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A Comparative Study of Multiple Approaches 
for Predicting the Soil–Water Retention Curve: 

Hyperspectral Information vs. Basic Soil Properties

Soil Physics & Hydrology

Information about the soil–water retention curve is necessary for modeling water 
flow and solute transport processes in soils. Soil spectroscopy in the visible, near-
infrared, and shortwave infrared (Vis-NIR-SWIR) range has been widely used 
as a rapid, cost-effective and nondestructive technique to predict soil proper-
ties. However, less attention has been paid to predict soil hydraulic properties 
using soil spectral data. In this paper, spectral reflectances of soil samples from 
the Zanjanrood watershed, Iran, were measured in the Vis-NIR-SWIR ranges 
(350–2500 nm). Stepwise multiple linear regression coupled with the bootstrap 
method was used to construct predictive models and to estimate the soil–water 
retention curve. We developed point and parametric transfer functions based on 
the van Genuchten (VG) and Brooks-Corey (BC) soil hydraulic models. Three dif-
ferent types of transfer functions were developed: (i) spectral transfer functions 
(STFs) that relate VG/BC hydraulic parameters to spectral reflectance values, 
(ii) pedotransfer function (PTFs) that use basic soil data as input, and (iii) PTFs 
that consider spectral data and basic soil properties, further referred to as spec-
tral pedotransfer functions (SPTFs). We also derived and evaluated point transfer 
functions which estimate soil–water contents at specific matric potentials. The 
point STFs and SPTFs were found to be accurate at low and intermediate water 
contents (R2 > 0.50 and root mean squared error [RMSE] < 0.018 cm3 cm-3), 
while the point PTFs performed better close to saturation. The parametric STFs 
and SPTFs of both the VG and BC models performed similarly to parametric PTFs 
in estimating the retention curve. The best predictions of soil–water contents 
were obtained for all the three transfer functions when the VG and BC reten-
tion models were fitted to the retention points estimated by the point transfer 
functions. Overall, our findings indicate that spectral data can provide useful 
information to predict soil—water contents and the soil–water retention curve. 
However, there is a need to extend and validate the derived transfer functions to 
other soils and regions.

Abbreviations: BC, Brooks and Corey; EF, model efficiency; MAE, mean absolute error; 
PTF, pedotransfer function; RMSE, root mean squared error; SMLR, stepwise multiple 
linear regression; SPTF, spectral pedotransfer function; STF, spectral transfer function; VG, 
van Genuchten; Vis, Visible; NIR, near infrared; SWIR, shortwave infrared.

Unsaturated soil hydraulic property information is necessary for predict-
ing and managing water flow and solute transport processes in soils. The 
accuracy with which these properties can be estimated has however a 

significant effect on the quality of predicted soil hydrological fluxes and states 
(Montzka et al., 2011). Pedotransfer functions are now popularly used to estimate 
the soil hydraulic functions from basic soil data such as the particle-size distribu-
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tion, the bulk density, and the organic C content (Vereecken et 
al., 1989, 1990, 1992, 2010; Schaap et al., 1998, 2001; Jarvis et al., 
2002; Rawls and Pachepsky, 2002; Pachepsky and Rawls, 2004; 
Pachepsky et al. 2006; Jana et al., 2007; Homaee and Farrokhian 
Firouzi, 2008; Weynants et al., 2009; Ghorbani Dashtaki et 
al., 2010). Both point and parametric PTFs have been used for 
this purpose. Point PTFs predict soil–water contents at specific 
matric potentials, while continuous PTFs predict the hydraulic 
functions in their entirety. Parametric PTFs have attracted more 
attention since they quickly provide soil hydraulic parameter 
estimates for use in hydrological models. By comparison, fewer 
studies have tried to estimate the soil hydraulic parameters by fit-
ting retention functions to water contents obtained using point 
PTFs (Baumer, 1992; van den Berg et al., 1997; Tomasella and 
Hodnett, 1998; Tomasella et al., 2000).

In addition to basic soil data, supplementary information 
has been used to improve the performance of PTFs including soil 
structural information (Rawls and Pachepsky, 2002; Pachepsky et 
al., 2006; Lilly et al., 2008), the water content at selected matric 
potentials (Børgesen and Schaap, 2005; Børgesen et al., 2008), 
clay mineralogy and taxonomic information (Pachepsky and 
Rawls, 2004), vegetation parameters (e.g., the leaf area index or the 
normalized difference vegetation index) and topography attributes 
(e.g., elevation, slope, and aspect) (Pachepsky et al., 2001; Leij et 
al., 2004; Sharma et al., 2006; Jana and Mohanty, 2011).

During the past two decades, visible (Vis), near-infrared 
(NIR), and shortwave-infrared (SWIR) spectrometry has been 
widely used to estimate a range of soil properties, and also as a 
rapid and cheap method in digital soil mapping. Using spectral 
data, measurements take a few seconds, several soil properties 
can be estimated from a spectrum, soil analysis is cheap where 
high spatial density is required, sample preparation involves only 
drying and sieving and no (hazardous) chemicals are required. 
Physical soil constituents and properties that affect the bulk soil 
spectral reflectance the most are soil color, soil moisture, organic 
C, particle size and Fe- and Al- oxids (Stenberg et al., 2010). This 
is the fundamental principle behind using the spectral approach 
to estimate soil properties and its applications have been 
extensively reviewed (Viscarra Rossel et al., 2006c; Stenberg et 
al., 2010; Soriano Disla et al., 2014).

Several studies have shown the capability of laboratory scale 
Vis-NIR-SWIR (400–2500 nm) spectrometry to accurately 
predict a range of soil properties, including particle-size 
distribution (Gomez et al., 2008; Lagacherie et al., 2008; Janik 
et al., 2009; Lopez et al., 2013), soil aggregate-size distribution 
(Sarathjith et al., 2014a, 2014b), calcium carbonate (Lagacherie 
et al., 2008; Gomez et al., 2008), pH (Viscarra Rossel and 
Behrens, 2010), organic C content (Nocita et al., 2013; Lopez 
et al., 2013) and the cation-exchange capacity ( Janik et al., 2009; 
Savvides et al., 2010). Volume-based soil properties such as bulk 
density are typically estimated from spectral information in an 
indirect manner through correlation with basic soil properties 
such as clay content and soil organic matter. Latter properties are 
often better correlated with spectral properties. Bulk density is 

a key property that is required to obtain reasonable estimates of 
the wet part of the soil moisture retention characteristic.

In addition to estimating basic soil properties from 
spectral information, several studies explored the potential of 
using spectral information to estimate soil–water content at 
specific pressure head values. Janik et al. (2007), used partial 
least squares regression (PLSR) method to relate mid-infrared 
spectral data (2500–20000 nm) to soil–water contents at matric 
potentials of -100 and -15000 cm. They obtained coefficients of 
determination, R2, equal to 0.67 and 0.87 for these two water 
contents, respectively. Similarly, Minasny et al. (2008) used 
mid-infrared spectroscopy to predict water content at matric 
potential values of -10, -100, -3000, and -15000 cm. They found 
that water contents at the lower matric potentials (notably 
-15000 cm) could be estimated better (R2 = 0.51, RMSE = 
0.05 cm3 cm-3) than those at high matric potentials (-100 cm, 
with R2 = 0.08 and, RMSE = 0.07 cm3 cm-3). Since current 
hyperspectral satellites operate in the Vis-NIR-SWIR range, 
mid-infrared spectroscopy at present cannot be used to estimate 
soil properties by satellite imagery. For this reason, Lagacherie 
et al. (2008) suggested using spectrotransfer functions that link 
reflectance measurements to soil properties.

Rather than only estimating specific points of the soil 
moisture retention characteristic, recent studies analyzed the 
potential of spectral soil information to estimate soil hydraulic 
properties using parametric PTFs. Santra et al. (2009) used 
principal component transformed spectral data (350–2500 nm) 
as well as mimicked Landstat-ETM+ spectral bands to estimate 
van Genuchten–Mualem soil hydraulic parameters (a, n, and Ks) 
of the wet part (> −800 cm) of the retention curve. Their results 
were promising for the parameter n, but they had difficulties to 
estimate a and Ks. One major weakness of this approach is that 
the soil hydraulic parameters are estimated from a limited range 
of measured water contents only. Also, none of the above studies 
(i.e., Janik et al., 2007; Minasny et al., 2008; Lagacherie et al., 
2008; Santra et al., 2009) introduced clearly effective wavelengths 
for use in predictive models, whereas it is very important to 
characterize sensitive spectral regions to better understand the 
relation between spectral response and the physical behavior 
of soils. Recently, Babaeian et al. (2015) evaluated the general 
potential of hyper- and multi-spectral remote sensors to retrieve 
Mualem-van Genuchten hydraulic parameters, and tested it with 
laboratory- and soil-map-based HYPRES and Rosetta PTFs. 
Results indicate that with the upcoming hyperspectral EnMAP 
mission it is in principle possible to retrieve van Genuchten-
Mualem soil hydraulic parameters in adequate accuracy, while 
the reduced spectral information of the Sentinel-2 sensor is 
principly not able to predict soil hydraulic parameters. The 
presented STF approach does not require soil texture and 
organic matter data, which is an advantage for areas that do not 
have such basic information. Based on the data set obtained by 
Babaeian et al. (2015), in this study we present a comparative 
analysis of spectral information along with simple soil data for 
deriving and validating different types of point and parametric 
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transfer functions. The innoviation lies in the estimation of the 
VG and BC hydraulic parameters as well as soil–water contents 
at specific matric potentials, which are applied to predict soil–
water retention characteristics.

