
A Multivariate GARCH Model with

Time-Varying Correlations

Y.K. Tse and Albert K.C. Tsui

Department of Economics
National University of Singapore

December 1998

Abstract: In this paper we propose a new multivariate GARCH model with time-
varying correlations. We adopt the vech representation based on the conditional vari-
ances and the conditional correlations. While each conditional-variance term is assumed
to follow a univariate GARCH formulation, the conditional-correlation matrix is postu-
lated to follow an autoregressive moving average type of analogue. By imposing some
suitable restrictions on the conditional-correlation-matrix equation, we manage to con-
struct a MGARCH model in which the conditional-correlation matrix is guaranteed to be
positive de¯nite during the optimisation. Thus, our new model retains the intuition and
interpretation of the univariate GARCH model and yet satis¯es the positive-de¯nite con-
dition as found in the constant-correlation and BEKK models. We report some Monte
Carlo results on the ¯nite-sample distributions of the QMLE of the varying-correlation
MGARCH model. The new model is applied to some real data sets. It is found that
extending the constant-correlation model to allow for time-varying correlations provides
some interesting time histories that are not available in a constant-correlation model.

Key Words: BEKK model, constant correlation, Monte Carlo method, multivariate
GARCH model, quasi maximum likelihood estimate, varying correlation

JEL Classi¯cation: C12

Acknowledgement: Y.K. Tse acknowledges the support by the National University
of Singapore Academic Research Grant RP-3981003. The email addresses of the authors
are, respectively, ecstseyk@nus.edu.sg and ecsatsui@nus.edu.sg.



1 Introduction

Following the success of the autoregressive conditional heteroscedasticity (ARCH) model

and the generalized ARCH (GARCH) model in describing the time-varying variances

of economic data in the univariate case many researchers have extended these models

to the multivariate dimension. Applications of the multivariate GARCH (MGARCH)

models to ¯nancial data have been particularly popular. For example, Bollerslev (1990)

studied the changing variance structure of the exchange rate regime in the European

Monetary System assuming the correlations to be time invariant. Kroner and Claessens

(1991) applied the models to calculate the optimal debt portfolio in multiple currencies.

Lien and Luo (1994) evaluated the multiperiod hedge ratios of currency futures in a

MGARCH framework. Karolyi (1995) examined the international transmission of stock

returns and volatility using di®erent versions of MGARCH models. Baillie and Myers

(1991) estimated the optimal hedge ratios for commodity futures and argued that these

ratios are nonstationary. Gourieroux (1997, Chapter 6) presented a survey of several

versions of MGARCH models. See also Bollerslev, Chou and Kroner (1992) and Bera

and Higgins (1993) for surveys on the methodology and applications of GARCH and

MGARCH models.

Bollerslev, Engle andWooldridge (1988) provided the basic framework for a MGARCH

model. They extended the GARCH representation in the univariate case to the vector-

ized conditional-variance matrix. Their speci¯cation follows the traditional autoregres-

sive moving average time series analogue. While this so-called vech representation is

very general, it involves a large number of parameters. Empirical applications require

further restrictions and simpli¯cations. A popular member of the vech-representation

family is the diagonal form. Under the diagonal form, each variance-covariance term is

postulated to follow a GARCH-type equation with the lagged variance-covariance term

and the product of the corresponding lagged residuals as the right-hand-side variables
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in the conditional-(co)variance equation.

It is often di±cult to verify the condition that the conditional-variance matrix of an

estimated MGARCH model is positive de¯nite.1 Furthermore, such conditions are often

very di±cult to impose during the optimisation of the log-likelihood function. Boller-

slev (1990) suggested the constant-correlation MGARCH (CC-MGARCH) model that

can overcome these di±culties. He pointed out that under the assumption of constant

correlations, the maximum likelihood estimate (MLE) of the correlation matrix is equal

to the sample correlation matrix. As the sample correlation matrix is always positive

de¯nite, the optimisation will not fail as long as the conditional variances are positive. In

addition, when the correlation matrix is concentrated out of the log-likelihood function

further simpli¯cation is achieved in the optimisation.

Due to its computational simplicity, the CC-MGARCH model is very popular among

empirical researchers. However, while the constant-correlation assumption provides a

convenient MGARCH model for estimation, some studies found that this assumption

is not supported by some ¯nancial data. Bera and Kim (1996) and Tse (1998) found

that the stock returns across di®erent national markets exhibit time-varying correlations.

Thus, there is a need to extend the MGARCH models to incorporate time-varying cor-

relations and yet retain the appealing feature of satisfying the positive-de¯nite condition

during the optimisation.

Engle and Kroner (1995) proposed a class of MGARCH model called the BEKK

(named after Baba, Engle, Kraft and Kroner) model. The motivation is to ensure the

condition of a positive de¯nite conditional-variance matrix in the process of optimisation.

Engle and Kroner provided some theoretical analysis of the BEKK model and related it

to the vech-representation form. Another approach examines the conditional variance as

a factor model. The works by Diebold and Nerlove (1989), Engel and Rodrigues (1989)

1Engle, Granger and Kraft (1984) presented the necessary conditions for the conditional-variance
matrix to be positive de¯nite in a bivariate ARCH model. Extensions of these results to more general
models are, however, intractable.
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and Engle, Ng and Rothschild (1990) were along this line. One disadvantage of the

BEKK and factor models is that the parameters cannot be easily interpreted, and their

net e®ects on the future variances and covariances are not readily seen. Bera, Garcia

and Roh (1997) reported that the BEKK model does not perform well in the estimation

of the optimal hedge ratios. Lien, Tse and Tsui (1998) reported di±culties in getting

convergence when using the BEKK model to estimate the conditional-variance structure

of spot and futures prices.

In this paper we propose a new MGARCH model with time-varying correlations.

Basically we adopt the vech representation. The variables of interest are, however, the

conditional variances and conditional correlations. We assume a vech-diagonal struc-

ture in which each conditional-variance term follows a univariate GARCH formulation.

