stock in the auxiliary problem. This equation is identical to
equations (22). The transversality conditions are also the same. QED

8.2 Formulae for Γ

The function Γ used in equation (18) is

Γ =

β2ρ2φ2 (d−βh)
b(1+βg

b )
2
(d−βh−dβρ)2

+ βρ2

1+βg
b

1− βρ2
> 0

with
Ξ ≡

µ
f2 − φ2

b+ βg

¶
β − d

¡
1− βδ2

¢
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h =

−Ξ−
r
Ξ2 + 4βd

³
f2 − φ2

b+βg

´
2β

< 0

8.3 Calibration of Abatement costs and the shock

We assume that abatement capital depreciates at an annual rate of 16.25%, the mean of capital
stock depreciation rates in 14 OECD countries (Cummins, Hassett, and Hubbard 1996). This
depreciation rate implies that δ = 0.85.
A higher unit of abatement capital decreases the BAU emissions bym1 units. Whenm1 = 0,

BAU emissions are constant, and abatement capital has no effect on the marginal benefit of pol-
lution (i.e., on marginal abatement costs). In this special case, the firm’s emission decision and
investment decision are decoupled, and the firm’s capital stock has no effect on the regulator’s
optimal policy. The restriction m1 = 0 therefore reproduces the linear-quadratic models of
global warming in Karp and Zhang (2002a).
The dependence of adjustment costs on gross rather than net investment leads to a simple

method of calibration. In the absence of additional regulation – i.e., under Business as Usual –
firms never invest: Ibt = 0, ∀t ≥ 0. If the initial level of abatement capital is positive, the level
monotonically decreases over time, so BAU emissions monotonically increase:

Kb
t = δt+1K−1, xbt = m0 −m1K

b
t−1 + θ̃t = m0 −m1δ

tK−1 + θ̃t,

where K−1 > 0 is the abatement capital at the beginning of the initial period (t = 0). Our
assumptions provide a simple way to include endogenous investment, and also to reproduce the
stylized fact that BAU emissions will increase. The model is “incomplete”, since it does not
explain whyK−1 > 0. The expected future BAU atmospheric CO2 stock is:

St = ∆t+1S−1 −m1K−1
δt
h
1− ¡∆

δ

¢t+1i
1− ∆

δ

+
£
m0 + (1−∆) S̄

¤ 1−∆t+1

1−∆
, (23)

where S−1 is the pollutant stock at the beginning of the initial period.
The current anthropogenic fluxes of CO2 into the atmosphere is 5.2 GtC12 so we set Exb0 =

12We use “current” to mean the year 2000. The current total anthropogenic CO2 emissions are about 8.12 GtC,
which equals the sum of 6.518 GtC of global CO2 emissions from fossil fuel combustion and cement production
(Marland, Boden, Andres, Brenkert, and Johnston 1999) and 1.6 GtC annual average net CO2 emissions from
changes in tropical land-use (Intergovernmental Panel on Climate Change 1996). We obtain the current anthro-
pogenic fluxes of CO2 into the atmosphere 5.20 GtC by multiplying the total anthropogenic emissions by 0.64, the
marginal atmospheric retention ratio.
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m0−m1K−1 = 5.2 to obtain one calibration equation. The IPCC IS92a scenario projects BAU
CO2 stocks at 1500 GtC in 2100 (Intergovernmental Panel on Climate Change 1996), page
23. This estimate, equation (23), and the estimate of current atmospheric CO2 concentration
at S−1 = 781GtC (Keeling and Whorf 1999), gives a second calibration equation. The two
equations imply

m0 = 12.466, m1K−1 = 7.2661.

We have no data on abatement capital, so we choose an arbitrary value for K−1.13 We set
K−1 = 10.
We choose the baseline values of d (the slope of the marginal investment cost) and b (the

slope of the marginal abatement cost) to satisfy a scenario in which firms are required to main-
tain emissions at the current level in each period. Firms begin with the initial abatement capital
and solve an infinite horizon investment problem to minimize the present discounted sum of
investment and abatement cost under emission stabilization. In order to determine the two
unknown parameters, we assume:

• The annualized discounted present value of firms’ total (abatement-related) costs is about
1% of 1998 GWP (Manne and Richels 1992).14

• In the steady state the ratio of investment costs to total abatement costs is about 0.5
(Vogan 1991).

These two assumptions lead to the baseline parameter values: d = 703.31, and b = 26.992.

8.4 Calibration material not intended for publication

Row 1 in Table 1 is pollutant stock growth equation. We measure St, the CO2 atmospheric
concentration, in billions of tons of carbon equivalent (GtC). S̄ equals 590GtC, the preindustrial
CO2 concentration (Neftel, Friedli, Moor, and Lötscher and H. Oeschger and U. Siegenthaler
and B. Stauffer 1999). Let et be total anthropogenic CO2 emissions in period t. The proportion
13Even for pollution problems that have been studied in more detail, data on abatement capital is difficult or

impossible to obtain. For example, Becker and Henderson (1999) note the absence of estimates of abatement
capital stocks associated with U.S. air quality regulation.
14Manne and Richels (1992) estimate that the total global costs of stabilizing CO2 emissions at the 1990 level

are about 4,560 billions of 1990 US dollars, or 20.25% of the 1990 GWP. We take the same percentage loss and
use the annuanlized value (1− β)× 20.25% = 1%.

31



of emissions contributing to the atmospheric stock is estimated at 0.64 (Goulder and Mathai
2000), (Nordhaus 1994b). This fraction accounts for oceanic uptake, other terrestrial sinks, and
the carbon cycle (Intergovernmental Panel on Climate Change 1996). The linear approximation
of the evolution of the atmospheric pollutant stock is

St − 590 = ∆ (St−1 − 590) + 0.64et.

This equation states that 64% of current emissions contribute to atmospheric CO2, and that CO2
stocks in excess of the preindustrial level decays naturally at an annual rate of 1−∆. We take
xt ≡ 0.64et, the anthropogenic fluxes of CO2 into the atmosphere, as the control variable. The
stock persistence is ∆ = 0.9917 (an annual decay rate of 0.0083 and a half-life of 83 years)
(Goulder and Mathai 2000), (Nordhaus 1994b).
We assume that the preindustrial CO2 concentration has zero environmental damage. Dam-

ages from higher CO2 concentration are g
2

¡
S − S̄

¢2. (Row 2 in Table 1). For ease of interpret-
ing the numerical values, we use π to denote the percentage loss in GWP (GrossWorld Product)
from a doubling of the preindustrial CO2 concentration. With the 1998 GWP of 29,185 billion
dollars (International Monetary Fund 1999) we have

π% · 29185 = g/2 · 5902 =⇒ g = 0.0017π.

For example, π = 1.33 which is widely used corresponds to g = 0.0022. For the sensitivity
analysis we consider two other damage parameters, π = 3.6 and π = 21.0, the mean and the
maximum of expert opinions.
Using maximum likelihood, we fit the following data generating process for global carbon

emissions over the 50 year period 1947-1996 from Marland, Boden, Andres, Brenkert, and
Johnston (1999).

et = e0 + nt+ εt, εt = ρεt−1 + νt, νt ∼ iid N
¡
0, σ2υ

¢
.

The estimates are ρ = 0.9 and συ = 0.1GtC. We convert the emission uncertainty συ into
cost uncertainty σµ by multiplying it by 0.64 (because xt ≡ 0.64et), and then by the slope of
marginal abatement cost b = 26.992 (because θt ≡ bθ̃t). The result is σµ = 0.1 × 0.64 ×
26.992 = 1.7275$/(ton of carbon).
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