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This article introduces a new nonparametric test to detect jump arrival times and realized
jump sizes in asset prices up to the intra-day level. We demonstrate that the likelihood of
misclassification of jumps becomes negligible when we use high-frequency returns. Using
our test, we examine jump dynamics and their distributions in the U.S. equity markets.
The results show that individual stock jumps are associated with prescheduled earnings
announcements and other company-specific news events. Additionally, S&P 500 Index
jumps are associated with general market news announcements. This suggests different
pricing models for individual equity options versus index options. (JEL G12, G22, G14)

Financial markets sometimes generate significant discontinuities, so-called
jumps, in financial variables. A number of recent empirical and theoretical
studies proved the existence of jumps and their substantial impact on financial
management, from portfolio and risk management to option and bond pricing
and hedging (see Merton, 1976; Bakshi et al., 1997, 2000; Bates, 1996; Liu
et al., 2003; Naik and Lee, 1990; Duffie et al., 2000, and Johannes, 2004).
Despite advances in asset pricing models and their inference techniques, the
studies have found that jumps are empirically difficult to identify, because only
discrete data are available from continuous-time models, in which most of the
aforementioned applications were studied. Our goal in this article is first to pro-
pose a new jump detection technique to resolve such identification problems.
Further, we show that our technique provides a model-free tool for character-
izing jump dynamics in individual equity and S&P 500 Index returns, which
allows us to investigate different model structures for their option pricing.
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There are primarily two motivations for this study. First, while researchers
recognize the presence of jumps in order to better explain the excess kurtosis
and skewness of return distributions and implied volatility smiles, we also
note the fact that jumps do not come to markets regularly, but their arrivals
tend to depend on market information. For instance, Piazzesi, (2003) shows
that incorporating jumps related to market information improves bond pricing
models. Given the difficulty of pinning down jump parameters, even with both
time-series and cross-sectional data in parametric settings, we question how one
can simply search observable information relevant to jumps that appear to have
such strong impact on pricing securities. To learn about the stochastic features
of irregular jump arrivals and their associated market information, it is critical to
first develop a robust test to detect jumps. Once detected, one can examine what
type of information is dynamically related to jumps to improve pricing models
and better explain market phenomena. Our test is meant to be applicable to all
kinds of financial time series, including equity returns and volatility, interest
rates, and exchange rates, so long as high-frequency observations are available.
Because jumps have bigger impacts on derivative securities than other securities
(see Johannes, 2004, for discussion), our test would have greater implications in
their financial management. We take a nonparametric approach for the results
to be robust with respect to model specifications as well as to nonstationarity
of price processes—a common feature of financial variables.

Another motivation for developing our test is the improvement of deriva-
tive hedging. The presence of jumps makes incomplete markets. The degree
of market incompleteness depends on the size and intensity of jumps, which
determines the magnitude of derivative hedging error (see Naik and Lee, 1990;
and Bertsimas et al., 2001). As a by-product, our test yields both the direction
and size of detected jumps, allowing the characterization of jump size distribu-
tion as well as stochastic jump intensity. These outcomes allow us to develop
hedging strategies accordingly. Detecting arrival times is also important in or-
der to rebalance hedging portfolios dynamically once a jump arrival is detected,
as shown by Collin-Dufresne and Hugonnier (2001).

Our main methodological contribution is summarized as follows. We first
explain the intuition on how we develop the test and its mathematical defini-
tion. Then, we provide its asymptotic distribution and detection criterion for
practical use. Second, we prove that it can precisely distinguish actual jumps
using high-frequency data and show that spurious detection of jumps becomes
negligible. Hence, we show that stochastic jump estimates based on our test are
accurate. Third, we compare our test to the existing nonparametric jump tests
by Barndorff-Nielsen and Shephard (2006) and Jiang and Oomen (2005). Ours
outperforms these others in terms of size and power. Monte Carlo simulation
confirms the results as well.

After we discuss generally how our test can be applied in asset pricing
models, we conduct an empirical study particularly for the U.S. equity markets.
We collect from the Trade and Quote (TAQ) database high-frequency returns
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of three individual stock and S&P 500 Index prices transacted on the New
York Stock Exchange (NYSE) over the period of 1 September to 30 November
2005. We find that jumps do not occur regularly, so that stochastic jump intensity
should be considered in equity markets. We observe more frequent jumps in the
individual stock returns than in the index returns. Sizes of jumps in individual
equities are greater than those in the index. We find that detected jumps are
related to news releases from Factiva, a real-time financial news database.
For the individual stocks, jumps are associated with company-specific news
events like scheduled earnings announcements, as well as unscheduled news.
For the index, jumps occur with general market news such as Federal Open
Market Committee (FOMC) meetings and macroeconomic reports. It is noted
that for individual equities, the majority of jumps occur with unscheduled
news and their magnitudes are comparable to those that occur with earnings
announcements. Therefore, we conclude that one should incorporate not only
earnings announcements as in Dubinsky and Johannes, (2006), but also other
company-specific news for individual equity option pricing. For the index
options, general market announcements and events are to be taken into account.
This evidence also provides support for the different model structures for
individual equity and index options described in Bakshi et al., (2003).

The rest of the article is organized as follows. Section 1 sets up a theoretical
framework to detect jumps and introduces the test. Section 2 discusses the
precision of our test. Section 3 investigates the test’s finite sample performance.
Section 4 empirically examines jump dynamics in equity returns and their
association with news releases. Finally, we conclude in Section 5.

1. A Theoretical Model for the Test and Its Asymptotic Theory

We employ a one-dimensional asset return process with a fixed complete prob-
ability space (�,Ft ,P), where {Ft : t ∈ [0, T ]} is a right-continuous infor-
mation filtration for market participants, and P is a data-generating measure.
Let the continuously compounded return be written as d log S(t) for t ≥ 0,
where S(t) is the asset price at t under P . We are interested in finding jumps
in the asset returns as follows. When there are no jumps in the market, S(t) is
represented as

d log S(t) = µ(t)dt + σ(t)dW (t) (1)

where W (t) is an Ft -adapted standard Brownian motion. The drift µ(t) and
spot volatility σ(t) are Ft -adapted processes, such that the underlying process
is an Itô process that has continuous sample paths. When there are jumps, S(t)
is given by

d log S(t) = µ(t)dt + σ(t)dW (t) + Y (t)d J (t), (2)

where J (t) is a counting process independent of W (t). Y (t) is the jump size,
which is a predictable process (see Protter, 2004, for definition). Its mean µy(t)
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and standard deviation σy(t) are also Ft -predictable processes. We assume
jump sizes Y (t) are independent of each other and identically distributed.
They are also independent of other random components W (t) and J (t). J (t)
may be a non-homogeneous Poisson-type jump process. Hence, for instance,
scheduled (deterministic) events such as earnings announcements are allowed
to affect jump intensity, in which case, the model can be the sum of a process
with an intensity and a deterministic counting process.

Observation of S(t), equivalently log S(t), occurs only at discrete times
0 = t0 < t1 < · · · < tn = T . For simplicity, this article assumes that observa-
tion times are equally spaced: �t = ti − ti−1. This simplified assumption can
easily be generalized to non-equidistant cases by letting maxi (ti − ti−1) → 0.
We also impose the following necessary assumption on price processes
throughout this article:

Assumption 1. For any ε > 0,

A1.1 sup
i

sup
ti ≤u≤ti+1

|µ(u) − µ(ti )| = Op

(
�t

1
2 −ε

)
, (3)

A1.2 sup
i

sup
ti ≤u≤ti+1

|σ(u) − σ(ti )| = Op

(
�t

1
2 −ε

)
. (4)

Following Pollard (2002), we use Op notation throughout this article to mean
that, for random vectors {Xn} and non-negative random variable {dn}, Xn =
Op(dn), if for each δ > 0, there exists a finite constant Mδ such that P(|Xn| >

Mδdn) < δ eventually. One can interpret Assumption 1 as the drift and diffusion
coefficients not changing dramatically over a short time interval. Furthermore,
Assumption 1 allows drift and diffusion to depend on the process itself. This
is reasonable in view of Lemma 2 in Mykland and Zhang (2006). It is satisfied
for most Itô processes. The stochastic volatility model in Heston (1993) and its
extended versions studied in Bakshi et al., (2005) are examples. This assumption
also satisfies the stochastic volatility plus finite activity jump semi-martingale
class in Barndorff-Nielsen and Shephard, (2004).