The remaining task is to specify the conditional-correlation structure. We apply an au-

toregressive moving average type of analogue to the conditional-correlation matrix. By

imposing some suitable restrictions on the conditional-correlation-matrix equation, we

manage to construct a MGARCH model in which the conditional-correlation matrix is

guaranteed to be positive de¯nite during the optimisation. Thus, our new model retains

the intuition and interpretation of the univariate GARCH model and yet satis¯es the

positive-de¯nite condition as found in the constant-correlation and BEKK models.

The plan of the rest of the paper is as follows. In Section 2 we describe the con-

struction of the varying-correlation MGARCH model. As in other MGARCH models,

the new model can be estimated using a quasi-MLE (QMLE) approach. Some Monte

Carlo results on the ¯nite-sample distributions of the QMLE of the varying-correlation

MGARCH model are reported in Section 3. Section 4 describes some illustrative ex-

amples of the new model using some real data sets. These are the exchange rate data,

interest rate data and stock price data. The new model is compared against the CC-

MGARCH model. It is found that extending the constant-correlation model to allow

for time varying correlations provides some interesting empirical results. The estimated
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conditional-correlation path provides an interesting time history that would be lost in a

constant-correlation model. Finally, we give some concluding remarks in Section 5.

2 A Varying-Correlation MGARCH Model

Consider a multivariate time series of observations fytg, t = 1; :::; T , with K elements

each, so that yt = (y1t; :::; yKt)
0. We assume that the observations are of zero (or known)

mean. This assumption simpli¯es the discussions without straining the notations.2

The conditional variance of yt is assumed to follow the time-varying structure given

by

Var(ytj©t¡1) = ­t, (1)

where ©t is the information set at time t. We denote the variance elements of ­t by

¾2it, for i = 1; :::; K, and the covariance elements by ¾ijt, where 1 · i < j · K.

Denoting Dt as the K £ K diagonal matrix with the ith diagonal element being ¾it,

we let ²t = D
¡1
t yt. Thus, ²t is the standardised residual and is assumed to be serially

independently distributed with mean zero and variance matrix ¡t = f½ijtg. Of course,

¡t is also the correlation matrix of yt and ­t = Dt ¡tDt.

To specify the conditional variance of yt, we adopt the vech-diagonal formulation as

initiated by Bollerslev, Engle and Wooldridge (1988). Thus, each conditional-variance

term follows a univariate GARCH(p, q) model given by the following equation:

¾2it = !i +
pX

h=1

®ih ¾
2
i;t¡h +

qX

h=1

¯ih y
2
i;t¡h; i = 1; ¢ ¢ ¢ ;K; (2)

where !i; ®ih and ¯ih are nonnegative, and
Pp
h=1 ®ih+

Pq
h=1 ¯ih < 1, for i = 1; :::; K. Note

that we may allow (p, q) to vary with i so that (p, q) should be regarded as the generic

2Additional parameters would be required to represent the conditional-mean equation in the complete
model if the mean is unknown. Under certain conditions, the MLE of the parameters in the conditional-
mean equation is asymptotically uncorrelated with the MLE of the parameters of the conditional-
variance equation. Under such circumstances, we may treat yt as pre-¯ltered observations (see Bera
and Higgins (1993) for further discussions). Otherwise, the parameter vector has to be augmented to
take account of the unknown mean.
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order of the univariate GARCH process. Researchers adopting the vech-diagonal form

typically assume that the above equation also applies to the conditional-covariance terms

in which ¾2it is replaced by ¾ijt and y
2
it is replaced by yit yjt for 1 · i < j · K. We shall,

however, deviate from this approach. Speci¯cally, we shall focus on the conditional-

correlation matrix and adopt an autoregressive moving average analogue on this matrix.

Thus, we assume that the time-varying conditional-correlation matrix ¡t is generated

from the following recursion:

¡t = (1¡ µ1 ¡ µ2) ¡ + µ1 ¡t¡1 + µ2ªt¡1; (3)

where ¡ = f½ijg is a (time-invariant) K £ K positive de¯nite parameter matrix with

unit diagonal elements and ªt¡1 is a K £ K matrix whose elements are functions of

the lagged observations of yt:
3 The functional form of ªt¡1 will be speci¯ed below. The

parameters µ1 and µ2 are assumed to be nonnegative with the additional constraint that

µ1 + µ2 · 1. Thus, ¡t is a weighted average of ¡, ¡t¡1 and ªt¡1. Hence, if ªt¡1 is a

well-de¯ned correlation matrix (i.e., positive de¯nite with unit diagonal elements), ¡t

will also be a well-de¯ned correlation matrix.4

It can be observed that ªt¡1 is analogous to y2i;t¡1 in the univariate GARCH(1, 1)

model. However, as ¡t is a standardised measure, we also require ªt¡1 to depend on

the (lagged) standardised residuals ²t. Denoting ªt = fÃijtg, we propose to consider the

following speci¯cation for ªt¡1:

Ãij;t¡1 =

PM
h=1 ²i;t¡h ²j;t¡hq

(
PM
h=1 ²

2
i;t¡h)(

PM
h=1 ²

2
j;t¡h)

; 1 · i < j · K: (4)

Thus, ªt¡1 is the sample correlation matrix of f²t¡1; :::; ²t¡Mg. We de¯ne Et¡1 as the

K £M matrix given by Et¡1 = (²t¡1; :::; ²t¡M ). If Bt¡1 is the K £K diagonal matrix

3For the sake of simplicity and at the risk of being not thorough, we shall describe a correlation
matrix as being positive de¯nite. It is not di±cult to see that for some statements made in this section,
the term \positive de¯nite" should, strictly speaking, be replaced by the term \positive semi-de¯nite".

4This statement is subject to the condition that the recursion starts with a well-de¯ned correlation
matrix ¡0. Under such conditions, the diagonal elements of ¡t are unity and ¡t remains positive de¯nite.
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with the ith diagonal element being (
PM
h=1 ²

2
i;t¡h)

1=2 for i = 1; :::; K, then we have

ªt¡1 = B
¡1
t¡1Et¡1E

0
t¡1B

¡1
t¡1: (5)

Note that when M = 1, ªt¡1 is identically equal to the matrix of unity. Updating

the conditional-correlation matrix with respect to the matrix of unity is of course not

meaningful. Thus, taking ¯rst-order lag for the formulation of ªt¡1 is not su±cient.