To evaluate if visible and near-infrared spectroscopy can 
improve predictions of VG and BC soil hydraulic parameters, 
three different approaches were investigated; (i) STFs that predict 
hydraulic parameters from spectral reflectance data, (ii) PTFs 
based on soil properties such as particle-size distribution, bulk 
density, organic C content and geometric mean of soil particles 
diameter, and (iii) SPTFs that predict hydraulic parameters from 
the joint use of spectral reflectance data and basic soil attributes. 
We further evaluated point and parametric approaches to estimate 
VG and BC parameters using a fit of the retention models to the 
estimated soil–water contents and hydraulic parameters obtained 
with the parametric transfer functions.

Materials and Methods
Study Area, Soil Sampling, and Soil  
Property Measurements

The number of disturbed and undisturbed (cores with a 
diameter of 6.8 cm and a height of 5 cm) soil samples (n = 2 
× 174) were collected from the top 30 cm soil horizon of 
Zanjanrood subwatershed, northwest of Iran. The soils were 
classified as Calcixerepts, Haploxerepts, and Xerorthents (USDA 
Soil Taxonomy, Soil Survey Staff, 2010b). A more detailed 
description of the study area is given in Babaeian et al. (2015).

Collected basic properties of the soil samples included 
clay (C, < 2 mm), silt (Si, 2–50 mm), sand (S, 50–2000 mm), 
organic carbon content (OC), and dry bulk density (rb) which 
were measured using sedimentation (Gee and Bauder, 1986), 
dichromate oxidation (Walkley and Black, 1934), and paraffin 
coated procedures. The geometric mean of the soil particle 
diameter, dg, was determined using the method of Shirazi and 
Boersma (1984). Gravimetric water contents were measured on 
the undisturbed cores at three matric potentials in the wet range 
(i.e., 0, -5, -10 cm) and on the disturbed samples at six matric 
potential in the mid (-330, -1000) and the dry (i.e., -3000, -5000, 
-10000, and -15000 cm) ranges of the water retention curve using 
sand-box apparatus (Eijkelkamp Agri-Equipment, Giesbeek, the 
Netherlands) and pressure plate extractor methods (Soil Moisture 
Equipment Corp., Santa Barbara, CA; Vereecken et al. (2010), 
see also Babaeian et al. (2015) for more details). The calibration 
and validation subsets were selected to divide the study area into 
a west and an east part. The data of the western part (n = 130) 
were used as calibration set. While those of the eastern part (n = 
44) were used to provide a completely independent data set for 
validation of the derived transfer functions. Using independent 
sample t test statistics, a comparison of the mean values of the 
calibration and validation set confirmed no significant (p > 0.19) 
at the 0.05 significance level.

The soil–water retention functions were parameterized 
using the equations of van Genuchten (1980) and Brooks-Corey 
( Brooks and Corey, 1964), given by Eq. [1] and [2], respectively,

( ) ( )r s r VG
ˆ( ) 1 VG

mn
h hq q q q a

−
 = + − +   [1]

( ) BC

r s r BC( )h h
l

q q q q a
−

= + −     [2]

where q [cm3 cm-3] is the soil–water content at matric potential 
h [-cm], VGâ  [cm-1] and aBC [cm-1] are shape parameters of the 
VG and BC models, respectively (approximately equivalent to 
the inverse of the air-entry value), nVG [-] and lBC [-] are pore-
size distribution parameters, m is an empirical constant that can 
be related to n (i.e., m = 1–1/nVG), and qr and qs [cm3 cm-3] 
are the residual and saturated water contents, respectively. Using 
nonlinear least-squares optimization, the retention models 
were fitted to measured soil–water content values to obtain the 
hydraulic parameters, that is, aBC, VGâ , nVG, and lBC. During 
the optimization process, the residual water content was found to 
be very close to zero, and thus it was fixed at zero for all samples 
(Babaeian et al., 2015).

Laboratory Hyperspectral Reflectance Measurements
The soil samples were air-dried and sieved through a 2-mm 

mesh sieve to obtain the fine earth fraction of soil. Spectra 
of the air-dried and sieved samples were recorded in the Vis-
NIR-SWIR (350–2500 nm) range with 1.4 (350–100 nm) 
to 2 (1000–2500 nm) nm sampling intervals. The measured 
hydraulic parameters (i.e., water content at each matric 
potential, the VG and the BC retention models parameters) 
were then correlated with spectral reflectance data. We have not 
focused on the spectral reflectance measurements at different 
matric potentials, but measured the spectral reflectance for 
air-dried and sieved soil samples. These measured spectra were 
then used to derive STF and SPTF. Extensive research in the 
past showed that spectral measurement of soil on air-dried and 
sieved samples is a standard and routine procedure which has 
been widely used already at the laboratory scale (e.g., Ben-Dor 
and Banin, 1995; Chang et al., 2005; Brown et al., 2006; Janik 
et al., 2009; Santra et al., 2009; Bilgili et al., 2010; Viscarra 
Rossel and Behrens, 2010; Stenberg et al., 2010; Nocita et al., 
2011; Lopez et al., 2013; Nocita et al., 2013). Lobell and Asner 
(2002) showed that soil water, when present in substantial 
amounts, has strong absorption bands in the NIR-SWIR range, 
which could interfere with the spectral features of other soil 
components and reduces the performance of calibration results. 
Although air-dried samples show a slight variation in bound 
water content (hygroscopic water) due to variation in texture, 
the inferential effect of such amount of water is negligible on 
spectral measurements. In such case, the interferential effect 
of soil moisture is negligible on spectral measurements. It was 
also found that sample fineness has no significant effect on 
the calibration results (Genot et al., 2011; Nduwamungu et 
al., 2009). The measurements were performed in a standard 
and controlled dark laboratory environment using a handheld 
FieldSpec3 spectroradiometer (Analytical Spectral Device, 
ASD, Boulder, CO).
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A spectral library of 174 soil reflectance spectra, which has 
been described in detail in Babaeian et al. (2015), was obtained 
by arithmetic averaging of the iterations for each soil sample.

Transformation of the Vis-NIR-SWIR Reflectance 
Spectra and Preprocessing

Spectral transformations and data preprocessing were 
used to render the data more suitable for analysis by correcting 
for background effects (Viscarra Rossel, 2008), light scattering 
(Barnes et al., 1989), removing nonlinearities in the spectra 
(Viscarra Rossel, 2008) and improving calibration (Tian et 
al., 2013; Nocita et al., 2013; Viscarra Rossel, 2008). Various 
preprocessing and pretreatment algorithms can be used for 
this purpose, such as Savitzky-Golay and median filtering 
(for de-noising and smoothing of spectra), using first and 
second derivatives of the spectrum (to eliminate background 
effects; Viscarra Rossel, 2008), using standard normal variate 
and multiplicative scatter correction (to remove light scatter 
and baseline correction) (Geladi and Kowalski, 1986), and 
absorbance and continuum removal transformations (to reduce 
nonlinearities in the spectra; Lagacherie et al., 2008).

Based on cross validation, we used continuum removed 
spectra transformation after applying Savitsky–Golay smoothing 
with a second-order polynomial in segments (of the observation 
points) involving three points (Savitzky and Golay, 1964). More 
details about continuum removal methods and the Savitzky-Golay 
algorithm are given in the literature (Stenberg et al., 2010; Noomen 
et al., 2006; Lagacherie et al., 2008; Babaeian et al., 2015).

Before performing the spectral analyses, we excluded 
spectral data obtained in the range between 350 and 399 nm 
and 2451 and 2500 nm because of excessive noise (Viscarra 
Rossel et al., 2006c). Since spectroradiometer data are very 
repetitive and heavily over-sampled with a high degree of 
correlation between neighboring bands, data redundancy was 
reduced using data reduction and down-sampling. We did this 
by averaging every five contiguous 1-nm wavelengths resulting 
in 410 data points from 400 to 2450 nm for calibration (Lopez 
et al., 2013).

Model Development and Hydraulic  
Property Estimation

Hyperspectral data with high spectral resolution (1 nm) and 
broader wavelengths (350–2500 nm) have been used frequently 
for estimating soil properties (Ben-Dor and Banin, 1995; Chang 
et al., 2001; Islam et al., 2003; Viscarra Rossel et al., 2006a, 
2006c). These spectral data always show considerable collinearity 
and heteroscedasticity, which should be avoided when 
developing PTFs based on regression equations. Characterizing 
relevant wavebands is hence important for developing reliable 
prediction models and spectral indices. For this reason, we 
employed correlation analysis and stepwise multiple linear 
regression statistics (SMLR), which allows the selection of bands 
that have better correlations with each attribute.