1.1 Intuition for and definition of the nonparametric jump test
In this subsection, we address the basic intuition behind our new detection tech-
nique and mathematically define the jump detection statistic L. Our discussion
here refers to a single test at time ti . We do not make assumptions about whether
there were or were not jumps before or after ti . Generalization to a global test to
determine whether a diffusion model (1) is rejected is straightforward by mul-
tiple tests (single tests over available times). A global test would be interesting
in itself and achieving one is also part of our goal. However, as mentioned in
the introduction, the main purpose of this article is to detect jumps over time in
order to advance our knowledge of the stochastic mechanism of jump arrival
dynamics. Multiple tests on time series allow us to extract such information.
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The intuition that gives rise to our test is as follows. Imagine that asset prices
evolve continuously over time. Suppose that a jump occurs in a market at some
time, say ti . We would expect the realized asset return at that time to be much
greater than usual continuous innovations. What if the spot volatility at that
time is also high? Even if there is no jump, if the volatility is high and if we
can only observe prices in discrete times, the realized return we observe may
be as high as the return that is actually due to a jump. To distinguish those
two cases, it is natural to standardize the return by a measure that explains
the local variation only from the continuous part of the process. We refer to
this measure as instantaneous volatility in this article and denote it as σ(ti ).
This idea is incorporated into our test. In essence, we compare a realized
return at any given time to a consistently estimated instantaneous volatility
using corresponding local movements of returns. More specifically, the ratio of
realized return to estimated volatility creates the test statistic for jumps.

How do we estimate instantaneous volatility? A commonly used nonpara-
metric estimator for variance in the literature is the realized power (quadratic)
variation, defined as the sum of squared returns

plimn→∞
n∑

i=2

(log S(ti ) − log S(ti−1))2. (5)

Using high-frequency returns within some period just before our testing time
may yield a variance estimate over that period. However, this well-known
variance estimator is inconsistent in the presence of jumps in a return process.
Alternatively, a slightly modified version called the realized bipower variation,
defined as the sum of products of consecutive absolute returns

plimn→∞
n∑

i=3

| log S(ti ) − log S(ti−1)|| log S(ti−1) − log S(ti−2)|, (6)

has been suggested and shown to be a consistent estimator for the integrated
volatility, even when there are jumps in return processes (see Barndorff-Nielsen
and Shephard, 2004; and Aı̈t-Sahalia, 2004). Despite the intuition that jumps in
a process may impact its volatility estimation, it remains consistent no matter
how large or small jumps are mixed with the diffusive part of pricing models.
Incorporating this estimator makes the detection procedure independent of
the presence of jumps over time, especially those jumps used for volatility
estimation.

Our test is based on this interesting insight. Even if a highly volatile market
environment makes the detection of jumps more difficult, infrequent Poisson
jumps will be detected by our procedure fairly accurately, as long as we use
high-frequency observations.

Here, we describe the formulation of the statistic and provide its mathemat-
ical definition. Suppose we have a fixed time horizon T , and n is the number
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Figure 1
Intuition of jump detection test
This graph illustrates how our jump detection test distinguishes the jump arrivals. The example uses S&P 500
Index returns and a window size K is 10. The jump detection statistic L is formulated by taking the ratio of the
last return in a window to the instantaneous volatility, estimated by bipower variation using the returns in the
same window. By shifting the window over time, one can determine stochastic jump dynamics.

of observations in [0, T ]. The distance between two successive observations is
�t = T

n . Consider a local movement of the process within a window size K .
With realized returns in the window consisting of the previous K − 1 observa-
tions just before a testing time ti , the instantaneous volatility is estimated based
on the realized bipower variation, which was discussed earlier. We then take the
ratio of this estimated volatility to the next realized return in order to determine
whether there was a jump arrived at ti and how large that jump size was. For
example, if �t = 5 minutes, ti = 10-05 a.m., and K = 10, then we test for a
jump by examining the relative magnitude of a realized return from 10:00 a.m.
to 10:05 a.m. compared to instantaneous volatility estimated using 5-minute
returns from 9:10 a.m. to 10:00 a.m. Figure 1 illustrates the construction of the
test. Mathematical notation of the test statistics is as follows:

Definition 1. The statistic L(i), which tests at time ti whether there was a
jump from ti−1 to ti , is defined as

L(i) ≡ log S(ti )/S(ti−1)

σ̂(ti )
, (7)

where

σ̂(ti )
2 ≡ 1

K − 2

i−1∑

j=i−K+2

| log S(t j )/S(t j−1)|| log S(t j−1)/S(t j−2)|. (8)

Notice that the realized bipower variation is used for the instantaneous volatility
estimation in the denominator of the statistic, which makes our technique robust
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to the presence of jumps in previous time periods. We choose the window size
K in such a way that the effect of jumps on the volatility estimation disappears.

We state our results ignoring the drift. For our analysis using high-frequency
data, the drift (of order dt) is mathematically negligible compared to the diffu-
sion (of order

√
dt) and the jump component (of order 1). In fact, the drift esti-

mates have higher standard errors, so that they cause the precision of variance
estimates to decrease if included in variance estimation. Though we study a
simplified version of the model without the drift term, i.e., µ = 0, we also
prove theoretically in Appendix A.1 that the main result continues to hold with
the nonzero drift term. A modified statistic Lµ(i) for the nonzero drift case is
formally defined, and a corresponding theorem is presented therein as well.

1.2 Under the absence of jumps at testing time ti

This subsection explains the asymptotic behavior of our jump detection statis-
tics, L(i), when there is no jump at time ti . We suppose our realized return from
time ti−1 to ti is from the diffusion part of the model (1) or (2). The asymptotic
distribution of L is provided in Theorem 1.

Theorem 1. LetL(i) be as in Definition 1 and the window size K = Op(�tα),
where −1 < α < −0.5. Suppose the process follows (1) or (2) and Assump-
tion 1 is satisfied. Let Ān be the set of i ∈ {1, 2, . . . , n} so that there is no jump
in (ti−1, ti ]. Then, as �t → 0,

sup
i∈ Ān

|L(i) − L̂(i)| = Op(�t
3
2 −δ+α−ε), (9)

where δ satisfies 0 < δ < 3
2 + α and

L̂(i) = Ui

c
. (10)

Here Ui = 1√
�t

(Wti − Wti−1 ), a standard normal variable and a constant

c = E |Ui | = √
2/

√
π ≈ 0.7979. A related procedure in which the instanta-

neous mean is estimated is considered in Theorem 1.1 in Appendix A.1.

Proof of Theorem 1. See Appendix A.2.

Theorem 1 states that our detection statistic L(i) follows approximately the
same distribution as L̂(i). And, we find that L̂(i) follows a normal distribution
with mean 0 and variance 1

c2 because Ui is a standard normal random variable.
When the absence of jumps in the whole price process is absolutely known a
priori, the usage of realized quadratic variation for estimating instantaneous
volatility would yield the same asymptotic distribution. As discussed when
explaining our intuition, however, we do not require the absence of jumps
in earlier or later time periods. Therefore, using quadratic variation does not
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suffice in this case. As can be noted, L(i) is asymptotically independent and
normally distributed over time; hence, one can easily find a joint asymptotic
null distribution of the test statistics for various periods.