Indeed, M ¸ K is a necessary condition for ªt¡1 to be positive de¯nite. When positive-

de¯niteness is satis¯ed, ªt¡1 is a well-de¯ned correlation matrix. Thus, the condition

M ¸ K will be imposed subsequently.

Equation (3) is analogous to the univariate GARCH equation, with the additional

restriction that the sum of the coe±cients is equal to 1. Indeed, ¡t involves updating the

conditional-correlation matrix with respect to the latest conditional-correlation matrix

¡t¡1 and a sample estimate of the conditional-correlation matrix based on the recent

M standardised residuals. We shall call the model speci¯ed by (2), (3) and (5) the

varying-correlation MGARCH (VC-MGARCH) model.

Assuming normality, yt » N(0; Dt ¡tDt), so that the log-likelihood `t of the obser-

vation yt is given by:

`t = ¡1
2
ln jDt¡tDtj ¡ 1

2
y
0
tD

¡1
t ¡

¡1
t D

¡1
t yt (6)

= ¡1
2
ln j¡tj ¡ 1

2

KX

i=1

ln ¾2it ¡
1

2
y
0
tD

¡1
t ¡

¡1
t D

¡1
t yt; (7)

from which we can obtain the log-likelihood function of the sample as ` =
PT
t=1 `t: Hence,

the log-likelihood function is conditional on the values ¡0; ª0 and y0 being ¯xed. These

assumptions have no e®ects on the asymptotic distribution of the QMLE. Denoting

µ = (!1; ®11;::; ®1p;¯11; ::; ¯1q; !2; ::; ¯Kq; ½12; ::; ½K¡1;K ; µ1; µ2) as the parameter vector of

the model, the QMLE of µ is obtained by maximising ` with respect to µ. We shall

denote this value by µ̂:

For parameter parsimony, (p, q) is usually taken to be of low order. For p = q = 1,
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the total number of parameters in the VC-MGARCH model is 3K+K (K+1)=2+2. In

comparison, an unrestricted BEKK model with order 1 for both the lagged conditional-

covariance matrix term and the outer product of the lagged residuals term has K (K +

1)=2 + 2K2 parameters. For example, for K = 2, 3 and 4, the number of parameters in

the VC-MGARCH model is 9, 14 and 20, respectively, while that for the BEKK model

is 11, 24 and 42, respectively. The number of parameters in the VC-MGARCH model

always exceeds that of the constant-correlation model by 2, due to the parameters µ1

and µ2. Indeed the CC-MGARCH model is nested within the VC-MGARCH model by

imposing the restrictions µ1 = µ2 = 0:

The conditions 0 · µ1; µ2 · 1 and µ1 + µ2 · 1 pose some problems in the optimisa-

tion. One way to get around this di±culty is through transformation. For example, we

may de¯ne µi = ¸2i = (1+ ¸
2
1 + ¸

2
2) for i = 1; 2; where ¸1 and ¸2 are unrestricted parame-

ters. The log-likelihood function may be initially optimised with respect to ¸1, ¸2 and

other parameters of interest. The optimisation is then shifted to the original vector µ

when convergence with respect to ¸1, ¸2 and other parameters has been achieved. This

technique is used in the computations reported in this paper.

3 Some Monte Carlo Results

Although the GARCH type of models have been applied extensively in the literature,

little has been known about the theoretical asymptotic distribution of the QMLE of these

models. Consistency and asymptotic normality have often been assumed. The works

of Weiss (1986) and Lumsdaine (1996) represent few of the studies on the asymptotic

distribution of the QMLE in the univariate case. For MGARCH models, theoretical

results are even more scanty.

In the univariate case, Engle, Hendry and Trumble (1985), Bollerslev and Wooldridge

(1992) and Lumsdaine (1995) examined the small-sample properties of the QMLE of the

7



ARCH and GARCH models. In this section we report some results on the small-sample

properties of the QMLE of the VC-MGARCH model based on a small-scale Monte Carlo

experiment. It is not our intention to provide a comprehensive Monte Carlo study of

the QMLE. We shall focus our interest on the small-sample bias and mean squared

error only. The reliability of the inference concerning the model parameters will not be

examined. Our results, however, will provide some preliminary evidence with respect to

the small-sample properties of the QMLE of the VC-MGARCH model.

We consider bivariate VC-MGARCH models in which the conditional-variance equa-

tions are given by:

¾2it = !i + ®i ¾
2
i;t¡1 + ¯i y

2
i;t¡1; i = 1; 2; (8)

and the conditional correlation coe±cient is given by:

½t = (1¡ µ1 ¡ µ2) ½+ µ1 ½t¡1 + µ2 Ãt¡1; (9)

where Ãt¡1 is given by:

Ãt¡1 =

P2
h=1 ²1;t¡h ²2;t¡hq

(
P2
h=1 ²

2
1;t¡h)(

P2
h=1 ²

2
2;t¡h)

: (10)

with ²it = yit = ¾it for i = 1; 2.5

We consider four experimental setups. The true parameter values of the data gen-

erating processes of these experiments, labelled E1 through E4, are given in Tables 1.1

and 1.2. Observations fytg are generated from these models assuming the errors are

normally distributed. We consider T = 500; 1000 and 1500. The QMLE are calculated

for each generated sample. Using Monte Carlo samples of 1000 runs, we estimate the

bias and mean squared error (MSE) of the QMLE.

E1 and E2 represent models with higher volatility persistence (as measured by ®i +

¯i), while E3 and E4 represent models with lower volatility persistence. The selected

5All computations reported in this paper assume M = K in the de¯nition of ªt.
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values of ½ in the experiments vary from 0.2 to 0.7. It can be seen from Tables 1.1 and

1.2 that the biases of the QMLE are generally quite small. The bias decreases with the

sample size, although in some cases not steadily. Likewise, the same is true for the MSE.