Three different approaches were used to develop 
pedotransfer functions: STFs, PTFs, and SPTFs (Fig. 1). These 
approaches are briefly summarized below.

Fig. 1. Graphical representation of three approaches used to estimate hydraulic parameters from spectral data and/or basic soil information. C, 
Si, S, rb, OC, dg represent clay, silt, sand, bulk density, organic carbon, and geometric mean of soil particles diameter, respectively; Rw is spectral 
reflectance at wavelength w; aVG and nVG are VG shape parameters; aBC and lBC are BC shape parameters; qs is saturated soil–water content; q 
is soil–water content; and subscript L represents a particular matric potential.
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Approach 1: Spectral Transfer Functions
In the first approach, spectral reflectance values, referred 

to as Scenario I in Babaeian et al. (2015), were used as unique 
predictor variables to derive both point and parametric STFs. 
Point STFs estimate the vector { }1,..., Lq q q=


 where q refers 

to the soil–water content and the subscripts to matric potential 
levels between 1 and L. We estimated water contents at the 
nine available matric potentials (L = 9): 0, -5, -10, -330, -1000, 
-3000, -5000, -10000, and -15000 cm. Parametric spectral 
transfer functions developed in this paper estimate the unknown 
parameter vector { }VG VG BC BC s

ˆ , , , ,p na a l q=  (later referred as Method I) 
where VGâ  and nVG are VG shape parameters, aBC and lBC are 
BC shape parameters, and qs is the saturated soil–water content. 
The STFs relate the two parameter vectors p  and q


 to spectral 

reflectance values using regression analysis:  wp f R
  and 

( )wf Rq=


, where Rw is the spectral reflectance at wavelength w 
and f refers to the regression equation.

We also fitted the VG and BC retention functions to estimated 
soil–water contents obtained from the point STFs (i.e., ( )p f q=

 ) 
to construct new sets of the VG and BC parameters (later referred as 
Method II; see Fig. 1) and predict soil–water retention.

Approach 2: Pedotransfer Functions
In the second approach, p and q


 vectors are directly 

related to basic soil properties, i.e., ( )p f s=   and ( )f sq=
  , where 

{ ,Si,S, , , }b gs C OC dr=  (Fig. 1), to derive parametric (Method 
I) and point PTFs. Like in the first approach, both retention 
models VG and BC were then fitted to the point PTFs (Method 
II). Such new set of hydraulic parameters were used to predict 
soil–water retention.

Approach 3: Spectral Pedotransfer Functions
The third approach is, in fact, a combination of the two 

previous approaches in that first, relationships between the 
basic soil properties (s) and the spectral reflectance data are 
derived, (i.e., ( )ws f R= ). Then the outputs are used as input 
data into derived point and parametric PTFs (i.e., Approach 2) 
to obtain p  and q


. The VG and BC models were then fitted to 

the point SPTFs (i.e., Method II). Using two different sets of 
hydraulic parameters for each parametric transfer function (i.e., 
Methods I and II), water contents at specific matric potentials 
were generated (see Fig. 1) and were compared with measured 
retention points.

General Statistical Analysis for Spectral Transfer 
Functions, Pedotransfer Functions, and Spectral 
Pedotransfer Functions

Before model development, descriptive statistics of the basic 
soil properties and soil hydraulic parameters were calculated and 
tested for normality (at the 5% level of significance, p < 0.05) using 
the Kolmogorov–Smirnov one sample test statistics (Babaeian et 
al., 2015). Transformations were performed for those variables 
that did not follow a normal distribution. Pearson’s correlation 
analyses were performed on the calibration subset to explore the 

correlation between basic soil variables and hydraulic properties 
(i.e., water content at each matric potential or the VG and the 
BC retention models parameters) with the spectral reflectance 
data. Variables showing a strong correlation (at significance levels 
of 1 and 5%) with hydraulic parameters were included in SMLR 
as three separate sets of predictors for deriving three different sets 
of transfer functions (see Fig. 1). Details on the SMLR and the 
estimation process used are given in Babaeian et al. (2015). To 
avoid multicollinearity in each derived function, the ‘Variance 
Inflation Factor’, VIF, was used (Hocking, 2003; Ho, 2006). 
We additionally used the ‘Durbin-Watson statistic’ to check 
autocorrelation among the residuals of the regression equations 
(Ho, 2006; Babaeian et al., 2015).

Multiple linear regressions coupled with the bootstrap 
method (Efron and Tibshirani, 1993) are often used to provide 
robust estimates. Briefly, bootstrapping is a non-parametric 
technique for deriving robust estimates of regression coefficients. 
Bootstrapping is most useful as an alternative to parametric 
estimates when the assumptions of those methods are in doubt 
(as in the case of regression models with heteroscedastic residuals 
fit to small samples).

The bootstrap method creates random subsets (realizations) 
from a calibration set of size N to obtain B bootstrap data sets, 
each with size N, through repeated sampling with replacement. 
The bootstrap dialog box in PASW statistics was employed to 
specify the bootstrap analyses and to create the bootstrap samples. 
The simple resampling method with replacement from the original 
dataset, with a number of 1000 bootstrap samples, were specified 
at a 95% percentile confidence interval. Linear regression coupled 
with bootstrap provides descriptive statistics and coefficients tables 
that support mean, standard deviation and bootstrap estimates 
and significance tests for the regression coefficients.

Using the three approaches, soil–water contents at specific 
matric potentials, as well as the VG and BC hydraulic parameters, 
were estimated for both the calibration and validation data sets. 
To adjust the coefficients of the transfer function, the coefficients 
of each empirical equation (i.e., the STFs, SPTFs, and PTFs) 
obtained by SMLR during the first step were considered as a 
priori sets. The empirical coefficients of each regression equation 
obtained from the first step were then adjusted by minimizing 
the sum of squared errors between the estimates from the first 
step and the observed hydraulic parameters (Babaeian et al., 
2015; see also Weynants et al. (2009), for more details).

Accuracy and Reliability Criteria
Accuracy may be defined as the difference between measured 

and predicted values of the soil hydraulic properties used in the 
calibration step (Guber et al., 2009; Vereecken et al., 2010). Since 
derived transfer functions are a set of empirical equations, a test of 
their accuracy should be performed using a separate dataset that 
is independent of the calibration set. We further define reliability 
as evaluating the performance of the predictions using measured 
values that are different from those used in model development 
(Vereecken et al., 2010). Reliability was tested using a validation 
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set. The goodness of fit of the point and parametric STFs, SPTFs, 
and PTFs was evaluated using the root mean squared error 
(RMSE), the mean absolute error (MAE), the mean bias error 
(MBE), the coefficient of determination (R2), and the model 
efficiency (EF) as defined in Table 1.

Results and Discussion
Soil Properties and Soil Spectra

Loam and clay loam were the predominant textural classes 
covering about 30 and 50% of the soils in the study area, 
respectively (Babaeian et al., 2015). Table 2 summarizes the 

mean value, ranges, and standard deviations of the 
basic soil attributes and hydraulic parameters of 
both the calibration and validation subsets.

Figure 2 depicts the mean and standard 
deviation of the raw and the continuum removed 
spectra of the soil samples. Corresponding with 
the results from Babaeian et al. (2015), spectral 
reflectance values were relatively low below 700 
nm (the visible region) and high for the NIR and 
SWIR spectral range, with maximum reflectance 
values being about 0.38, which represents the 
relatively small reflectance from the soils (the 
maximum reflectance value of a white reference 
panel is equal to 1). The soil spectral reflectance 
generally increases in the presence of calcium 
carbonate, while organic matter and soil moisture 
tend to reduce the reflectance.

As is clearly shown in Fig. 2, both the raw and continuum 
removed spectra exhibit four diagnostic absorption features 
around 1414, 1915, 2212, and 2340 nm (Babaeian et al., 2015). 
The absorption peaks near 1414 and 1915 nm are strongly 
associated with the bending and stretching of the hydroxyl 
(OH) features of hygroscopic or free water, while those near 
2212 nm are due to clay mineral lattice OH features (Clark, 
1999; Viscarra Rossel et al., 2006c; Viscarra Rossel and Behrens, 
2010). Absorption in the Vis range (for example near 480 and 
650 nm) corresponds to iron oxides, which control soil color 

such as red hematite and yellow goethite (Stenberg 
et al., 2010). The absorption peak near 2341 nm 
wavelength may be attributed to CO3 groups 
in carbonate minerals (Gaffey, 1986; Gomez et 
al., 2008). It has been reported that soil CaCO3 
content has a significant effect on accuracy of point 
and parametric PTFs in estimating water retention 
(Khodaverdiloo et al., 2011). These absorption 
features are consistent with those found in other 
studies (e.g., Ben-Dor and Banin, 1995; Ben-Dor 
et al., 1999; Gomez et al., 2008; Santra et al., 2009; 
Babaeian et al., 2015).