1.3 Under the presence of jumps at testing time ti

We show in this subsection how the jump test reacts to the arrival of jumps and
discuss the choice of window size. Suppose the realized return from time ti−1

to ti is now from jump diffusion of Equation (2). Theorem 2 specifically shows
that as the sampling interval �t goes to 0, the test statistic becomes so large
that we can detect the jump arrival at time ti .

Theorem 2. LetL(i) be as in Definition 1 and the window size K = Op(�tα),
where −1 < α < −0.5. Suppose the process follows (2) and the Assumption 1
is satisfied. Suppose there is a jump at any time τ ∈ (ti−1, ti ]. Then,

L(i) ≈ Ui

c
+ Y (τ)

cσ
√

�t
, (11)

where Y (τ) is actual jump size at actual jump time τ. Therefore, L(i) → ∞, as
�t → 0. If there is no jump at any time τ ∈ (ti−1, ti ], L(i) has the asymptotic
behavior described in Theorem 1.

Proof of Theorem 2. See Appendix A.3.

The benefit of the bipower variation as an instantaneous volatility estimator
in the denominator of the test statistic is that the presence of jumps at earlier
times does not affect the consistency of estimation. Therefore, our test is robust
to earlier jumps in detecting current jumps. This does not imply that we make
no use of earlier jumps. One can learn about an earlier jump arrival by doing
the same single test at that earlier time. Several single tests over time become
a multiple test, which can provide us more information on jump dynamics.

In order to retain the benefit of bipower variation, the window size K must be
large enough so that the effect of jumps on estimating instantaneous volatility
disappears, but it must obviously be smaller than the number of observations n.
The condition K = Op(�tα) with −1 < α < −0.5 satisfies this requirement.
Therefore, the choice of sampling frequency �t will determine the window size.
In general, for nobs number of observations per day, �t = 1

252×nobs . The inte-

gers between
√

252 × nobs and 252 × nobs are candidates for K . If daily data
are used in the analysis, �t = 1

252 , and K = �tα, integers between 15.87 and
252 are within the required range. The unreported simulation study finds that
if K is within the range, increasing K only elevates the computational burden
without marginal contribution. We suggest the smallest integer K that satisfies
the necessary condition as an optimal choice for K . Our specific recommen-
dation of optimal window sizes for one-week, one-day, one-hour, 30-minute,
15-minute, and 5-minute data are 7, 16, 78, 110, 156, and 270, respectively.
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1.4 Selection of rejection region
In this subsection, we address the rejection region for our proposed test. In ef-
fect, we demonstrate that the suggested rejection region allows us to distinguish
jumps more precisely at higher frequencies of observation in Section 3.

As described in Theorems 1 and 2, our test statistics present completely dif-
ferent limiting behavior depending on the existence of jumps at the testing times.
If there is no jump at the testing time, our test statistic follows approximately a
normal distribution. If there is a jump, however, the test statistic becomes very
large. To determine a reasonable rejection region, we raise a question of how
large our test statistic can be when there is no jump. Hence, we first study the
asymptotic distribution of maximums of our test statistics under the absence of
jumps at any time in (ti−1, ti ]. Such a distribution then guides us to choose the
relevant threshold for the test to distinguish the presence of jumps at a testing
time. Lemma 1 states the limiting distribution of the maximums as follows:

Lemma 1. If the conditions for L(i), K , c, and Ān are as in Theorem 1, then
as �t → 0,

maxi∈ Ān
|L(i)| − Cn

Sn
→ ξ, (12)

where ξ has a cumulative distribution function P(ξ ≤ x) = exp(−e−x ),

Cn = (2 log n)1/2

c
− log π + log(log n)

2c(2 log n)1/2
and Sn = 1

c(2 log n)1/2
, (13)

where n is the number of observations.

Proof of Lemma 1. See Appendix A.4.

In short, the main idea in selecting a rejection region is that if our observed
test statistics are not even within the usual region of maximums, it is unlikely
that the realized return is from the continuous part of the jump diffusion
model. To apply this result for selecting a rejection region, for instance, we
can set a significance level of 1%. Then, the threshold for |L(i)|−Cn

Sn
is β∗, such

that P(ξ ≤ β∗) = exp(−e−β∗
) = 0.99. Equivalently, β∗ = − log(− log(0.99))

= 4.6001. Therefore, if |L(i)|−Cn

Sn
> 4.6001, then we reject the hypothesis of no

jump at ti .

2. Misclassifications

In this section, after defining four different types of misclassification that can
occur in our study, we demonstrate that the probability of such a misclassifi-
cation becomes negligible at higher frequencies of observation. For a single
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testing time, say ti , there can be two kinds of misclassification. The first is
when there is a jump in interval (ti−1, ti ], but the test fails to reveal its exis-
tence. We call this a failure to detect actual jump (FT Di ) at ti . The second
kind of misclassification is when there is no jump in (ti−1, ti ], but the test
wrongly concludes there is one. We call this a spurious detection of jump (SDi )
at ti . It is usually the case that we do this test several times with time-series
data. Global extension of these concepts is straightforward. If there are some
jumps over the whole time horizon, [0, T ], but the test fails to detect any one
of them, we call it a global failure to detect actual jump (GFTD). If there are
some returns that are not due to jumps, but the procedure wrongly declares any
one of them as due to a jump, we call it a global spurious detection of jump
(GSD). We will use the following mathematical notations to explain the above
situations. We let An be jump times among n observations and Bn be times at
which the test declares the presence of a jump. We use Ji (J is for jumps) to
denote the event that there is a jump in (ti−1, ti ]. Note that Ji = {i ∈ An}.
Di (D is for declaring jumps) denotes the event that our test declares a
jump in (ti−1, ti ]. In this case, Di = {i ∈ Bn}. Then, the following statements
hold:

failure to detect actual jump at ti (local property) (FT Di ) = Ji

⋂
DC

i ,

spurious detection of jump at ti (local property) (SDi ) = J C
i

⋂
Di ,

failure to detect actual jumps (global property) (G FT D) =
n⋃

i=1

(
Ji

⋂
DC

i

)
,

spurious detection of jumps (global property) (GSD) =
n⋃

i=1

(
J C

i

⋂
Di

)
.

With these new notations, we now generalize the example at the end of Sec-
tion 1, using a fixed significance level to any significance level αn that ap-
proaches 0. Alternatively, βn approaches ∞. In Theorem 3 and Corollary 1,
we explicitly show that both the conditional and unconditional probabilities of
global failure to detect actual jumps (GFTD) approach 0. They state specif-
ically the convergence rates to show how fast these probabilities converge
to 0.

Theorem 3. Let βn be the (1 − αn)th percentile of the limiting distribution of
ξ in Lemma 1, where αn is the significance level of the test. Let N be the number
of jumps in [0, T ]. Then, the probability of global failure to detect actual jumps
(GFTD) is

P(GFTD|N ) = 2√
2π

yn N + o(yn N ), (14)
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where yn = (βn Sn + Cn)cσ
√

�t . Therefore, as long as βn → ∞ slower than√
n log n,

P(GFTD|N ) −→ 0 (15)

as �t → 0.

Proof of Theorem 3. See Appendix A.5.

If jumps arrive randomly, as in a Poisson process with constant intensity λ, one
can expect the probability to be as in Corollary 1.

Corollary 1. If J (t) is a Poisson process with jump intensity λ, and the
observation time horizon is from 0 to T , then

E[P(G FT D)] = 2√
2π

ynλT + o(ynλT ). (16)

Theorem 4 also shows that the conditional probability of global spurious de-
tection of jumps (GSD) approaches 0 quickly. The corresponding convergence
rate is provided as the significance level αn approaches 0 or, equivalently, the
rejection threshold βn approaches ∞.