Overall, the Monte Carlo results suggest that the QMLE is likely to be consistent. For

the sample sizes and models considered, the bias and MSE appear to be small.

In the next section, we report the empirical results of applying the VC-MGARCH

model to some real data sets.

4 Some Illustrative Examples

We examine three sets of ¯nancial data. These are the exchange rate data, interest rate

data and stock price data, denoted by DS1, DS2 and DS3, respectively. DS1 consists

of two exchange rate (versus US dollar) series, namely, the British Pound (B) and the

Deutschmark (D). These series represent daily observations from January 1990 to June

1998, with 2137 observations. DS2 covers three series of bond yield data, consisting

of the yields of the 3-month Treasury Bill (M), the 1-year Treasury Note (O) and the

10-year Treasury Bond (T) in the US. The observations are weekly (Wednesday) ¯gures

from January 1982 through April 1998, totalling 850 observations. DS3 covers the stock

price indices of three national markets. These are the markets of Hong Kong (H), Japan

(J) and Singapore (S), as measured by the Hang Seng Index, the Nikkei Stock Average

225 and the SES-ALL Index, respectively. We sample the data from every ¯fth trading

day for the period of January 1990 through December 1997, with 340 observations. This

sampling method alleviates the problem of nonsynchronous trading days for the three

markets. DS1 and DS2 were downloaded from the website of the Federal Reserve Bank

of Chicago. DS3 was compiled from various issues of the Stock Exchange of Singapore

Journal.

Figures 1 through 3 present the plots of the eight series in the three data sets. For
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Figure 3, the values of the Hang Seng Index and the Nikkei Stock Average 225 have

been scaled down by a factor of one-tenth for the purpose of presentation. We can

see that the bond yields moved closely together. In contrast, the stock market indices

exhibited periods of divergence. For example, in the early 1990s, the Japan market

experienced prolonged period of downturn, while the Hong Kong and Singapore markets

were gradually moving upwards. Table 2 provides a summary of the descriptive statistics

of the data. The summary statistics refer to those of the di®erences of the logarithmic

series (expressed in percentage). It can be seen that all di®erenced logarithmic series

exhibit negative skewness and excess kurtosis (compared to the normal distribution) in

the unconditional distribution. While the exchange rate data demonstrate no evidence of

serial correlation, both the interest rate data and the stock return data have signi¯cant

serial correlation as suggested by the Q1 statistics. The Q2 statistics show that there

is serial correlation in the conditional variance of all data sets and GARCH type of

modelling may be required. In the subsequent analysis, we apply autoregressive ¯lters

to the di®erenced logarithmic series and model the ¯ltered residuals using MGARCH

models. The autoregressive ¯lters are estimated using ordinary least squares (OLS).

We ¯t the CC-MGARCH model to all data sets using Bollerslev's (1990) algorithm.

For DS2 and DS3 we consider trivariate model as well as bivariate (pairwise) models.

The results are summarised in Table 3. It can be observed that the estimates of ®, ¯ and

½ are all statistically signi¯cant at the 5 percent level for DS1 and DS2. For DS3, which

has the smallest sample size, some estimates of ® and ¯ are not statistically signi¯cant,

while all estimates of ½ are signi¯cant. The exchange rate data have the highest intensity

of persistence in volatility according to the estimates of ®+ ¯. Rather interestingly, the

estimates of ® + ¯ are quite robust for each series, regardless of what other series are

included in the CC-MGARCH (whether bivariate or trivariate) system. For example,

the estimates of ® + ¯ for the returns in the Japanese market (J) vary from 0.9085 to

0.9194 for three di®erent systems.
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With respect to the correlation coe±cients, the returns across di®erent national mar-

kets have the lowest correlation. In no case is the estimated correlation coe±cient higher

than 0.57. For the interest rate data, the correlation between the medium-term (O) and

long-term (T) rates has the highest value. As expected, the correlation between the

short-term (M) and long-term (T) rates has the lowest value. Again, it is quite remark-

able that the estimated correlation coe±cient between each pair of series is quite robust

regardless of whether it is an estimate from a bivariate or trivariate system.

Table 4 summarises the estimation results of the VC-MGARCH models for the three

data sets. It can be seen that the intensity of the volatility persistence has increased

compared to the CC-MGARCH models. For example, for data sets DS2 and DS3, 7

out of 9 estimates of ®+ ¯ are larger than the corresponding estimates in the constant-

correlation models. For DS1 and DS2, the estimates of ½ in the varying-correlation

models are larger than the corresponding estimates of ½ in the constant-correlation

model. Also, for these two data sets the estimates of ½ are quite stable irrespective of

the system in which this parameter is estimated. For DS3, however, the estimates of ½

are no longer stable with respect to the system in which it is estimated. For example,

½̂HS is 0.7314 in the bivariate system of (H, S), but is equal to 0.6207 in the trivariate

system of (H, J, S). Also, while ½̂JS is 0.5691 in the system (J, S), it drops to 0.3333 in

the system (H, J, S).

It can be seen that most estimates of µ1 and µ2 are statistically signi¯cant at the

5 percent level. The only exceptions are the estimates of µ2 in the system (M, T) in

DS2 and in the system (H, J) in DS3. As the CC-MGARCH model is nested within the

VC-MGARCH model, ignoring the extension would induce model misspeci¯cation. We

now proceed to examine the model diagnostics for the constant-correlation and varying-

correlation models.

Table 5 summarises a battery of diagnostic tests for the ¯tted MGARCH models.