Correlation Analysis of Variables used 
in Transfer Functions

We used Pearson’s correlation coefficient, R, to 
explore correlations between basic and soil hydraulic 
properties with the spectral reflectance values at 
various wavelengths across the measured spectrum to 
identify the most significant variables for inclusion 
in the point and parametric STFs, SPTFs, and PTFs. 
Figure 3a shows correlation values between the soil–
water contents and spectral reflectance values across 
the Vis, NIR, and SWIR range. Soil water retained 
at matric potentials of -330, -1000, -3000, -10000, 
and -15000 cm show maximum and significant (p < 
0.01) correlations with the spectral reflectance values 

Table 1. Criteria for evaluating the accuracy of the transfer functions.

Statistic Formula† Optimal value

Mean absolute error
1

ˆ(1/ )
N

i i
i

MAE N p y y
=

= − −∑ 0

Mean bias error
1

ˆ(1/ )
N

i i
i

MBE N p y y
=

= − −∑ 0

Root mean squared error ( )2

1

ˆ(1/ )
N

i i
i

RMSE N p y y
=

= − −∑ 0

Coefficient of 
determination ( )( ) ( ) ( )

2
2 2

2

1 1 1

ˆ ˆ ˆ ˆ/
N N N

i i i i
i i i

R y y y y y y y y
= = =

 
= − − − − 
  
∑ ∑ ∑ 1

Model efficiency ( ) ( ) ( ) ( )2 2

1 1

ˆ1 /
N N

i i i
i i

EF N p y y N p y y
= =

   = − − − − −      
∑ ∑ 1

† �yiand ˆiy , ith observed and predicted values; y  and ŷ , mean of the observed and 
predicted values; p, number of predictors in derived functions; N, number of data pairs 
consisting of yi and ˆiy .

Table 2. Descriptive statistics (minimum, maximum, mean, and standard devia-
tion) of basic soil properties, water retention parameters [q(h)], Van Genuchten 
(VG) and Brook–Corey (BC) hydraulic parameters for the calibration and valida-
tion sets.

Soil properties†
Calibration subset (n = 130) Validation subset (n = 44)

Min. Max. Mean SD Min. Max. Mean SD

USDA clay, % 15 45 28 6.6 16 40 28.5 6.6
USDA sand, % 13 63 39.4 10.3 19 62 35.9 9.1

USDA silt, % 21 52 32.6 5.4 22 43 35.5 5.0

Organic carbon, % 0.06 1.56 0.636 0.25 0.23 1.95 0.656 0.34

rb, g cm-3 0.95 1.26 1.11 0.06 0.97 1.22 1.096 0.06

* 0.5
g gd d    , mm0.5

0.098 0.400 0.219 0.064 0.119 0.387 0.203 0.056

qs, cm3 cm-3 0.407 0.608 0.507 0.048 0.375 0.572 0.492 0.047
q(-5 cm), cm3cm-3 0.324 0.583 0.469 0.051 0.314 0.546 0.459 0.054
q(-10 cm), cm3cm-3 0.299 0.552 0.439 0.048 0.284 0.509 0.432 0.052
q(-330 cm), cm3cm-3 0.186 0.340 0.251 0.026 0.216 0.306 0.252 0.013
q(-1000 cm), cm3cm-3 0.141 0.272 0.206 0.024 0.166 0.260 0.208 0.012
q(-3000 cm), cm3cm-3 0.119 0.261 0.167 0.022 0.130 0.208 0.165 0.009
q(-5000 cm), cm3cm-3 0.111 0.240 0.156 0.021 0.117 0.184 0.152 0.010
q(-10000 cm), cm3cm-3 0.095 0.226 0.145 0.021 0.098 0.182 0.140 0.008

q(-15000 cm), cm3cm-3 0.094 0.218 0.137 0.020 0.092 0.174 0.133 0.009

aVG[= ln ( VGâ )], cm-1 -3.08 -0.92 -1.85 0.454 -2.70 -0.47 -1.76 0.493

nVG, [-] 1.09 1.27 1.17 0.034 1.11 1.24 1.17 0.034

aBC, cm-1 0.035 0.742 0.225 0.127 0.038 0.620 0.273 0.140

lBC [= ln (l)], [-] -2.49 -1.26 -1.84 0.218 -2.37 -1.45 -1.84 0.194
† �rb, bulk density; dg*, geometric mean diameter of soil particles; qs, saturated water content 

[cm3 cm-3]; q, water retention at specific matric potentials [cm3 cm-3]; aVG and nVG, 
shape parameters of VG model; aBC and lBC, shape parameters of BC model.
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at 587-, 1417-, 1957-, and 2307-nm wavelengths. 
The largest correlation coefficients were observed 
for water contents at matric potentials of -15000 (R 
= 0.673) and -10000 cm (R = 0.692), followed by 
-5000 (R = 0.671), -3000 (R = 0.658), -1000 (R = 
0.499), and -330 cm (R = 0.459) matric potentials. 
For values larger than -330 cm, water contents show 
poor correlations (R < 0.196) with spectral data in 
the 400- to 2450-nm range (Fig. 3a). Soil–water 
contents generally showed a similar and close trend 
across all wavelengths, possibly due to positive 
and strong correlations among the water contents 
across a wide range of matric potentials. The water 
contents at matric potentials below -3000 cm were 
also significantly (p < 0.01) correlated with the 
spectral reflectance across the absorption features 
(i.e., negative correlations at 1414, 1915, 2212 
nm and positive correlations at 2340 nm), with 
correlation coefficients <0.553. Similarly, VG and 
BC hydraulic parameters showed significant (p < 
0.01) correlations with the spectral reflectances 
across a wide range of wavelengths, particularly in 
the SWIR region (Fig. 3b). The largest correlations 
were observed at wavelengths 2307 nm (for nVG, aBC and lBC 
with R = −0.558, −0.517 and 0.517, respectively), 2317 nm (for 
aVG with R = 0.463), 2347 nm (for lBC with R = 0.326), 2217 
nm (for nVG and aBC with R = 0.321 and 0.277, respectively), 
2222 nm (for aVG with R = -0.289), 1972 nm (for aVG with R = 
–0.309), 1957 nm (for nVG with R = 0.367) and 1417 nm (for aVG, 
nVG, and aBC with R = −0.274, 0.290, and 0.241, respectively). 
According to the literature, peaks near 1417 nm and 1957–1972 
nm indicate the influence of water bound in the inter layer lattices 
of clay minerals (Bishop et al., 1994; Ben-Dor and Banin, 1995). 
The absorption near 2217–2222 nm is due to the absorption of 
Al–OH, and the small absorption near 2307–2317 nm may be 
due to Fe–OH as Fe is substituted in the octahedral sheet (e.g., in 

montmorillonite). The absorption near 2347 nm may represents 
illite or mixtures of smectite and illite (Clark et al., 1990; Post and 
Noble, 1993; Stenberg, 2010). In general, the weakest correlations 
between reflectance values and basic/hydraulic parameters were 
obtained at wavelengths between 800 and 1200 nm, possibly due 
to the lack of strong absorption features in this range.

The correlation between particle-size distribution, OC, 
bulk density, and the geometric mean soil particle diameter 
with spectral reflectance values are also shown in Fig. 3c and 
3d. As reported by Babaeian et al. (2015), clay content, sand 
content, and silt content were significantly (p < 0.01) correlated 
with spectral reflectance values at wavelengths corresponding 
approximately to those of the water content values, VG and BC 
hydraulic parameters. Comparing Fig. 3a and 3c clearly show 

Fig. 2. Mean and standard deviation of the raw (bottom) and continuum removed (top) spectral 
reflectance of sampled soils for both the calibration and validation sets. Boxes depict absorption 
feature regions centered near 1414, 1915, 2212, and 2340 nm (Babaeian et al., 2015).

Fig. 3. Pearson’s correlation coefficients between spectral reflectance values and (a) soil–water content values; (b) VG and BC hydraulic parameters; 
(c) clay, silt and sand content; and (d) organic carbon, bulk density and geometric mean of soil particles diameter over Vis-NIR-SWIR range.
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that soil–water contents below matric potential -330 cm were 
positively correlated with clay and silt content, while negatively 
correlated with sand content. One probable reason for the 
similar trend in correlation between the water content at low 
matric potentials and the clay content is that clay particles have a 
high adsorption energy, especially in the dry part of the retention 
curve, which causes more water to be retained. Similarly, the rb 
and dg* were correlated with sand content, with maximum and 
significant (p < 0.01) correlation values of -0.692 and 0.505 at 
2307 and 1877 nm wavelengths, respectively. Organic carbon 
content showed the largest and significant (p < 0.01) correlation 
at wavelengths of 1402 nm (R = 0.480) and 1877 nm (R = 0.505), 
which are close to the absorption features of 1414 and 1915 nm 
(Fig. 3d). It has been identified that the 1400- and 1900-nm 
wavelengths are effective for estimation of soil organic matter, 
while they are at the same time also characteristic for O-H and 
water molecules (Ben-Dor and Banin, 1995). The spectral ranges 
characteristics for different compounds are therefore difficult 
to identify with confidence (Ben-Dor et al., 1999; Brown et al., 
2006; Clark, 1999; Stenberg, 2010). Significant correlations 
between basic soil properties and spectral reflectance values 
were also reported in studies by Bilgili et al. (2010), Somers et al. 
(2010), and Santra et al. (2009).