Theorem 4. Let βn be as in Theorem 3. Again, let N be the number of jumps in
[0, T ]. Then, as �t → 0, the probability of spurious detection of jumps (GSD)
is

P(GSD|N ) = exp(−βn) + o(exp(−βn)). (17)

Therefore, as βn → ∞,

P(GSD|N ) −→ 0, (18)

as �t → 0.

Proof of Theorem 4. See Appendix A.6.

The immediate consequence of our findings in Theorems 3 and 4 is that we
can classify actual and spurious jumps precisely so that we obtain an accurate
stochastic jump intensity estimator based on our nonparametric test. If both
probabilities in Theorems 3 and 4 become negligible, then the likelihood of
global misclassification by either GFTD or GSD is also negligible, as stated in
Theorem 5.
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Theorem 5. If �̂(T ) is the estimator of the number of jumps in [0, T ] using our
test (which is formally a cumulative jump intensity estimator), and �actual (T ) =
N is the number of actually realized jumps in [0, T ], then the probability of
global misclassification is

P(�̂ �= �actual |N ) = P(GFTD or GSD|N )

= 2√
2π

yn N + exp(−βn) + o(exp(−βn)). (19)

It can be minimized at β∗
n = − log( σ

√
T N√

2n log n
). Moreover, the overall optimal

convergence rate is σ
√

T N√
2n log n

.

Proof of Theorem 5. See Appendix A.7.

3. Monte Carlo Simulation

In this subsection, we examine the effectiveness of our test using a Monte
Carlo simulation. Our asymptotic argument in previous sections requires that
the sampling interval �t converges to 0. This ideal requirement cannot be
perfectly met in real applications. This subsection investigates the finite sample
performance of the test. The main result from this simulation proves that as we
increase the frequency of observation the precision of our test increases. For
series generation, we used the Euler-Maruyama stochastic differential equation
(SDE) discretization scheme (Kloeden and Platen, 1992), an explicit order 0.5
strong and order 1.0 weak scheme. We discard the burn-in period—the first
part of the whole series—to avoid the starting value effect. Throughout, we use
the notation �t = 1

252×nobs , with nobs as the number of observations per day.

3.1 Constant volatility
We first consider the simplest model in the class, with a fixed volatility. Table 1
presents the probability of spurious detection of jump (SDi ). We simulate two

Table 1
Probability of spurious detection P(SDi )

freq σ = 0.3 (SE) σ = 0.6 (SE) SV (SE)

24-hour 1.3305e-03 (7.4050e-05) 1.3305e-03 (7.6239e-05) 3.9110e-03 (1.3319e-04)
12-hour 5.7380e-04 (3.4901e-05) 5.3222e-04 (3.3570e-05) 2.3306e-03 (7.7336e-05)
6-hour 2.0696e-04 (1.4460e-05) 2.1209e-04 (1.4790e-05) 1.3289e-03 (4.3670e-05)
2-hour 5.2879e-05 (4.3701e-06) 5.5911e-05 (4.2684e-06) 4.8131e-04 (1.6731e-05)
1-hour 2.1775e-05 (1.9032e-06) 2.5126e-05 (2.0353e-06) 2.7688e-04 (1.0062e-05)
30-minute 8.8436e-06 (8.3749e-07) 8.6768e-06 (8.3965e-07) 1.4467e-04 (7.2952e-06)
15-minute 3.4947e-06 (3.7430e-07) 4.1876e-06 (4.2736e-07) 8.9449e-05 (4.2818e-06)

The encompassing model is d log S(t) = µ(t)dt + σ(t)dW (t). Constant volatility sets σ(t) = σ at 30%
and 60%. Stochastic volatility (SV) assumes the Affine model of Heston (1993), specified as dσ2(t) =(
θ0 + θ1σ

2(t)
)

dt + ωσ(t)d B(t), where B(t) denotes a Brownian motion. The table shows means and standard
errors (in parentheses) of probability of spurious detection P(SDi ) at time ti . The significance level α is 5%.
freq denotes the frequency of observations.
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Table 2
Probability of detecting actual jump [1 − P(FT Di )]

Jump Size 3σ 2σ 1σ 0.5σ 0.25σ 0.1σ

Constant volatility σ at 30%

freq = 24-hour 0.9920 0.9880 0.9810 0.9270 0.4690 0.0260
(0.0028) (0.0034) (0.0043) (0.0082) (0.0158) (0.0050)

freq = 6-hour 0.9860 0.9780 0.9820 0.9700 0.9050 0.1520
(0.0037) (0.0046) (0.0042) (0.0054) (0.0093) (0.0114)

freq = 1-hour 0.9950 0.9860 0.9890 0.9890 0.9770 0.8880
(0.0022) (0.0037) (0.0033) (0.0033) (0.0047) (0.0100)

freq = 15-minute 0.9980 0.9970 0.9960 0.9920 0.9970 0.9820
(0.0014) (0.0017) (0.0020) (0.0028) (0.0017) (0.0042)

Jump Size 3σ̃(t) 2σ̃(t) 1σ̃(t) 0.5σ̃(t) 0.25σ̃(t) 0.1σ̃(t)

Stochastic volatility (SV)

freq = 24-hour 0.9470 0.9330 0.8540 0.5720 0.2500 0.0320
(0.0071) (0.0079) (0.0112) (0.0157) (0.0137) (0.0056)

freq = 6-hour 0.9770 0.9690 0.9410 0.8480 0.5320 0.1400
(0.0047) (0.0055) (0.0075) (0.0114) (0.0158) (0.0110)

freq = 1-hour 0.9870 0.9860 0.9830 0.9610 0.8770 0.5260
(0.0036) (0.0037) (0.0041) (0.0061) (0.0104) (0.0158)

freq = 15-minute 0.9970 0.9990 0.9980 0.9920 0.9610 0.8100
(0.0017) (0.0010) (0.0014) (0.0028) (0.0061) (0.0130)

The encompassing model is d log S(t) = µ(t)dt + σ(t)dW (t) + Y (t)d J (t). Constant volatility
sets σ(t) = σ at 30%. Stochastic volatility (SV) assumes the Affine model of Heston (1993),
specified as dσ2(t) = (

θ0 + θ1σ
2(t)

)
dt + ωσ(t)d B(t), where B(t) denotes a Brownian motion.

The table contains means and standard errors (in parentheses) of probability of detecting actual
jumps [1 − P(FT Di )] at time ti . The significance level α is 5%. The jump sizes are set in
comparison with volatility level: 3σ means jump sizes are set at three times of volatility level.
For stochastic volatility, the jump size depends on the mean of volatility σ̃(t) = E[σ(t)]. f req
denotes the frequency of observations.

constant volatility diffusion processes with fixed spot volatilities at realistic
annualized values of 30% and 60%, respectively. One thousand series of returns
over one year are simulated at several different frequencies from daily to
15-minute returns. The significance level for this study is 5%. Table 1 shows
that increasing the frequency of observations reduces the probability of spurious
detection of jump (SDi ).

Table 2 shows the probability of success in detecting an actual jump, that is,
1 minus the probability of failure to detect actual jump (FTDi ). One thousand
simulated tests at different frequencies, from daily to 15-minute, are performed.
Arrivals of jumps with six different magnitudes are assumed at 300–10% of
the given volatility level of 30%. We choose different jump sizes to present that
it is harder to detect smaller-sized jumps at low frequency. However, we show
that as we increase the frequency, we obtain very high detection power (above
98%), even for very small-sized jumps. For instance, we observe from Table 2
that when the magnitudes of relevant jumps are equal to 10% of volatility,
econometricians are less likely to distinguish between price changes that result
from diffusion and those from the actual jump in a low-frequency environment,
such as with daily observations. This study shows that only 2% of jumps can
be detected using daily returns. In contrast, at observation frequencies of every
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30 minutes or higher, we can distinguish the difference more than 95% of the
time.