Qi(20) tests for the autocorrelation in the standardised residuals of series i. It is the
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Box-Pierce statistic based on the autocorrelation coe±cients of ²̂it up to order 20. Like-

wise, Qij(20) is the Box-Pierce statistic based on the autocorrelation coe±cients of

²̂it²̂jt ¡ ±ijt, where ±ijt ´ 1 for i = j, and ±ijt = ½̂ijt for i 6= j, up to order 20. We

would expect ²̂it²̂jt ¡ ±ijt to be approximately serially uncorrelated if the conditional

variance-covariance equations are correct. Thus, Qij(20) can be used to test for inad-

equacy of the conditional variance-covariance structure. Although the Q statistics are

not asymptotically distributed as Â2 (see Li and Mak (1994) and Ling and Li (1997)),

the Â2 approximation has nonetheless been used as a rule of thumb for the asymptotic

distribution (see, e.g., Bollerslev (1990) Footnote 7). LMC is the Lagrange multiplier

test for the assumption of constant correlations in a MGARCH model suggested by Tse

(1998). It is asymptotically distributed as a Â2R, where R = K (K ¡ 1) =2, under the

null. In Panel B of the table we also present the likelihood ratio statistic LR, which

tests for the restriction µ1 = µ2 = 0.

For the CC-MGARCH model of DS1, although LMC cannot detect any violation

of the constant-correlation assumption, Q12 suggests the contrary. Otherwise, all other

diagnostics do not detect any model misspeci¯cation. On the other hand, the Q12

statistic of the VC-MGARCH model is insigni¯cant at the 5 percent level. As expected,

the LR statistic is highly signi¯cant. Overall, the results suggest the superiority of the

VC-MGARCH model over the CC-MGARCH model.

For DS2, the CC-MGARCH model passes most of the diagnostics, except for the

LMC statistic of the (M, T) system. For the VC-MGARCH model, all diagnostics

cannot detect any misspeci¯cations. Although the LR statistics are signi¯cant at the 5

percent level, a comparison of Tables 3 and 4 shows that the estimates of the !, ® and

¯ do not di®er much over the two models. Thus, for the interest rate system, not much

is lost by imposing constant correlations.

For the stock price data, signi¯cant time-varying correlation is detected by the LMC

statistic in the bivariate system (H, S) as well as the trivariate system. Likewise, the
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LR statistics in these two cases reject the joint hypothesis of µ1 = µ2 = 0. Otherwise,

there is no indication of time-varying correlations in the bivariate systems involving

Japan.6 Both the CC-MGARCH and VC-MGARCH models pass the various Qi and

Qij diagnostics.

Table 6 reports the summary statistics of the in-sample conditional variances, co-

variances and correlations of the VC-MGARCH(1, 1) models. It can be seen that the

sample means of the conditional correlations are remarkably close to the QMLE of the

correlation coe±cients in Table 3. Nonetheless, the range of the conditional correlations

can be quite large. For example, for DS1 the range of f½̂BDtg is 0.5884, with a mean

of 0.7001. For the interest rate data, the ranges of the conditional correlations appear

to be smaller. In the trivariate system, the minimum is 0.1777 (for f½̂OTtg) and the

maximum is 0.2856 (for f½̂MTtg). For the data set DS3, we can see that Hong Kong is

the most volatile market, followed by Japan and then Singapore. While the Hong Kong

and Singapore markets exhibit higher co-movements, the Japan market appears to have

low correlations with Hong Kong and Singapore.

To obtain a clearer picture of the time history of the conditional correlations, we plot

the time paths of the conditional correlations based on the bivariate VC-MGARCH(1, 1)

models. The plots are presented in Figures 4 through 10, in which both the conditional

correlations and the QMLE of the CC-MGARCH(1, 1) models (given by the dotted

lines) are provided.

From Figure 4 we can see that the conditional correlations of the British Pound

and the Deutschmark were quite unstable. Broadly speaking, in the earlier periods

of the sample, the conditional correlations were mostly above the estimated value of

0.7168 obtained from the constant-correlation model. After October 1995, however, the

conditional correlations dropped below this value. During this period, the British Pound

6We must note, however, that the lack of statistical signi¯cance could be due to the small sample
size in this data set. Furthermore, the correlations between the Japan market and the Hong Kong and
Singapore markets are quite low (see Table 6 below).
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was experiencing an upward drift while the Deutschmark was following a downward

trend. This time history of the conditional correlations of the two currencies cannot be

extracted from the constant-correlation model.

From Figures 5 through 7, we can observe that the conditional correlations of the

three bond yields °uctuate quite randomly around the values estimated from the constant-

correlation model. This is particularly obvious for the correlations between the 1-year

and 10-year yields (i.e., the system (O, T)). In comparison, the conditional correlations

between the 3-month and 1-year rates show slight tendency of dropping in the later

period of the sample.

Turning to Figures 8 and 9, we can see that the path of the conditional correlations

between Japan and Singapore appears to be di®erent from the other combinations.

These two markets experienced drop in correlations in the later part of the sample

period. Except for a brief period in 1996, the conditional correlations after May 1992

were below the average of 0.3149 estimated from the constant-correlation model. The

conditional correlations between the Hong Kong and Singapore markets experienced the

most volatile °uctuations. The °uctuations occurred throughout the sample period and

are strong indications of the unstable relationship between the two markets.

We shall end this section by stating that it is not our intention to claim that the VC-

MGARCH models as presented represent the best MGARCH models for the data. Other

MGARCH models could also provide the conditional-correlation structure as presented

here. The VC-MGARCH model, however, does provide a viable alternative that is

relatively easy to estimate.

5 Conclusions

In this paper we propose a new MGARCH model with time-varying correlations. We

assume a vech-diagonal structure in which each conditional-variance term follows a
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univariate GARCH formulation. The remaining task is to specify the conditional-

correlation structure. We apply an autoregressive moving average type of analogue

to the conditional-correlation matrix. By imposing some suitable restrictions on the

conditional-correlation-matrix equation, we manage to construct a MGARCH model in

which the conditional-correlation matrix is guaranteed to be positive de¯nite during the

optimisation.

We report some Monte Carlo results on the ¯nite-sample distributions of the QMLE

of the varying-correlation MGARCH model. It is found that the bias and MSE of the

QMLE are small for sample sizes of 500 or above. The new model is applied to three

real data sets, namely, exchange rate data, interest rate data and stock price data. The

new model is found to pass the model diagnostics satisfactorily, while the constant-

correlation MGARCH model is found to be inadequate in some cases. Extending the

constant-correlation model to allow for time-varying correlations provides some interest-

ing empirical results. In particular, the estimated conditional-correlation path provides

an interesting time history that would not be available in a constant-correlation model.