To develop PTFs, the correlation between basic soil 
properties (such as C, S, Si, OC, rb, and dg*) with the water 
contents and hydraulic parameters was calculated (Table 3). As 
an example, the largest and significant (p < 0.01) correlations 
were found between the water content at matric potential of 
-15000 cm and C, Si, S, rb, and dg*, with correlation coefficients 
equal to 0.705, 0.374, -0.662, -0.595, and -0.662, respectively. 
The saturated water content only showed significant (p < 0.01 
and 0.05) correlations with rb (R = −0.607) and OC (R = 
0.281). Significant (p < 0.01) correlations were also obtained 
between the VG and BC shape parameters and the particle-size 

distribution and bulk density. Since both basic and hydraulic 
properties showed relatively high correlations with the spectral 
reflectance values over the Vis, NIR, and SWIR range, it may 
be possible to predict soil hydraulic properties using STFs and 
SPTFs from the available data.

Hydraulic Property Estimation
Spectral Transfer Functions

Table 4 shows the coefficient of determination, R2, and root 
mean squared error, RMSE, of the derived point and parametric 
spectral transfer functions to predict the water content at nine 
matric potentials, as well as the VG and BC shape parameters, 
using spectral reflectance values at specific wavelengths. The point 
STFs yielded R2 and RMSE values ranging between 0.02 and 
0.64, and 0.012 and 0.054 cm3 cm-3, respectively. The parametric 
STFs produced R2 values between 0.14 and 0.44. We included in 
this study the STFs of aVG and nVG from Babaeian et al. (2015) 
to provide a basis for comparision with the parametric PTFs and 
SPTFs. These results can be particularly helpful for soil hydraulic 
properties that do not have direct relationships with spectral 
reflectance data. As shown in Table 4, soil–water contents at low 
matric potentials are predicted with better accuracy compared 
to water contents in the mid and wet part of the retention curve. 
Better correlations between water contents at the lower matric 
potentials with the spectral data may be explained by the role 
of clay content. Clay particles have high adsorption energies, 
especially in the dry part of the retention curve, which causes 
more water to be retained, thus directly affecting soil spectral 
reflectance values.

Significant (p < 0.01) predictors for the soil–water contents 
and hydraulic parameters in the visible region (400–700 nm) 
were found in the ranges between 442 and 457 nm (blue), 502 
and 587 nm (green), and 602 and 687 nm (red), which seems 
to represent the effects of type and content of iron oxides such 

Table 3. Pearson’s correlation coefficients among hydraulic parameters, water retained at specific matric potentials and basic 
soil properties.†

USDA clay USDA sand USDA silt C/S, [-] Organic C rb dg*

––––––––––––%–––––––––– % g cm-3 [mm0.5]
aVG, ln(cm-1) 0.263** -0.294** 0.227** 0.277** -0.164* -0.263** -0.276**
nVG, [-] -0.474** 0.491** -0.338** -0.493** 0.001 0.374** 0.477**
aBC, cm-1 0.302** -0.311** 0.212** 0.323** -0.014 -0.257** -0.295**
lBC, [-] -0.538** 0.548** -0.365** -0.569** -0.074 0.408** 0.533**
qs, m

3 m-3 0.196 -0.110 -0.023 0.148 0.281* -0.607** -0.147
q(-5 cm), m3 m-3 0.209* -0.133 0.004 0.171 0.231* -0.601** -0.165
q(-10 cm), m3 m-3 0.207* -0.129 -0.003 0.177 0.187 -0.594** -0.158
q(-330 cm), m3 m-3 0.450** -0.488** 0.360** 0.514** 0.142 -0.283** -0.467**
q(-1000 cm), m3 m-3 0.478** -0.500** 0.350** 0.484** 0.272** -0.359** -0.498**
q(-3000 cm), m3 m-3 0.719** -0.709** 0.445** 0.738** 0.201** -0.550** -0.706**
q(-5000 cm), m3 m-3 0.724** -0.696** 0.416** 0.734** 0.173* -0.561** -0.696**
q(-10000 cm), m3 m-3 0.722** -0.663** 0.356** 0.714** 0.144 -0.575** -0.673**
q(-15000 cm), m3 m-3 0.705** -0.662** 0.374** 0.710** 0.112 -0.595** -0.662**
* indicate significant values at the 0.05 level.
** indicate significant values at the 0.01 level.
† �C/S, clay to sand ratio [-]; aVG and nVG, shape parameters of VG model; aBC and lBC, shape parameters of BC model; qs, saturated water 

content [cm3 cm-3]; q, water retention at specific matric potentials [cm3 cm-3].
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as hematite and goethite (Dematte and Garcia, 1999; Viscarra 
Rossel and Behrens, 2010). Potential predictor variables were 
also found in the NIR-SWIR range and more obviously between 
wavelengths of 2100 and 2400 nm where spectral reflectance 
values between 2107 and 2187 nm, 2202 and 2287 nm, 2302 
and 2367 nm, and 2402 and 2447 nm were the significant (p < 
0.01) variables to predict every soil–water content as well as the 
VG and BC shape parameters (Table 4). Soil spectral features are 
mainly a result of overtone absorption and combination of bond 
vibrations in molecules of three functional groups in minerals: 
OH, SO4, and CO3 (Hunt and Salisbury, 1970; Ben-Dor and 
Banin, 1995). The main spectral features near 2160 and 2208 
nm are due to the Al-OH bend plus O-H stretch combination 
vibrations in kaolinite (Viscarra Rossel and Behrens, 2010). The 
absorption features near 2280 nm may be due to Fe-OH in the 
octahedral sheet of clay minerals. Slight absorption near 2340, 
2380, and 2450 nm represents the presence of some illite or 
mixtures of illite and smectite (Post and Noble, 1993; Viscarra 
Rossel and Behrens, 2010). The major absorption wavelengths 
near 1417, 1950, and 2222 nm correspond to the bending and 
stretching vibrations of the O–H bonds from adsorbed water and 
OH associated to phyllosilicates (Ben-Dor, 2002). The spectral 
feature centered near 2336 nm may be attributable to carbonate 
bands (Viscarra Rossel and Behrens, 2010). The spectral features 
between 1160 and 1250 nm may be due to C-H bonds within 
organic compounds (Stuart, 2004). We found no explanation to 
the spectral features obtained near 2107 nm.

The decrease in RMSE values from the wet range to the 
dry range of the water retention curve is in line with the results 
reported by Minasny et al. (2008) who used mid-infrared 

spectroscopy to estimate volumetric water contents at two 
different matric potentials of -100 and -15000 cm. They found R2 
values of 0.08 and 0.51, and RMSEs equal to 0.07 and 0.05 m3 m-3, 
respectively. Compared with these values, however, our results are 
more accurate with RMSE values of 0.0126 cm3 cm-3 at matric 
potential of -15000 cm and 0.0472 cm3 cm-3 at matric potential 
of -100 cm. In a similar study, Tranter et al. (2008) used mid-
infrared spectroscopy to predict particle-size distribution and 
bulk density. They next implemented the spectral based estimates 
within the PTFs as input variables and found improvements to 
water retention prediction by taking into account the effect of 
structure and adsorptive forces on water retention. They reported 
poor predictions of the water content of intact structured soils, 
particularly in the wet end of the retention curve (matric potentials 
0 and -100 cm), while improved predictions were noted in the 
dry end (matric potential -15000 cm) where water contents are 
affected mainly by the adsorptive forces of soil particles.