3.2 Stochastic volatility
We examine how the test performs differently for stochastic volatility. We first
consider a one-factor Affine model and compare with the constant volatility
case, studied in Subsection 3.1. The model is as in Heston (1993), which is
specified as the square root processes (used by Cox, Ingersoll, and Ross, 1985)

dσ2(t) = (
θ0 + θ1σ

2(t)
)

dt + ωσ(t)dB(t), (20)

where B(t) denotes a Brownian motion. For the simulation, we used the
parameter estimates from equity markets found in the empirical study by
Bakshi et al., (2005), Table 2, to mimic the real equity markets. We assume no
correlation between the Brownian motion in volatility and the random terms in
the return process, which leaves us with no leverage effect in this simulation.
The jump size and the Poisson jump counting process are set to be the same
as in the case of constant volatility. We include the result when the volatility
is stochastic in Tables 1 and 2 in order to allow direct comparison with the
constant volatility case. It confirms our intuition that if the volatility changes
over time, it would be more difficult to disentangle jumps. At every frequency,
the corresponding spurious detection probability for stochastic volatility
is greater than that for fixed volatility. We find the similar result from the
comparison in Table 2: the probability of successful detection of a jump at some
given time decreases under stochastic volatility. For another robustness check,
we also study the case where the stochastic volatility is driven by a general
model that accommodates stochastic elasticity of variance and a nonlinear
drift (e.g., Aı̈t-Sahalia, 1996; Aı̈t-Sahalia, 2004; and Bakshi et al., 2005) as

dσ2(t) = (
θ0 + θ1σ

2(t) + θ2σ
4(t) + θ3σ

−2) dt

+
√

ω0 + ω1σ2(t) + ω2σ2ω3 dB(t). (21)

Again, using the estimates for all the nested models in Bakshi et al., (2005), we
obtain results similar to those under the Affine models presented earlier. The
only impact of nonlinearity of drift is in the rate of convergence. In other words,
at higher frequencies, such as 15-minute or higher, we find that the success rates
of detecting actual jumps become similar to those for the Affine case, though at
lower frequencies, such as daily, we have lower success rates. We also calculate
the sample skewness and kurtosis that surrogate tail asymmetry and tail size and
find that both decrease (in absolute terms for skewness) to normal cases as we
increase frequency. Hence, our asymptotic result is not affected, although small-
sample distributions of our test will be affected at lower frequencies such that the
precision of our test at lower frequency decreases, as shown in the simulation
results of Tables 1 and 2. To capture the effect of skewness and kurtosis at
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Table 3
Global misclassification

Jump size 3σ 2σ 1σ 0.5σ 0.25σ

Probability of global misclassification
freq = 24-hour 0.2140 0.2120 0.1640 0.3540 0.9860

(0.0184) (0.0183) (0.0166) (0.0214) (0.0053)
freq = 12-hour 0.1252 0.1312 0.1531 0.1173 0.7714

(0.0148) (0.0151) (0.0161) (0.0144) (0.0188)
freq = 6-hour 0.0477 0.0407 0.0407 0.0506 0.0755

(0.0095) (0.0088) (0.0088) (0.0098) (0.0118)
freq = 2-hour 0.0036 0.0046 0.0023 0.0063 0.0050

(0.0027) (0.0030) (0.0021) (0.0035) (0.0031)
freq = 1-hour 0.0012 0.0012 0.0005 0.0007 0.0008

(0.0015) (0.0015) (0.0010) (0.0011) (0.0013)
freq = 30-minute 0.0001 0.0001 0.0006 0.0004 0.0002

(0.0003) (0.0004) (0.0011) (0.0009) (0.0006)
freq = 15-minute 0.0001 0.0001 0.0001 0.0002 0.0000

(0.0001) (0.0002) (0.0005) (0.0006) (0.0001)

The table contains means and standard errors (in parentheses) of probability of
global misclassification of jumps, discussed in Theorem 5. P

(
�̂(T ) �= �actual(T )

)

is by either global spurious detection of jumps (GSD) or global failure to detect
actual jumps (G FT D), where �̂(T ) is the number of jumps in [0, T ] using our
test, and �actual(T ) is the number of actually realized jumps. The model under
consideration is a jump diffusion process with Affine stochastic volatility and
jumps of various sizes. The significance level α is 5%. f req denotes the frequency
of observations.

lower frequencies, one may apply the Edgeworth expansion method. For an
application of Edgeworth expansion in the context of realized volatility, see
Zhang, Mykland, and Aı̈t-Sahalia (2005a). For general discussion of Edgeworth
expansion for dependent data, see Goetze and Hipp (1983) and Mykland (1993).
In summary, the results show that stochastic volatility reduces the precision
of jump detection. However, this study does confirm that if we increase the
frequency of observation, we obtain improved power of jump detection.

3.3 Global misclassification
In this subsection, we examine the global likelihood of misclassification by
either global spurious detection of jumps (GSD) or global failure to detect
actual jumps (GFTD), as studied in Theorem 5. This tells us how accurately
we can locate actual jump arrival times. We simulate 500 different series of
one-year observations at different frequencies from daily to 15-minute returns.
We consider five different jump sizes from 300% to 25% of volatility level.
As discussed in Theorem 5, we find that the likelihood of misclassification
becomes negligible at higher frequencies. Table 3 presents the probability that
the number of jumps counted by our test is not equal to the actual number of
jumps; this shows that global misclassification of jumps is negligible.

3.4 Comparison with other jump tests
Comparable tests to ours are those introduced by Barndorff-Nielsen and
Shephard (2006; hereafter BNS) and Jiang and Oomen (2005; hereafter JO),
both of which are also nonparametric approaches, making test results robust to
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model specification. This subsection discusses the differences between these
tests (BNS and JO) and ours (LM). Furthermore, we argue, by simulation, that
our test outperforms these two tests. Our study measures the performance of
tests by the probability of global success in detecting actual jumps and global
spurious detection of jumps in one day, which can be alternatively taken as
power and size for each test.

The main differences between the two others and ours are as follows. BNS
takes the difference (or ratio) between the realized quadratic variation and
bipower variation during a time interval to indicate the presence of jumps in
that interval. JO’s swap variance test solves the problem with a similar approach
to BNS’s. The only difference between BNS and JO is that instead of using
bipower variation, JO uses cumulative delta-hedged gain or loss of a variance
swap replicating strategy. They both provide asymptotic null distributions for
their jump test statistics. One of the features of their tests, as described in BNS,
is that they cannot distinguish two jumps a day with low variance and one jump
with high variance in terms of detection rates. The reason for this problem is
that these tests depend on integrated quantities. JO’s swap variance test shares
this feature because it also employs integrated quantities. For instance, suppose
there are two jumps in a day and an analyst chooses one day as the interval for
their test. Even if the presence of jumps in that day can be recognized, the other
two tests cannot determine how many jumps occurred, whether the jump(s)
was (were) negative or positive, at what time of day the jump(s) occurred, and
how large each jump was. These issues can, however, be resolved by our test.

Furthermore, our test also outperforms the BNS and OJ tests. We compare
the performance of the three tests in terms of probability of global success in
detecting actual jumps within a given interval and probability of global spurious
detection of jumps in that interval. Our test does not use the conventional terms
of size and power, but introduces the misclassification of jumps in Section
2, because the detection criterion for our test is based on the distribution of
maximums of null distribution, which is different from the usual hypothesis
tests, and we do not select one model over another when we do a single test for
jump detection. In essence, the probability of global success in detecting actual
jumps is the power of the test, and the probability of global spurious detection
of jumps is the size of the test.