It is hoped that the varying-correlation MGARCH model would provide a useful alterna-

tive for modelling multivariate conditional heteroscedasticity in empirical applications.
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Table 1.1: Estimated Bias and MSE of the QMLE of Bivariate VC-MGARCH(1, 1)
Models

Experiment E1 Experiment E2
Parameters True Value Sample Size Bias MSE True Value Sample Size Bias MSE

!1 0.4 500 0.0907 0.0687 0.4 500 0.1166 0.0993
1000 0.0363 0.0194 1000 0.0487 0.0273
1500 0.0266 0.0116 1500 0.0328 0.0157

®1 0.8 500 {0.0135 0.0033 0.8 500 {0.0183 0.0043
1000 {0.0056 0.0012 1000 {0.0070 0.0016
1500 {0.0046 0.0008 1500 {0.0050 0.0010

¯1 0.15 500 {0.0007 0.0013 0.15 500 0.0005 0.0017
1000 {0.0005 0.0006 1000 {0.0010 0.0008
1500 0.0005 0.0004 1500 {0.0004 0.0005

!2 0.2 500 0.0313 0.0095 0.2 500 0.0364 0.0118
1000 0.0132 0.0031 1000 0.0123 0.0040
1500 0.0076 0.0017 1500 0.0089 0.0024

®2 0.7 500 {0.0170 0.0062 0.7 500 {0.0230 0.0079
1000 {0.0094 0.0023 1000 {0.0075 0.0031
1500 {0.0043 0.0015 1500 {0.0047 0.0018

¯2 0.2 500 {0.0018 0.0023 0.2 500 0.0011 0.0030
1000 0.0013 0.0010 1000 {0.0003 0.0013
1500 {0.0005 0.0008 1500 {0.0005 0.0009

½ 0.7 500 {0.0011 0.0028 0.2 500 {0.0008 0.0077
1000 {0.0227 0.0084 1000 {0.0012 0.0034
1500 0.0010 0.0009 1500 0.0001 0.0022

µ1 0.8 500 {0.0018 0.0014 0.8 500 {0.0358 0.0181
1000 {0.0090 0.0023 1000 {0.0194 0.0065
1500 0.0011 0.0004 1500 {0.0111 0.0029

µ2 0.1 500 {0.0006 0.0008 0.1 500 0.0043 0.0016
1000 {0.0064 0.0014 1000 0.0023 0.0008
1500 0.0005 0.0003 1500 0.0011 0.0004

Notes: See equations (8), (9) and (10) for the data generating process.
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Table 1.2: Estimated Bias and MSE of the QMLE of Bivariate VC-MGARCH(1, 1)
Models

Experiment E3 Experiment E4
Parameters True Value Sample Size Bias MSE True Value Sample Size Bias MSE

!1 0.4 500 0.0280 0.0177 0.4 500 0.0315 0.0188
1000 0.0153 0.0077 1000 0.0114 0.0088
1500 0.0056 0.0044 1500 0.0051 0.0052

®1 0.5 500 {0.0184 0.0104 0.5 500 {0.0181 0.0109
1000 {0.0092 0.0045 1000 {0.0067 0.0051
1500 0.0028 0.0027 1500 {0.0025 0.0031

¯1 0.3 500 0.0005 0.0041 0.3 500 {0.0032 0.0042
1000 0.0021 0.0020 1000 {0.0019 0.0021
1500 {0.0010 0.0015 1500 {0.0022 0.0015

!2 0.2 500 0.0177 0.0064 0.2 500 0.0219 0.0081
1000 0.0092 0.0031 1000 0.0109 0.0032
1500 0.0072 0.0021 1500 0.0089 0.0024

®2 0.4 500 {0.0409 0.0335 0.5 500 {0.0352 0.0268
1000 {0.0166 0.0162 1000 {0.0188 0.0110
1500 {0.0153 0.0118 1500 {0.0089 0.0074

¯2 0.2 500 0.0011 0.0038 0.2 500 {0.0008 0.0034
1000 {0.0007 0.0018 1000 0.0016 0.0017
1500 0.0005 0.0013 1500 0.0021 0.0013

½ 0.5 500 {0.0093 0.0079 0.2 500 0.0002 0.0139
1000 0.0012 0.0037 1000 0.0007 0.0068
1500 {0.0010 0.0024 1500 0.0001 0.0041

µ1 0.7 500 {0.0136 0.0052 0.6 500 {0.0137 0.0055
1000 {0.0054 0.0022 1000 {0.0035 0.0023
1500 {0.0031 0.0014 1500 {0.0058 0.0016

µ2 0.2 500 0.0022 0.0016 0.3 500 0.0035 0.0023
1000 0.0004 0.0008 1000 {0.0009 0.0010
1500 0.0003 0.0005 1500 0.0019 0.0007

Notes: See equations (8), (9) and (10) for the data generating process.
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Table 2: Summary Statistics of the Di®erenced Logarithmic Series of Various Data Sets

Variable (Code) Mean Std Dev Minimum Maximum Std Skewness Std Kurtosis Q1(20) Q2(20) Num of Obs

Panel A: Forex Market Data (DS1)

British Pound (B) 0.0008 0.6498 {4.3306 3.2467 {28.6798 125.0248 18.4091 422.5185 2137
Deutschmark (D) {0.0025 0.6919 {3.4671 3.3440 {28.2742 95.0182 12.1631 211.7246 2137

Panel B: Bond Market Data (DS2)

3-Month T-Bill (M) {0.1019 2.3643 {21.2535 10.4069 {363.1040 228.7802 65.0449 106.4135 850
1-Year T-Note (O) {0.1104 2.1071 {14.3009 6.5305 {138.6335 108.3323 104.6519 91.8969 850
10-Year T-Bond (T) {0.1102 1.6528 {7.7080 5.5091 {27.0643 48.6885 72.0995 65.6332 850

Panel C: Stock Market Data (DS3)

Hong Kong (H) 0.5218 3.3224 {10.3635 12.0917 {31.4482 26.3981 38.0765 28.1933 340
Japan (J) {0.2015 3.2499 {10.2969 11.5091 {13.3198 30.9661 24.8226 34.2806 340
Singapore (S) 0.0306 2.3391 {13.5471 6.9306 {96.0536 55.8701 43.5073 87.6590 340

Notes: Q1(20) is the Box-Pierce portmanteau statistic of the di®erenced logarithmic series based on the autocorrelation coe±cients up to

order 20. Similarly, Q2(20) is the portmanteau statistic of the squared di®erenced logarithmic series.