The R2 values obtained for estimating the a parameter of 
the BC model (R2 = 0.14) were smaller than those obtained 
for water contents at low matric potentials (i.e., < −330 cm 
with 0.52 < R2 < 0.63) and the lBC parameter (R2 = 0.44). 
Our results produced lower RMSE values (see Table 4) of the 
estimated VG parameters compared with findings by Santra 
et al. (2009) who obtained RMSE values larger than 0.06 and 
1.5 for nVG and the logarithmic form of VGâ , respectively. One 
possible reason for this poor accuracy may be attributed to 
the relatively narrow range of their measurements (i.e., matric 
potential range between 0 and -800 cm) compared with our 
study (full range, matric potential between 0 and 15000 cm) 
that were used to fit and estimate the shape parameters. When 

Table 4. Derived point and parametric spectral transfer functions (STFs) for predicting soil–water contents as well as van Genuchten 
and Brooks-Corey shape parameters, using spectral reflectance values as predictor variables. The functions express the best regres-
sion equations and their coefficient of determination, R2, and root mean squared error, RMSE, values.†

Spectral transfer function R2 RMSE

q-15000 = -3.930+0.01 (0.123R442 – 0.588R602 – 1.749R662 + 5.237R2142 – 0.787R2227+ 0.909R2287 + 0.940R2327) 0.63*** 0.0126

q-10000 = -5.427+0.01 (0.020R442+0.172R532–2.170R662+5.278R2142+0.795R2152– 0.543R2202 + 1.608R2307+0.443R2327) 0.64*** 0.0124

q-5000 = -0.247+0.01 (-0.0119R447+0.2271R532–1.832R677+0.2941R2162+0.4869R2202+1.660R2307 + 0.5081R2322+0.0812R2447) 0.60*** 0.0135

q-3000 = -0.139+0.01 (0.0964R437–1.7761R662+0.0252R1732–0.4809R2222+0.9180R2302+1.146R2327- 0.6940R2367+1.083R2402) 0.59*** 0.0142

q-1000 = -3.832+0.01 (-0.910R457+1.492R502–0.615R1162+1.690R2287+1.152R2332+1.406) 0.53*** 0.0167

q-330 = -0.354+0.01 (-0.8527 R437+2.369 R507–1.872 R572–2.256 R2187–1.975 R2257+3.884 R2307+1.444 R2422) 0.52*** 0.0178

q-10 = -4.332+0.01 (3.386R2242+1.521R2427) 0.05** 0.0472

q-5 = -4.710+0.01 (3.520R2242+1.801R2427) 0.05** 0.0496

qs = -2.888+0.01 (3.501R2242) 0.02* 0.0536

aVG = -44.107+0.01 (-2.174R552+48.77R687 -0.494R1252 +0.530R1897–2.608R2222+19.654R2317–21.71R2447)§ 0.33*** 0.372

nVG = 3.739+0.01 (-0.200R552+0.116R1417 -0.385R1957 -1.885R2157+0.935R2222–2.820R2307+1.623R2427)§ 0.38*** 0.0268

aBC = 4.762+0.01 (-9.104R2237+4.371R2347) 0.14*** 0.1172

lBC = -8.813+0.01 (-4.170R502+12.447R587 -51.518R2107 +48.890R2117+23.261R2242–22.319R2307) 0.44*** 0.1650

* p < 0.001
** p < 0.01
*** p < 0.05
†�aVG and nVG, shape parameters of VG model; aBC and lBC, shape parameters of BC model; qs, saturated water content [cm3 cm-3]; q, 
water retention at specific matric potentials [cm3 cm-3]; Rw, spectral reflectance [%] in wavelength w in nm, R2 and RMSE are coefficient of 
determination and root mean squared error, respectively. 

§ Refers to Babaeian et al. (2015).
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measured data are not available for the full range of the water 
retention curve, the fitted parameters will have poor definition, 
making it difficult to estimate them with certainty.

Pedotransfer Functions
Table 5 shows the PTFs that predict soil–water contents at 

specific matric potentials, as well as the VG and BC hydraulic 
parameters. Laboratory determined clay, silt, and sand content, 
organic carbon content and bulk density attributes were used 
as predictors in the PTFs. To avoid the multicollinearity 
between predictor variables in the PTFs, the clay/sand ratio 
was utilized (Khodaverdiloo et al., 2011). Based on the 
derived point PTFs, soil–water contents at matric potentials 
between 0 and -15000 cm were predicted with R2 and RMSE 
values ranging between 0.29 and 0.66 and 0.0126 and 0.0360 
cm3 cm-3, respectively. The largest RMSE values were obtained 
in the wet range (i.e., -5 and -10 cm), with a mean value of 
0.0358 cm3 cm-3, while R2 and RMSE for saturated water 

content were 0.53 and 0.0339, respectively. A large portion 
of this improvement at the higher matric potentials may be 
due to the effect of bulk density on soil–water retention 
close to saturation (Sharma et al., 2006; Schaap et al., 2001). 
This is also shown by the high coefficients of determination 
in the classical parametric PTFs or for point estimation of 
soil–water content at saturation. A review of existing point 
based PTFs by Vereecken et al. (2010) showed that the 
largest RMSE values are often obtained for water contents 
at matric potential values between -500 and -2500 cm (pF 
2.7–3.4), with values between 0.015 and 0.037 cm3 cm-

3, While relatively low RMSE values are found at matric 
potential values between -2.5 (pF 0.4, 0.011 cm3 cm-3) and 
-30 cm (pF 1.5, 0.010 cm3 cm-3). In this study we found 
greater errors in the wet range, which is in line with findings 
by Nemes et al. (2003) and Khodaverdiloo et al. (2011). The 
particular source of this sizable difference is unknown, but 
the narrow range in the bulk density and the organic carbon 
content as the input parameters may explain part of those 
errors. Another possible reason may be the heterogeneity of 
soils, loam, and clay loam being the dominant textures in the 
study area.

Table 5 shows that water contents are estimated with better 
R2 values than the VG and BC hydraulic parameters. Like the 

STFs, the R2 of the VG and BC parameters in the PTFs were 
less than 0.50. This may be attributed to the poor fit of VG and 
BC parameters to the water contents (mean RMSE value 0.014 
cm3 cm-3), narrow range of hydraulic parameters in the dataset (e.g., 
nVG parameter) and interdependency between the parameters (e.g., 
aVG and nVG; aBC and lBC, see Fig. 3b) (van den Berg et al., 1997; 
Khodaverdiloo et al., 2011). Further reasons may be the nonlinearity 
of the models as well as the discrepancy in dominant influences with 
respect to single retention points and the shape parameters which 
are controlled by a set of retention points. The moderate accuracy of 
the PTFs in this study may have been caused by the narrow range in 
the particle size distribution and bulk density as well as the organic 
carbon content (Bilgili et al. (2010), see Table 2), which leads to 
moderate correlation with soil–water retention values (see Table 
3). Similar results for water retention predictions and hydraulic 
parameters using PTFs were also reported by Khodaverdiloo et al. 
(2011) and Tranter et al. (2008).

Table 5. Derived point and parametric pedotransfer functions, PTFs, for 
predicting moisture retention characteristic as well as van Genuchten 
parameters using a set of basic soil properties as predictor variables. 
The functions express the best regression equations and their coeffi-
cient of determination, R2, and root mean squared error, RMSE, values.

Pedotransfer function† R2 RMSE

q-15000 = 0.212 + 0.025 C/S- 0.087 rb 0.61*** 0.0129

q-10000 = 0.173 + 0.00088 C + 0.016 C/S- 0.061 rb 0.62*** 0.0128

q-5000 = 0.186- 0.055rb + 0.029 C/S + 0.01 OC 0.65*** 0.0126

q-3000 = 0.153 + 0.026 C/S + 0.013 OC + 0.078dg* 0.66*** 0.0129

q-1000 = 0.237- 0.00115 S + 0.021 OC 0.33*** 0.0200

q-330 = 0.196 + 0.020 rb + 0.030 C/S + 0.013 OC 0.29*** 0.0217

q-10 = 0.8211- 0.2761 rb + 0.00046 C 0.36*** 0.0356

q-5 = 0.8690- 0.2916 rb + 0.0258 OC 0.40*** 0.0360

qs = 0.8690- 0.2916 rb + 0.0258 OC 0.53*** 0.0339

aVG = -2.1894 + 0.020 C- 0.3199 OC 0.10*** 0.4321

nVG = 1.3312- 0.000076 C- 0.00069 Si- 0.9998 q-15000 0.44*** 0.0253

aBC = 0.4733- 0.1799 rb + 0.00182 C- 0.002304 S 0.10*** 0.1204

lBC = -1.2573 + 0.004333 S- 5.4783 q-15000 0.46*** 0.1599

*** p < 0.001
†�aVG and nVG, shape parameters of VG model; aBC and lBC, shape parameters 
of BC model; qs, saturated water content [cm3 cm-3]; q, water retention at 
specific matric potentials [cm3 cm-3]; rb, bulk density [g cm-3], dg*, 
geometric mean diameter of soil particles [mm0.5], C, S, Si, and OC are clay, 
sand, silt and organic carbon content [%], respectively. R2 and RMSE are 
coefficient of determination and root mean squared error, respectively. 