We now report simulation results comparing the power and size of our new
test to BNS’s linear test and OJ’s difference test. For the probability of global
success to detect actual jumps (power), the simulation introduces one jump
within one day to a diffusion process with a constant volatility. We consider
3000 simulated series of a process in one day, with each jump arriving randomly
as a Poisson process. The number of jumps was set to be one per day. If there is
a given number of jumps for some given time (one day in this study), then the
Poisson jump arrival time is uniformly distributed (see Ross, 1995). Hence, we
randomly select the arrival times from a uniform distribution. σ is set at 30%, as
in the previous simulation. The standard deviation of jump size distribution is
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Table 4
Comparison with other jump tests

Probability of global success to detect actual jumps [1 − P(GFTD)]
100% Our test (LM) Linear test (BNS) Difference test (OJ)
f req 1 − P(GFTD) (SE) 1 − P(GFTD) (SE) 1 − P(GFTD) (SE)
2-hour 0.8260 (0.0120) 0.8110 (0.0124) 0.7690 (0.0133)
1-hour 0.8720 (0.0106) 0.8460 (0.0114) 0.8210 (0.0121)
30-minute 0.9190 (0.0086) 0.8990 (0.0095) 0.8820 (0.0102)
15-minute 0.9410 (0.0075) 0.9260 (0.0083) 0.9200 (0.0086)

50% Our test (LM) Linear test (BNS) Difference test (OJ)
f req 1 − P(GFTD) (SE) 1 − P(GFTD) (SE) 1 − P(GFTD) (SE)
2-hour 0.7480 (0.0137) 0.7110 (0.0143) 0.6470 (0.0151)
1-hour 0.8410 (0.0116) 0.8030 (0.0126) 0.7550 (0.0136)
30-minute 0.9070 (0.0092) 0.8590 (0.0110) 0.8390 (0.0116)
15-minute 0.9140 (0.0089) 0.8840 (0.0101) 0.8630 (0.0109)

25% Our test (LM) Linear test (BNS) Difference test (OJ)
f req 1 − P(GFTD) (SE) 1 − P(GFTD) (SE) 1 − P(GFTD) (SE)
2-hour 0.6140 (0.0154) 0.5330 (0.0158) 0.4400 (0.0157)
1-hour 0.7520 (0.0137) 0.6380 (0.0152) 0.5540 (0.0157)
30-minute 0.8060 (0.0125) 0.7220 (0.0142) 0.6560 (0.0150)
15-minute 0.8690 (0.0107) 0.7960 (0.0127) 0.7470 (0.0138)

Probability of global spurious detection of jumps [P(GSD)]
Our test (LM) Linear test (BNS) Difference test (OJ)

f req P(GSD) (SE) P(GSD) (SE) P(GSD) (SE)
2-hour 0.0000 (0.0000) 0.2426 (0.0061) 0.0484 (0.0030)
1-hour 0.0000 (0.0000) 0.1686 (0.0053) 0.0076 (0.0012)
30-minute 0.0000 (0.0000) 0.1190 (0.0046) 0.0010 (0.0004)
15-minute 0.0000 (0.0000) 0.0840 (0.0039) 0.0000 (0.0000)

The table shows the probability of global success in detecting actual jumps [1 − P(G FT D)] (equivalent
to power) and the probability of global spurious detection of jumps P(GSD) (equivalent to size) within
one day by our test (LM), linear test of Barndorff-Nielsen and Shephard (2006) (BNS), and difference test
of Jiang and Oomen (2005) (JO). The null model is a diffusion process with constant volatility at 30% and
the alternative of a jump diffusion process containing one jump per day with constant volatility at 30%.
The time interval for integration of linear test (BNS) and difference test (OJ) is one day. f req denotes the
frequency of observations. The jump sizes are 100%, 50%, and 25% of the volatility level.

chosen at 100%, 50%, 25%, and 10% of σ. Our test (LM) outperforms BNS and
JO at all jump sizes. For the probability of global spurious detection of jumps
(size), we apply the same analysis without introducing jumps in the one-day
interval. Table 4 shows the superior performance of our test. In conclusion, our
test performs better than BNS and JO for all jump sizes, numbers of jumps,
and frequencies.

4. Implications of Identifying Jump Dynamics

Precise identification of jump arrival dynamics, including timing and jump
size distribution, using our new test creates important implications for, among
others, financial derivative security pricing. Because the test is applicable to all
kinds of financial variables, such as stock returns and volatility, interest rates,
and exchange rates, as long as high-frequency observations are available, we
first discuss general implications for pricing equity options, index options, cur-
rency options, interest rate derivatives, volatility derivatives, and bond pricing.
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Then we apply our test to real individual equity and S&P 500 Index returns
and focus our discussion specifically on equity option markets based on our
empirical findings.

4.1 Application to general option and bond pricing models
Much of the option and bond pricing literature estimates jumps by various
parametric inference methods such as the Calibration method, (Implied State)
Generalized Method of Moments (GMM), (Simulated) Maximum Likelihood
Estimation (MLE), Efficient Method of Moment (EMM), or Bayesian
approach (see Bakshi et al., 1997; Bates, 2000; Pan 2002; Schaumburg 2001;
Chernov et al., 2003; Eraker, Johannes, and Polson, 2003; Aı̈t-Sahalia, 2004;
Piazzesi, 2003; and Aı̈t-Sahalia and Jacod, 2005). As is well known, parametric
approaches run the risk of incorrect specification for functionals in their
chosen models. This is not the case with our nonparametric test. Many of the
above-mentioned studies realize that jump parameters are difficult to pin down
even with both time-series and cross-sectional data. Biased estimates can lead
to increased security pricing errors. They also conclude that the models can be
improved by introducing the stochastic jump intensity that captures the time-
varying nature of the financial markets. Some studies allow jump arrival rates to
depend on variables such as latent volatility, latent jump size, or market infor-
mation in an Affine or non-Affine fashion (see Chernov et al., 2003; Piazzesi,
2003; and Dubinsky and Johannes, 2006, for instance). Though incorporating
state variables is intuitively attractive, these existing (computationally inten-
sive) parametric procedures become quite complicated to implement due to the
discontinuity introduced by jumps and the increased number of parameters.
Moreover, they often end up finding counterintuitively insignificant outcomes.

If our test is applied initially to determine the jump intensity and jump size
distribution, and to search for observable variables that are significantly asso-
ciated with jump arrivals, the inference for the whole model can become much
simpler. This benefit is discussed in Tauchen and Zhou (2005), who applied
Barndorff-Nielsen and Shephard (2006) to empirically prove that jump volatil-
ities explain credit spread and credit default swap (CDS) spread better than
other risk factors in the markets. Given the market information determined by
the jump test, which can predict or explain jump arrivals, such as earnings an-
nouncements and other company-specific news releases for equities discussed
in Subsection 4.2, equity option pricing models can be improved with reduced
uncertainty involved with jumps.