Table 3: Estimation Results of CC-MGARCH(1, 1) Models

Data K Variable ! ® ¯ Correlations

DS1 2 B 0.0117 0.9221 0.0464 ½BD = 0.7168
(0.0030) (0.0145) (0.0081) (0.0107)

D 0.0162 0.9274 0.0362
(0.0042) (0.0141) (0.0067)

DS2 2 M 0.6598 0.6259 0.2249 ½MO = 0.7623
(0.2739) (0.1127) (0.0828) (0.0217)

O 0.3558 0.8129 0.0961
(0.0913) (0.0270) (0.0255)

2 M 0.5959 0.5883 0.3033 ½MT = 0.5232
(0.2888) (0.1454) (0.1353) (0.0322)

T 0.2605 0.8384 0.0605
(0.0720) (0.0288) (0.0205)

2 O 0.2241 0.8284 0.1215 ½OT = 0.8249
(0.0781) (0.0392) (0.0377) (0.0133)

T 0.2116 0.8591 0.0589
(0.0576) (0.0244) (0.0154)

3 M 0.6020 0.6568 0.2050 ½MO = 0.7627
(0.2908) (0.1224) (0.0841) (0.0225)

O 0.3440 0.8152 0.0971 ½MT = 0.5264
(0.0871) (0.0301) (0.0237) (0.0340)

T 0.2278 0.8603 0.0505 ½OT = 0.8246
(0.0663) (0.0285) (0.0139) (0.0135)

DS3 2 H 0.6250 0.8721 0.0999 ½HJ = 0.2073
(0.4604) (0.0471) (0.0507) (0.0600)

J 0.9569 0.8079 0.1006
(0.6010) (0.0774) (0.0481)

2 H 1.0243 0.8499 0.0918 ½HS = 0.5645
(0.5177) (0.0414) (0.0404) (0.0519)

S 0.6106 0.8186 0.0829
(2.1266) (0.4753) (0.1192)

2 J 0.8439 0.8233 0.0961 ½JS = 0.3149
(0.5115) (0.0625) (0.0406) (0.0572)

S 0.5639 0.8156 0.0966
(0.6395) (0.1408) (0.0545)

3 H 1.0140 0.8522 0.0900 ½HJ = 0.2146
(0.5099) (0.0389) (0.0403) (0.0607)

J 0.8652 0.8200 0.0969 ½HS = 0.5663
(0.5460) (0.0686) (0.0425) (0.0524)

S 0.7917 0.7867 0.0825 ½JS = 0.3220
(1.9858) (0.4195) (0.0863) (0.0600)

Notes: The ¯gures in parentheses are standard errors.
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Table 4: Estimation Results of VC-MGARCH(1, 1) Models

Data K Variable ! ® ¯ µ1 µ2 Correlations

DS1 2 B 0.0059 0.9323 0.0516 0.9728 0.0187 ½BD = 0.8987
(0.0018) (0.0110) (0.0076) (0.0037) (0.0026) (0.0192)

D 0.0073 0.9415 0.0419
(0.0022) (0.0095) (0.0063)

DS2 2 M 0.3935 0.7177 0.1993 0.8582 0.0502 ½MO = 0.8217
(0.2544) (0.1280) (0.0976) (0.0696) (0.0228) (0.0267)

O 0.2724 0.8184 0.1151
(0.0810) (0.0286) (0.0303)

2 M 0.5790 0.5968 0.3014 0.6564 0.0673 ½MT = 0.5433
(0.2787) (0.1409) (0.1331) (0.0319) (0.0399) (0.0396)

T 0.2596 0.8353 0.0627
(0.0730) (0.0305) (0.0211)

2 O 0.2214 0.8232 0.1295 0.4910 0.0474 ½OT = 0.8345
(0.0755) (0.0378) (0.0384) (0.1293) (0.0237) (0.0142)

T 0.2210 0.8534 0.0615
(0.0594) (0.0246) (0.0157)

3 M 0.3897 0.7295 0.1828 0.9389 0.0187 ½MO = 0.7975
(0.2770) (0.1351) (0.0941) (0.0341) (0.0095) (0.0272)

O 0.2657 0.8285 0.1035 ½MT = 0.5580
(0.0813) (0.0307) (0.0254) (0.0453)

T 0.2042 0.8691 0.0515 ½OT = 0.8421
(0.0658) (0.0273) (0.0134) (0.0194)

DS3 2 H 0.6717 0.8703 0.0986 0.6545 0.0750 ½HJ = 0.1968
(0.4534) (0.0450) (0.0504) (0.1172) (0.0533) (0.0734)

J 0.8859 0.8131 0.1012
(0.5768) (0.0790) (0.0486)

2 H 0.8115 0.8719 0.0845 0.8398 0.0745 ½HS = 0.7314
(0.4599) (0.0373) (0.0335) (0.0606) (0.0272) (0.1174)

S 0.5684 0.8190 0.0945
(1.5522) (0.3632) (0.1169)

2 J 0.8021 0.8316 0.0900 0.9772 0.0197 ½JS = 0.5691
(0.4693) (0.0573) (0.0371) (0.0092) (0.0085) (0.1326)

S 0.5539 0.8181 0.0943
(0.6726) (0.1505) (0.0541)

3 H 0.9366 0.8646 0.0824 0.7343 0.0623 ½HJ = 0.2048
(0.4684) (0.0368) (0.0366) (0.1851) (0.0305) (0.0779)

J 0.8595 0.8157 0.1014 ½HS = 0.6207
(0.5063) (0.0651) (0.0415) (0.0682)