Table 6. The derived functions for estimating basic soil properties from spectral reflectance data, along with values of coefficient 
of determination, R2, and root mean squared error, RMSE.†

Regression equation R2 RMSE

C = 6.931+0.01(0.4878R562 + 0.7998R617 – 7.607R687 + 0.1468R1827 – 7.654R2227 + 3.183R2327 + 3.767R2387) 0.65*** 0.0391

S = –26.835 + 0.01(0.990R422 – 2.902R532+15.904R722+ 4.997R877 + 6.872R2052 – 2.402R2197 + 8.937R2222+7.735R2257  
– 8.700R2327 – 3.838R2432)

0.70*** 0.0565

Si = –30.379 + 0.01(24.757R762– 2.120R892 + 3.100R2312 + 2.813R2407 + 2.284R2432) 0.41*** 0.0416

OC = –21.98 + 0.01(2.230R497 – 83.661R677 + 77.272R707 + 63.858R772 – 52.082R797+11.854R1402+5.133R1862 
+ 7.452R2342– 8.271R2447)

0.69*** 0.1395

rb = 5.990 + 0.01(4.925R677 – 1.418R1122 – 2.358R2247 – 6.215R2307) 0.57*** 0.0428

dg* = 0.159 + 0.01(0.586R422 – 1.940R537 + 0.415R1917 + 2.281R2037 +5.456R2227 – 3.821R2327 – 2.769R2432) 0.65*** 0.0383

*** p < 0.001.
† �C, S, Si and OC: clay content [%], sand content [%], silt content [%] and organic carbon content [%], respectively; rb: bulk density [g cm-3], dg*: 

geometric mean diameter of soil particles [mm0.5]; Rw: spectral reflectance [%] in wavelength w in nm. 
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Spectral Pedotransfer Functions
Table 6 summarizes the best regression equations for 

predicting basic soil properties using different sets of spectral 
reflectance values at specific wavelengths. The best predictions 
were observed for sand (R2 = 0.70, RMSE = 5.65%), organic 
carbon (R2 = 0.69, RMSE = 0.14%), clay (R2 = 0.65, RMSE = 
3.91%), and the geometric mean of soil particle diameter (R2 = 
0.65, RMSE = 0.038 mm). Bulk density and silt content were 
predicted with R2 values of 0.57 and 0.41, and RMSE values 
equal to 0.043 g cm-3 and 4.16%, respectively. The R2 and RMSE 
values in Table 6 are very much in line with literature values 
(e.g., Ben-Dor and Banin, 1995; Viscarra Rossel et al., 2006b; 
Wetterlind et al., 2008b???; Islam et al., 2003; Chang et al., 2001; 
Chang and Laird, 2002; Brown et al., 2006; Minasny et al., 2008; 
Bilgili et al., 2010). As an example, Bilgili et al. (2010) used Vis-
NIR spectral reflectance data and PLSR method to predict clay, 
sand, silt, and organic matter content and obtained R2 values 
of 0.83, 0.70, 0.32, and 0.60, respectively. As expected, clay 
content was better predicted due to the spectral signatures of clay 
minerals typically dominating the NIR spectra (Stenberg et al., 
2010). The sand fractions mainly consist of quartz and feldspars, 
which are relatively featureless and have a large reñectance in the 
Vis-NIR-SWIR range (Hunt and Salisbury, 1970). Sand and 
clay content are strongly correlated with each other and provide 
correlation coefficients that are very close to 1. The silt fraction 
can be assumed to be a mixture of sand and clay minerals and 
is therefore difðcult to distinguish in the Vis-NIR-SWIR range 
(Wetterlind and Stenberg, 2010).

Significant (p < 0.01) spectral bands in the predictive 
models of clay, silt, and sand content occurred between 422 and 
687 nm, 722 and 892 nm, 1827 and 2052 nm, 2197 and 2257 
nm, and 2312 and 2432 nm wavelengths. However, it should be 
noted that the position of these absorption bands may slightly 
vary depending on the soil composition (Stenberg et al., 2010). 
The regression equation for organic carbon content contained 
spectral predictors from a wide range of wavelengths (see Table 
6), which agrees with several studies that identified wavelengths 
near 1100, 1600, 1700 to 1800, 2000, and 2200 to 2400 nm for 
predicting soil organic carbon and nitrogen (Dalal and Henry, 
1986; Ben-Dor and Banin, 1995; Martin et al., 2002; Stenberg, 
2010). It has been reported that soil organic carbon have broad 
absorptions in the Vis, which are dominated by the darkness 
of humic acid and absorptions in the NIR-SWIR from the 
overtones and combination absorptions of O–H, C–H, and 
N–H (Clark et al., 1990; Clark, 1999). Since basic soil properties 
(i.e., C, S, Si, OC, rb, and dg*) were well predicted from spectral 
reflectance data, they were used as predictors in the PTFs for 
predicting soil–water content using SPTFs. Table 7 provides the 
accuracy of point and parametric SPTFs for predicting water 
contents as well as the VG and the BC hydraulic parameters. The 
point SPTFs provided R2 and RMSE values ranging from 0.16 
to 0.57 and 0.0145 to 0.0438 cm3 cm-3, respectively, with the 
best values obtained in the dry part of the retention curve. The 
parametric SPTFs gave R2 values between 0.06 and 0.36. For the 

shape parameters related to air-entry value (i.e., a), the RMSE 
values of the SPTFs were slightly greater than those obtained by 
STFs. The SPTFs performed well for the pore-size distribution 
parameters nVG (with R2 equal to 0.36) and lBC (with R2 
equal to 0.34). Nevertheless, the aBC and aVG parameters are 
generally estimated with very comparable degree of variation to 
the nVG and lBC, with only exception for aVG with the STFs 
(see Tables 4, 5, and 7).

Using SPTFs it is possible to improve prediction of 
properties with poor spectral response (e.g., qs, q-5, and q-10, see 
Table 4 and 7). Bulk density as the best proxy to estimate the 
saturated water content and the very wet range of the soil–water 
retention characteristics could be estimated well from spectral 
reflectance information (i.e., by SPTFs). In such case, it may be 
possible to improve the accuracy of spectral predictions near 
saturation using such a two-step approach. The SPTF approach, 
unlike PTFs, does not require soil texture and organic matter 
data directly. This can be regarded as an advantage for areas that 
do not have such basic information. Besides, the SPTF approach 
exploits soil spectroscopy as a cheap, rapid, and accurate provider 
of basic soil information, reducing the cost associated with PTF 
input data capture. Including spectral information in classical 
PTFs opens the pathway to use remotely sensed data in soil 
hydraulic properties estimation. Using satellite imagery-based 
SPTFs, like satellite imagery-based STFs, it may be possible to 
develop temporally dynamic PTFs to explicitly take into account 
the effect of soil management practices (e.g., tillage) and erosion 
on soil hydraulic parameter estimation.

Regression equations for water contents in the wet part of 
the retention curve (between 0 and -10 cm) showed the lowest 
R2 (0.16–0.23) and highest RMSE (0.0406–0.0438 cm3 cm-3) 
values. The low predictability close to saturation may be because 
that input data (e.g., spectral-based estimated bulk density) 
partially capture the influence of soil structure on water retention.

Compared with STFs, the indirect prediction of water 
contents from spectral reflectance data (i.e., using SPTFs) 
yielded worse prediction accuracy in the dry and middle parts of 
the retention curve, with 9% higher RMSE and 14% lower R2. 
This may be due to the inherent uncertainties associated with the 
input parameters, which decrease the prediction accuracy.

Table 7. Accuracy of point and parametric spectral pedotransfer 
functions (SPTFs) for predicting soil–water contents as well as van 
Genuchten (VG) and Brooks-Corey (BC) parameters, using substi-
tution of spectral reflectance based basic soil properties into the 
derived pedotransfer functions. Also shown are values of the coef-
ficient of determination, R2, and root mean squared error, RMSE.†

q-15000 q-10000 q-5000 q-3000 q-1000 q-330 q-10

R2 0.57 0.56 0.56 0.53 0.33 0.22 0.16
RMSE 0.0145 0.0145 0.0149 0.0159 0.0201 0.0230 0.0406

q-5 qs aVG nVG aBC lBC

R2 0.20 0.23 0.13 0.36 0.06 0.34
RMSE 0.0418 0.0438 0.4272 0.0276 0.1228 0.1781
† �q, soil–water content at specific matric potentials [cm3 cm-3]; qs is 

saturated water content [cm3 cm-3]; aVGand nVG, shape parameters of 
VG model; aBC and lBC, shape parameters of BC model.
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Reliability of the Transfer Functions
Table 8 provides a quantitative comparison of the 

performance and reliability of the different approaches for 
predicting the water retention curve of the validation dataset. As 
indicated, all transfer functions provided R2 and EF, greater than 
0.90. The parametric STFs and SPTFs of both the VG and BC 
models developed from spectral data performed similarly to the 
parametric PTFs in predicting the soil–water retention curve, 
which validates the use of spectral data to estimate soil hydraulic 
properties. Several studies have shown the potential of predictors 
such as clay mineralogy and taxonomic information for accurate 
prediction of soil hydraulic properties (e.g., Pachepsky and 
Rawls, 2004) which have not yet been fully implemented 
within todays PTF models. Besides, soil spectroscopy has been 
successfully used to reflect the effects of soil minerals. Soil 
minerals (type, proportions and concentrations) such as iron 
oxides (e.g., goethite, hematite), clay minerals (e.g., kaolin, 
montmorillonite [smectite], illite) and carbonates (e.g., calcite, 
gibbsite) ultimately determine important properties of a soil 
such as texture, structure, cation exchange capacity (CEC), and 
specific surface area (Ben-Dor and Banin, 1995; Stenberg et al., 
2010). The STF/SPTF approaches can take into account such 
attributes to provide more accurate soil hydraulic parameters in 
this respect. Various studies have shown that some important 

soil properties, for example bulk density, could be obtained from 
some other basic soil attributes such as particle-size distribution 
and organic carbon content (Martin et al., 2009). This may be 
due to connection between bulk density and organic carbon 
(e.g., Rawls, 1983; Manrique and Jones, 1991; Heuscher et al., 
2005), which substantially affect spectral information. Bulk 
density, as a proxy for soil structure, is a good predictor for the 
saturated water content as shown in many PTFs and soil studies 
(e.g., Vereecken et al., 1989; Schaap et al., 1998).