4.2 Empirical analysis for U.S. equity option markets
In this subsection, we apply our new test on three major U.S. individual equity
and S&P 500 Index returns to determine their jump dynamics, which may
suggest different option pricing models as well as provide supporting evidence
for flatter implied volatility smiles of individual equity options compared to
index options (see Bakshi et al., 2003).
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We use ultra-high-frequency data from transactions on the NYSE that are
collected from the TAQ database. We calculate stock returns by taking differ-
ences of log transaction prices and multiplying all returns by 100 to present
them as percentages. The time span is three months, from 1 September to 30
November 2005, which represent the most recent data available, and which
have never been investigated in the literature. We choose three equities (Wal-
Mart (WMT), IBM (IBM), and General Electric (GE)) and the S&P 500 Index
to compare their different jump dynamics. Because the simulation study in
Section 3 shows that a 15-minute frequency is high enough for our test to
achieve a sufficient power to detect actual jumps, we choose 15-minute returns
to generate the empirical evidence, and we present the results in Table 5. With
this choice of frequency, results are not greatly affected by the presence of
market microstructure noise. Therefore, the evidence presented here is robust
to the effect of the noise. The significance level for all analyses is 5%. The
outcomes of the tests are: each jump arrival date and time, jump size, and mean
and variance of the detected jump size distribution. We do not assume that
there is no more than one jump per day, but we do assume that when a jump
occurs, the jump size dominates the return. After detecting the realized jumps,
we search for real-time financial news and information releases around jump
arrival times using the Factiva database in order to examine their association
with jump arrivals. Sources used in the Factiva search include the Wall Street
Journal, the Financial Times, and the Dow Jones and Reuters newswires.

Overall results indicate that jumps do not occur regularly, so that existing op-
tion pricing models with constant jump intensity are not appropriate. Detailed
results for individual equities are explained as follows. First, we find that most
jumps in equity prices under consideration arrive around the time of a market’s
opening. Except in one or two cases, jumps were always associated with news
events. During the three months, there was one scheduled corporate news event
for each company—the third-quarter earnings announcement. On the earnings
announcement date (EAD), there was always a jump in the corresponding
series. This evidence coincides with the individual equity option pricing
model in Dubinsky and Johannes, (2006), who incorporate deterministic jump
events conditional on scheduled EADs. However, as in Table 5, in addition
to scheduled announcements, we find that a majority of stock price jumps
are associated with other unscheduled company-specific news events. The
implication of this finding is that scheduled earnings announcements as a deter-
ministic jump predictor in earlier studies are not sufficient to model stochastic
jump arrivals in individual equity prices. Other company-specific news
releases, in addition to EADs, should be incorporated in accordance with the
evidence in Table 5. Similarly, jumps in the S&P 500 Index are associated with
market-wide news such as FOMC meetings and macroeconomic reports. This
empirical finding is consistent with the notion that significant financial market
jumps are related to responses to macroeconomic news announcements (see
Andersen et al., 2003).
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Second, we compare the results for individual equities and the S&P 500 Index
in Table 5. It shows that the frequency of jump occurrences in the index is much
less than in the three individual equities. Another difference between jumps in
individual equities and in the S&P 500 Index is the jump size distribution. The
mean of jumps in the index (0.2036) is smaller than those in the three stocks
(0.3014, 0.3487, and 0.4278). The variance of jumps in the index (0.5521) is
also smaller than that in the stocks (1.2689, 0.9745, and 1.2050). We used one-
year observations from 1 July 2005 to 30 June 2006 to obtain a reliable mean
and variance, avoiding problems with small samples. In summary, individual
stocks have more frequent jumps of greater size than the S&P 500 Index.
According to definition of the index, the index should in theory jump when the
individual component stock jumps. We refer, however, to detected jumps as
those of empirically and economically significant magnitudes. The presence of
jumps in both series implies that both individual stocks and the index have fat-
tailed return distributions in physical measures. More frequent and larger-sized
jumps in individual stock returns are likely to make the tails fatter.

Finally, this empirical outcome supports the explanation of Bakshi et al.,
(2003) for the implied volatility smiles of equity options. They economically
prove that the negative risk-neutral skewness is feasible as long as the physical
return distributions are fat-tailed and investors are risk averse. The evidence
of different structure of fat-tailed return distributions supports their economic
reasoning for the implied volatility curve, coupled with different levels of risk
aversion of investors participating in the two different option markets.

5. Concluding Remarks

Realizing the difficulty in estimating jump parameters and the importance of
incorporating market information into option pricing models, we introduce
a new jump test to characterize the dynamic jump mechanism. Monte Carlo
simulation proves that our test can precisely disentangle jump arrivals using
high-frequency observations, allowing us to investigate the stochastic nature
of jump dynamics and to search for observable information relevant to jump
arrivals in any kind of financial time series. We perform an empirical study
using our test and provide evidence of strong association between jumps and
news events in the U.S. equity markets. Individual stock jumps occur with
earnings announcements and other company-specific news releases, whereas
the S&P 500 Index jumps with more overall market news such as FOMC
meetings. These results suggest the need to consider company-specific news
releases for individual equity option pricing and market-wide news releases
for the index option pricing. We also find more frequent jumps with greater
mean and variance in individual equities than the index returns, which supports
the economic explanation by Bakshi et al., (2003) on negative risk-neutral
skewness.
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Though our test is designed to detect Poisson-type rare jumps in jump dif-
fusion frameworks, it is still applicable to discrete observations from suitably
modified pure jump models such as infinite-activity Lévy processes as in Carr
and Wu (2004) and Wu (2006). Distinguishing very small magnitude jumps
from such models is beyond the scope of the current article and is one possible
direction for future research. Another extension of the test is to take into account
the presence of market microstructure noise in ultra-high-frequency data when
testing as in Andersen et al. (2006), which we are currently developing. Finally,
since the test is designed to use high-frequency observations, its application on
market microstructure problems would also be interesting.

Appendix A

A.1 The Nonzero Drift
The main conclusion of Theorem 1 is not altered for the case where we
estimate the nonzero drift. A modified version of Definition 1 for this case is
as follows:

Definition 1.1. The statistic Lµ(i), which tests at time ti whether there was a
jump from ti−1 to ti , is defined as

Lµ(ti ) ≡ log S(ti )/S(ti−1) − m̂i

σ̂(ti )
, (A1)

where

σ̂(ti ) is as in Equation (8) and m̂i = 1

K − 1

i−1∑

j=i−K+1

(log S(t j )/S(t j−1)).

This demeans the return at time ti using the average return in the window. The
result similar to Theorem 1 holds for the case of nonzero drift in Theorem 1.1.

Theorem 1.1. Let Lµ(i) be as in Definition 1.1 and the window size K =
Op(�tα), where −1 < α < −0.5. Suppose the process follows (1) or (2) and
Assumption 1 is satisfied. Let Ān be the set of i ∈ {1, 2, . . . , n} so that there is
no jump in (ti−1, ti ]. Then, as �t → 0,

sup
i∈ Ān

|Lµ(i) − L̂µ(i)| = Op(�t
3
2 −δ+α−ε), (A2)

where

L̂µ(i) = Ui − Ūi−1

c
.
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Here, Ūi−1 = 1
K−1

∑i−1
j=i−K+1 U j and the rest of notations are the same as in

Theorem 1.

Proof of Theorem 1.1. See Appendix A.2.

The error rate is the same as in the zero drift case, because the error due
to the drift term is dominated by the error due to the diffusion part. L̂µ(i)
asymptotically follows a normal distribution with its mean 0 and variance

K
c2(K−1) → 1

c2 , since K → ∞. Our choice of window size K makes the effect
of jumps on m̂i vanish because of the property of the Poisson process for rare
jumps: there can be no more than a single jump in an infinitesimal time interval.
Because there can be only a finite number, say F , of jumps in the window, the
statistic for the nonzero drift case becomes

Lµ(i) ≈ Ui − Ūi−1

c
− F × Y (τ)

cσ × (K − 1)
√

�t
Iτ∈(ti−K ,ti−1]. (A3)

The second term will disappear because of the condition K
√

�t → ∞. This
proves that jumps in the window have asymptotically negligible effect on testing
jumps with our choice of K .