S 0.8180 0.7763 0.0922 ½JS = 0.3333
(1.3114) (0.2764) (0.0631) (0.0696)

Notes: The ¯gures in parentheses are standard errors.
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Table 5: Diagnostic Checks for the Constant-Correlation and Varying-Correlation Models

Forex Market (DS1) Bond Market (DS2) Stock Market (DS3)
Tests (B, D) (M, O) (M, T) (O, T) (M, O, T) (H, J) (H, S) (J, S) (H, J, S)

Panel A: CC-MGARCH(1, 1) Model

Q1(20) 16.730 14.530 15.746 26.488 14.325 25.496 25.485 18.518 25.330
Q2(20) 12.247 24.797 22.631 22.447 25.029 18.554 22.235 22.293 18.265
Q3(20) 22.596 22.199
Q11(20) 11.005 14.692 17.396 7.175 13.611 25.336 27.403 24.091 27.494
Q22(20) 22.691 7.124 17.300 17.301 6.977 24.291 14.405 13.082 25.297
Q33(20) 17.478 14.284
Q12(20) 51.313 4.601 7.758 10.553 4.252 19.081 21.774 21.306 17.629
Q13(20) 7.513 21.892
Q23(20) 10.505 23.480
LMC 0.087 1.570 6.050 1.233 2.896 1.149 7.239 1.169 9.987

Panel B: VC-MGARCH(1, 1) Model

Q1(20) 16.934 14.970 15.742 26.711 14.724 25.481 25.196 18.501 25.095
Q2(20) 9.745 25.898 22.625 22.466 25.771 18.534 22.285 22.278 18.247
Q3(20) 22.596 22.200
Q11(20) 7.022 12.469 17.192 7.406 11.840 25.639 27.110 23.923 27.680
Q22(20) 14.752 6.970 17.252 17.246 6.728 24.322 13.403 13.235 25.457
Q33(20) 17.436 13.473
Q12(20) 27.998 3.664 7.655 10.626 3.593 19.309 21.292 21.923 18.041
Q13(20) 7.001 21.972
Q23(20) 10.333 22.320
LR 298.825 38.749 10.980 9.094 31.929 3.567 11.040 5.272 10.309

Notes: Qi(20) are the Box-Pierce portmanteau statistics based on the autocorrelation coe±cients of order up to 20 for the

standardised residuals of variabe i. Similarly, Qij(20) are the portmanteau statistics based on the autocorrelation coe±cients of order

up to 20 for the products of the standardised residuals of variables i and j. The indices are according to the order of the coded

variables in the parentheses (thus Q12 in the system (M, O, T) is QMO). LMC is the Lagrange multiplier test for constant correlations

due to Tse (1998). LR is the likelihood ratio statistic for H0 : µ1 = µ2 = 0.



Table 6: Summary Statistics of the Conditional Variance, Covariance and
Correlation in the Estimated VC-MGARCH(1, 1) Models

Data System Statistic Mean Std Dev Minimum Maximum

DS1 (B, D) ¾2B 0.4114 0.2660 0.1151 2.1116
¾2D 0.4678 0.2033 0.1970 1.4227
¾BD 0.3176 0.2016 0.0616 1.3518
½BD 0.7001 0.1395 0.3487 0.9371

DS2 (M, O) ¾2M 4.9094 8.1492 1.5335 100.9584
¾2O 4.0750 3.0793 1.7295 30.3173
¾MO 3.3570 3.9179 0.7924 44.2570
½MO 0.7519 0.0900 0.3748 0.8691

(M, T) ¾2M 5.1534 10.0503 1.5062 150.1892
¾2T 2.5526 0.6533 1.7611 7.2573
¾MT 1.7786 1.4943 0.5193 19.4827
½MT 0.5217 0.0753 0.2608 0.6277

(O, T) ¾2O 4.2317 3.5258 1.5266 33.7753
¾2T 2.5840 0.6858 1.7321 7.2102
¾OT 2.6669 1.3140 1.3243 13.2038
½OT 0.8257 0.0295 0.6876 0.8496

(M, O, T) ¾2M 4.8061 7.6684 1.5843 92.8950
¾2O 4.0039 2.8722 1.7825 27.6077
¾2T 2.5698 0.6126 1.7926 6.4471
¾MO 3.2906 3.5850 1.1341 39.3440
¾MT 1.7629 1.2228 0.7532 12.9837
¾OT 2.5928 1.1185 1.4080 11.0433
½MO 0.7580 0.0584 0.5614 0.8324
½MT 0.5302 0.0574 0.3544 0.6400
½OT 0.8227 0.0299 0.6916 0.8693

DS3 (H, J) ¾2H 14.8791 7.2350 7.7632 111.6058
¾2J 10.4010 3.7826 5.5870 26.3621
¾HJ 2.3826 1.4615 {0.5689 11.2181
½HJ 0.1961 0.0917 {0.0444 0.3586

(H, S) ¾2H 14.7547 6.2244 8.5945 97.7936
¾2S 6.0420 3.3804 3.5594 29.9887
¾HS 5.3986 2.9302 1.4648 33.8765
½HS 0.5667 0.1224 0.2199 0.7989

(J, S) ¾2J 10.3513 3.5834 5.6473 25.0978
¾2S 5.9269 3.3640 3.4586 29.8087
¾JS 2.4025 1.7890 0.5688 12.3114
½JS 0.2966 0.1217 0.0869 0.5540

(H, J, S) ¾2H 14.7097 5.9743 8.9401 95.0937
¾2J 10.4188 3.8265 5.5322 26.4870
¾2S 5.9639 2.9457 3.9177 28.6671
¾HJ 2.4613 1.3580 {0.3170 10.3302
¾HS 5.3621 2.4003 2.3007 31.6027
¾JS 2.4581 1.3627 0.7467 11.0837
½HJ 0.2029 0.0856 {0.0270 0.3667
½HS 0.5732 0.0768 0.3544 0.6886
½JS 0.3115 0.0777 0.1219 0.4721

Notes: ¾2i and ¾ij are the conditional variance and covariance terms, respectively; ½ij is

the conditional correlation.
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