The good performance of spectral based transfer functions may 
also be due to the sensitivity of Vis-NIR-SWIR to many organic 
and inorganic components affecting soil hydraulic properties and 
providing accurate predictions of soil–water retention. A major 
advantage of spectral data for soil analysis is that from a single 
spectrum many properties may be accurately determined, thus 
offering the possibility for considerable cost savings and increased 
efficiency over conventional laboratory analysis.

As given in Table 8, the best predictions were obtained with 
the fit of the retention models to water contents estimated with 
point transfer functions (i.e., using Method II). We furthermore 
compared measured soil–water contents with values predicted 
with the three approaches using Methods I and II for the entire 
water retention curve. Results are displayed in Fig. 4 and 5 
for the VG model and BC model, respectively. The validation 
of the transfer functions yielded comparable results to their 
respective calibration performance. All transfer functions for 
the VG and BC models provided reasonable accuracy in the 
mid and dry parts of the retention curve for both calibration 
(Fig. 4a, 4b, 5a, and 5b) and validation (Fig. 4c, 4d, 5c, and 5d) 
sets, while relatively poor predictions were obtained at high 
matric potentials, which are a lot more scattered around the 
1:1 diagonal. Using the VG model and at the wet end (pF £ 
1), the SPTFs (with RMSE = 0.0520 and 0.0527 for Methods 
I and II, respectively), the STFs (with RMSE = 0.0550 and 
0.0548 for Methods I and II, respectively) and the PTFs (with 
RMSE = 0.0606 and 0.0583 for Methods I and II, respectively) 
performed similarly in terms of RMSE (see Table 9). Using the 
BC model and at pF £ 1, the highest (0.0642, Method I) and 
lowest (0.0518, Method II) RMSE values were produced by the 
PTFs and SPTFs, respectively. Similar results were obtained at 
the dry end (pF~4.2) (Fig. 4c-d, see Table 9). The BC model 
was found to perform equally well in some cases, and the best 
performances at the dry end (pF~4.2) were obtained with the 
PTFs and STFs, followed by the SPTFs. RMSE values for pF 
£ 1 were, on average, 3.9 times greater than for pF~4.2, which 
raises concerns about predicting the wet range and the precise 
determination of soil–water content at matric potentials close 
to saturation (Vereecken et al., 2010).

Overall, all transfer functions slightly overestimated the 
water contents, particularly in the wet range (i.e., pF £ 1, with 
MBE 0.0017 for STFs, 0.0138 for SPTFs, and 0.0234 for PTFs) 
of the retention curve (data not shown). Using the VG model, 
the MBE varied between -0.0025 and 0.0106, with the largest 
value being for the parametric SPTF (Method I) and the smallest 

Table 8. Validation of the derived spectral transfer functions 
(STFs), spectral pedotransfer functions (SPTFs), and pedotrans-
fer functions (PTFs) for different soil–water content prediction 
approaches. Underlined values indicate the best performance for 
each transfer function.†

MBE MAE RMSE R2 EF

First approach (STFs)
Parametric‡

VG § -0.0025 0.0247 0.0350 0.934 0.9196

BC -0.0050 0.0258 0.0361 0.929 0.9184

Point based fit¶

VG 0.0024 0.0227 0.0340 0.937 0.9345

BC 0.0012 0.0248 0.0349 0.934 0.9309

Second approach (PTFs)

Parametric

VG 0.0104 0.0291 0.0416 0.914 0.9021

BC 0.0104 0.0281 0.0414 0.917 0.9028

Point based fit

VG 0.0084 0.0232 0.0364 0.932 0.9250

BC 0.0081 0.0240 0.0368 0.930 0.9233

Third approach (SPTFs)

Parametric

VG 0.0106 0.0264 0.0360 0.934 0.9267

BC 0.0109 0.0271 0.0371 0.930 0.9221

Point based fit

VG 0.0079 0.0253 0.0350 0.935 0.9306
BC 0.0070 0.0251 0.0342 0.938 0.9335
† �MBE, mean bias error (cm3 cm-3); MAE, mean absolute error (cm3 cm-3); 

RMSE, root mean squared error (cm3 cm-3); R2, determination coefficient (-); 
EF, model efficiency (-); VG, van Genuchten model; BC, Brooks-Corey model.

‡ Parametric transfer functions using Method I.
§ Point transfer functions-based fit using Method II.
¶Refers to Babaeian et al. (2015).
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one for the STFs (Method II). Evaluation of the 
MBE for the BC model showed similar results 
to the VG model (ranged from -0.0025 to 
0.0106), with a large MBE equal to 0.0109 for 
parametric SPTFs and a slight decrease (MBE 
= 0.0012) for STFs (method II) (see Table 8).

Conclusions
In this paper we used three different 

approaches to derive point and parametric 
transfer functions from spectral data in the Vis-
NIR-SWIR region and basic soil properties. 
Using stepwise multiple linear regression 
coupled with bootstrapping, we derived and 
evaluated three types of point and parametric 
transfer functions:(i) STFs, (ii) PTFs, and (iii) 
SPTFs which respectively used spectral data, 
basic soil properties and spectral based basic 
soil predictions as their inputs. We further 
evaluated a fit of the VG and BC retention 
models to the predicted water contents 
obtained with each approach.

Soil–water contents, the VG and BC 
parameters as well as basic soil properties 
showed significant (p < 0.01) correlation with 
spectral reflectance values, especially for the 
SWIR region. The point STFs and SPTFs 
performed similarly to the point PTFs in 
terms of R2 and RMSE in estimating water 
contents in the mid and dry parts of the 
retention curve. In the wet range, PTFs were 
found to perform better than the other two 
approaches. Compared to the STFs, however, 
better water content estimates were obtained 
using the SPTFs in the wet range.

For the VG and BC shape parameters 
related to air entry value (i.e., aVG and 
aBC), the best estimations were obtained by 
the STFs, followed by SPTFs and PTFs that 
performed similarly to each other. However, 
for the parameters that reflect the pore-size 
distribution (i.e., nVG and lBC), the PTFs 
performed better, followed by the STFs.

The parametric STFs and SPTFs 
(Method I) of both the VG and BC models 
developed from spectral data performed 
similar to parametric PTFs for the retention 
curve. This conclusion is important in that 
it indicates the feasibility of using spectral 
data to predict hydraulic properties. The 
best predictions were obtained with a fit of 
the retention models to soil–water contents 
estimated with point transfer functions 
(Method II).

Fig. 4. Scatter plots of observed versus predicted water contents at matric potentials of 0, 
-5, -10, -330, -1000, -3000, -5000, -10000 and -15000 cm (all together) using 
parametric (left) and point (right) transfer function for the van Genuchten retention model 
as applied to the calibration (top) and validation (bottom) sets. The solid lines indicate 1:1 
diagonals. The “parametric STFs” originated from Babaeian et al. (2015).

Fig. 5. Scatter plots of observed versus predicted water contents at matric potentials of 0, -5, 
-10, -330, -1000, -3000, -5000, -10000 and -15000 cm (all together) using parametric 
(left) and point (right) transfer function for the Brooks-Corey retention model as applied to 
the calibration (top) and validation (bottom) sets. The solid lines indicate 1:1 diagonals. The 
“parametric STFs” originated from Babaeian et al. (2015).
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Our findings suggest that spectral information, as a 
promising approach, may be used to predict soil–water contents, 
and indirectly the water retention curve. Our results are based 
on a relatively local database from Iran. More variability in 
the basic soil properties could affect the performance of the 
presented relationships, and thus a definite need exists to 
evaluate the derived transfer functions on soils from other 
regions. Despite the geographic restriction of the presented 
STFs/SPTFs, the method we have developed can serve as a guide 
for future enhancements of such functions. Reflectance of a soil 
is a dynamic soil property that can undergo rapid changes due to 
change in soil composition, soil erosion, and biological processes. 
Using spectral data as an input of PTFs offers a way of including 
this temporal dynamic soil property in soil–water retention 
predictions. Further research could focus on evaluating spectral-
based transfer functions for different soils in other regions, as well 
as improvement in the predictions near saturation by including 
the effect of structure in the predictive models. A topic of further 
research is the potential of STFs/SPTFs to retrieve soil hydraulic 
parameters at large scale and further investigation through air-
borne/space-borne hyperspectral remote sensing.
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