A.2 Proof of Theorems 1 and 1.1 in Appendix A.1
For ti−K < t < ti ,

log S(t) − log S(ti−K ) =
∫ t

ti−K

µ(u)du +
∫ t

ti−K

σ(u)dW (u). (A4)

Given the imposition of Assumption 1, we have (from A1.1)
∫ ti

ti−1

µ(u)du − µ(ti−1)�t = Op(�t
3
2 −ε) (A5)

and
∫ ti

ti−K

µ(u)du − µ(ti−K )K�t = Op(�t
3
2 +α−ε) uniformly in all i . (A6)

This implies

sup
i,t≤ti

∣∣∣∣
∫ t

ti−K

{µ(u) − µ(ti−K )}du

∣∣∣∣ = Op(�t
3
2 +α−ε). (A7)

Similarly to Lemma 1 in Mykland and Zhang (2006), under the condition A1.2,
we can apply Burkholder’s Inequality (Protter, 2004) to get

sup
i,t≤ti

∣∣∣∣
∫ t

ti−K

{σ(u) − σ(ti−K )}dW (u)

∣∣∣∣ = Op(�t
3
2 −δ+α−ε), (A8)
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where δ can be any number in 0 < δ < 3
2 + α. This result is also uniform in i

for K = Op(�tα) as specified. Therefore, over the window, for t ∈ [ti−K , ti ],
d log S(t) can be approximated by d log Si (t), such that

d log Si (t) = µ(ti−K )dt + σ(ti−K ) dW (t), (A9)

because

|(log S(t) − log S(ti−K )) − (log Si (t) − log Si (ti−K ))|
=

∣∣∣∣
∫ t

ti−K

(µ(u) − µ(ti−K ))du +
∫ t

ti−K

(σ(u) − σ(ti−K ))dW (u)

∣∣∣∣

= Op(�t
3
2 −δ+α−ε). (A10)

For all i , j and t j ∈ [ti−K , ti ], the numerator is

log S(t j ) − log S(t j−1) − m̂i

= log Si (t j ) − log Si (t j−1) − 1

K − 1

i−1∑

l=i−K+1

(
log Si (tl) − log Si (tl−1)

)

+ Op(�t
3
2 −δ+α−ε)

= σ(ti−K )W�t − 1

K − 1

i−1∑

l=i−K+1

σ(ti−K )W�t + Op(�t
3
2 −δ+α−ε)

= σ(ti−K )
√

�t(U j − Ūi−1) + Op(�t
3
2 −δ+α−ε), (A11)

where U j = 1√
�t

(Wt j −Wt j−1 ) ∼ i id Normal (0, 1) and Ūi−1 = 1
K−1

∑i−1
j=i−K+1

U j .
For the denominator, we use the instantaneous volatility estimator based on

the realized bipower variation (see Barndorff-Nielsen and Shephard, 2004).
According to Proposition 2 in Barndorff-Nielsen and Shephard, (2004), the
impact of the drift term is negligible; hence, it does not affect the asymptotic
limit behavior. Then, we prove the following approximation of the scaled
volatility estimator:

plim�t→0c2σ̂2(t)

= plim�t→0
1

(K − 2)�t

∑

j

| log S(t j )/S(t j−1)|| log S(t j−1)/S(t j−2)|

= c2σ2(t). (A12)
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It is due to

1

(K − 2)�t

i−1∑

j=i−K+3

| log S(t j )/S(t j−1)|| log S(t j−1)/S(t j−2)|

= 1

(K − 2)�t

i−1∑

j=i−K+3

∣∣ log Si (t j )/Si (t j−1) + Op(�t
3
2 −δ+α−ε)

∣∣∣∣

× log Si (t j−1)/Si (t j−2) + Op(�t
3
2 −δ+α−ε)

∣∣

= 1

(K − 2)�t

i−1∑

j=i−K+3

| log Si (t j )/Si (t j−1)|| log Si (t j−1)/Si (t j−2)|

+ Op(�t
3
2 −δ+α−ε)

= 1

K − 2

i−1∑

j=i−K+3

σ2(ti−K )|
√

�tU j ||
√

�tU j−1| + Op(�t
3
2 −δ+α−ε)

= σ2(ti−K )c2 + Op(�t
3
2 −δ+α−ε), (A13)

where Ui ’s are iid Normal(0, 1) and c = E(|Ui |) ≈ 0.7979. Then,

L(i) = (Ui − Ūi−1)

c
+ Op(�

3
2 −δ+α−ε). (A14)

This proves Theorems 1 and 1.1.
Alternatively, for the nonzero drift case, we can use Girsanov’s theorem to

suppose µ(t) = 0, as in Zhang et al. (2005b).

A.3 Proof of Theorem 2
When there is a possibility of rare Poisson jumps in the window, the scaled
bipower variation c2σ̂2(t) can be decomposed into two parts: one with jump
terms and other without jump terms, as follows:

c2σ̂2(t)

= terms without jumps + 1

(K − 2)�t

∑

terms with jumps

σ(t j )|�Wt j ||Jump|

= terms without jumps + 1

(K − 2)�t
Op(

√
�t)

∑

terms with jumps

σ(t j )|Jump|

= terms without jumps + 1

(K − 2)�t
Op(

√
�t). (A15)

The order of the second term is due to the property of Poisson jump processes
that allows a finite number of jumps over the window. Since σ(t j )|Jump| =
Op(1),

∑
terms with jumps σ(t j )|Jump| = Op(1). For the effect of jump terms to
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become negligible, the second term must be op(1) as �t goes to 0. The window
size K that satisfies K

√
�t → ∞ and K�t → 0 as �t goes to 0 will work. If

we assume the window size to be K = �tα, then the necessary condition for α

is −1 < α < −0.5. Accordingly,

lim�t→0σ̂
2|alternative = lim�t→0σ̂

2|null = σ2(t). (A16)

Then, putting the approximation for return above in the statistic yields

L(i) ≈ σti−K

√
�tUi + Y (τ)Iτ∈(ti−1,ti )

cσ(ti−K )
√

�t
= Ui

c
+ Y (τ)

cσ
√

�t
Iτ∈(ti−1,ti ). (A17)

A.4 Proof of Lemma 1
Proof of Lemma 1 follows from Aldous (1989) and the proof in Galambos
(1978).

A.5 Proof of Theorem 3
Let N be the number of jumps from time t = 0 to t = T . We claim there
is a jump if |L(i)| > βn Sn + Cn . Fix a set of jump times as An = {i :
there is a jump in (ti−1, ti ]}. Then,

P(We correctly classify all N jumps|N )

= P(For all i ∈ An, |L(i)| > βn Sn + Cn)

≈
∏

i∈An

P(|L(i)| > βn Sn + Cn) ≈
∏

i∈An

P(|Y (ti )| > (βn Sn + Cn)cσ
√

�t)

=
∏

i∈An

(
1 − F|Y |(yn)

) ∼
(

1 − 2√
2π

yn + o(y2
n )

)N

= 1 − 2√
2π

yn N + o(y2
n N ). (A18)

A.6 Proof of Theorem 4
Let AC

n = {1, . . . , n} − An be a set of non-jump times. Then,

P(We incorrectly reject any non-jumps|N )

= P(for some i ∈ AC
n , |L(i)| > βn Sn + Cn|N )

= P
(

max
i∈AC

n

|L(i)| > βn Sn + Cn|N
)

≈ P
(

max
i∈AC

n

|L̂(i)| > βn Sn + Cn

)
= 1 − Fξ(βn) = exp(−βn) + o(exp(−βn)).

(A19)
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By L’Hopital’s rule, we obtain the last step because

limβn→∞
1 − Fξ(βn)

exp(−βn)
= 1. (A20)

A.7 Proof of Theorem 5
Prob(GMJ or GMNJ) = Prob(GMJ) + Prob(GMNJ) and the results follow
from Theorems 3 and 4. Minimum probability can be achieved at β∗

n , which
can be obtained by taking the first derivative of probability with respect to βn

and setting it equal to 0, as

∂ P

∂βn
= 2√

2π
Snσc

√
�t N − exp(−βn) = 0. (A21)
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