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ABSTRACT
We investigated a relatively unexplored area of soil science: the

fitting of parameterized models to particle-size distribution (a subject
more thoroughly explored in sedimentology). Comparative fitting of
different models requires the use of statistical indices enabling rational
selection of an optimum model, i.e., a model that balances the im-
provement in fit often achieved by increasing the number of param-
eters,/>, against model simplicity retained by minimizing p. Five models
were tested on cumulative mass-size data for 71 texturally diverse New
Zealand soils: a one-parameter (p = 1) Jaky model borrowed from
geotechnics; the standard lognormal model (p = 2); two modified log-
normal models (each withp= 3); and the bimodal lognormal model (p
= 3). The Jaky and modified lognormal models have not previously
been introduced into the soil science literature. Three statistical com-
parators were used: the coefficient of determination, R2; the F statistic;
and the Cf statistic of Mallows. The bimodal model and one modified
lognormal model (denoted ORL) best fit the data. The bimodal model
gave a marginally better fit, but incorporates a sub-clay mode (untestable
with the present data), so we adopted the ORL model as the physically
best benchmark for comparison of other models. The simple Jaky one-
parameter model gave a good fit to data for many of the soils, better
than the standard lognormal model for 23 soils. The model comparison
methods described have potential utility in other areas of soil science.
The Cp statistic is advocated as the best statistic for model selection.

A FREQUENT NEED in soil science is to fit parame-
terized models to data. Examples include the fit-

ting of adjustable, analytic functions to data for the
soil moisture characteristic, hydraulic conductivity
function, or PSD. Often several candidate models ex-
ist, posing the problem of choice. In general, algo-
rithms for fitting such models minimize an aggregated
discrepancy between observed and model-estimated
data. A lower bound to this discrepancy is set by ex-
perimental errors in the observed data. Often (though
not always), increasing/; in a model will improve the
fit; however, increasing/? may sacrifice simplicity and
utility of the model, and may simply be an empirical
expedient for conforming the model to fit the data.
The first test for admitting an additional parameter is
to check for its statistical significance. This can be
done via a Student's Mest or Wald test (Gallant, 1987).
Failure in this test means the additional parameter ov-
erparameterizes the model. Also, if the aggregate er-
ror produced by the model is less than random
experimental error, the model is again overparame-
terized, though in a different sense. Selection of an
optimum model from a group thus requires use of a
sensitive discriminating statistic. Here, an optimum
model is defined as one selected by balancing the min-
imization of some objective function (measuring ag-
gregate discrepancy) against minimization of p.

We explored the application of new parametric
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models for soil PSD. We compared five models, using
data for 71 New Zealand soils. Three of these models
are, as far as we are aware, new to the soil science
literature. Three model comparison techniques were
compared: the coefficient of determination (R2), the
F statistic, and the Cp statistic of Mallows (1973).

Modeling of PSD is a poorly researched area in soil
science, in strong contrast to sedimentology, geology,
and geotechnics, where diverse model forms have been
explored, ranging from the Jaky one-parameter model
(Jaky, 1944) to the more recent log-hyperbolic (Bag-
nold and Barndorff-Nielsen, 1980) and log-skew La-
place models (Fieller et al., 1984; Flenley et al., 1987).
Recently, Shiozawa and Campbell (1991) proposed a
bimodal lognormal model, comparing it with a uni-
modal lognormal model, using R* as a model-selection
criterion. The two methods of model comparison pro-
posed (i.e., F and C_) enable rational selection of an
optimum model for PSD, and serve as better discrim-
inators than R2.

THEORY
Modeling Particle-Size Distribution

Modeling PSD is of interest from two viewpoints: funda-
mental pedological characterization of the soil, or as a basis
for estimation of bulk soil properties, such as the water reten-
tion and hydraulic conductivity functions. There are two basic
approaches to the representation of PSD: via parametric models
of the full distribution (discussed below), or more simply via
statistical transformation of limited three-fraction texture data
(e.g., Shirazi and Boersma, 1984). Soil PSD is often assumed
to be approximately lognormal (Shirazi and Boersma, 1984;
Campbell, 1985). It is then represented by two parameters, a
geometric mean particle diameter and a geometric standard
deviation, i.e., size mean and size spread, respectively (Buchan,
1989). However, Buchan (1989) tested the applicability of the
simple lognormal model. He showed that about one-half of the
textures on a textural triangle cannot be represented by a log-
normal distribution because they constrain excessive spread of
that distribution, with tails extending beyond lower (0.02-/u,m)
or upper (2-mm) size limits. Other two-parameter schemes for
summarizing PSD were described in Buchan (1989). There
remains a need, however, to investigate alternative, physically
based models for soil PSD. The following five models were
tested, all except the bimodal model being unimodal:

Jaky One-Parameter Model
Jaky (1944) proposed the following simple model for grain-

size distribution in sediments:

5 = ex?\-~2 ln T

where S is the cumulative mass of particles with equivalent

Abbreviations: PSD, particle-size distribution; SD, standard de-
viation; ONL, offset-nonrenormalized lognormal; MLP, Maxi-
mum Likelihood Program; MSE, mean square error; SSE, sum
of squared errors; RSS, residual sum of squares; RMS, residual
mean square error.

901



902 SOIL SCI. SOC. AM. J., VOL. 57, JULY-AUGUST 1993

diameter < d, p is a particle-size distribution index character-
izing the stretching of the curve, and d0 is the largest diameter,
here taken as 2000 jum. The parameter S takes the sigmoid
shape of the left-hand half of a Gaussian lognormal curve (see
Eq. [2]).

Simple Lognormal Model
The Gauss function, f(X), is represented by the expression

f(X) = [l/o<27r)"2] exp[-(A- - [2]

where fj. is the mean of A', and eris the standard deviation. For
a lognormal distribution, X is replaced by \nd. For examining
distribution functions, it is more convenient to use the cumu-
lative form of Eq. [2]:

F(X) = (1 + erf[(* - /*)/oV2])/2 (X > n)

F(X) = (1 - erf[(A- - AO/oV2])/2 (X < ft) [3]

where F(X) is cumulative mass, and erf [ ] is the error function,
defined as

y

erf[y] = (2/Vir) J exp[-?2] d/ [4]

There are good physical grounds for using the lognormal model
for PSD, based on general concepts of comminution mecha-
nisms, and fluid-borne transport processes (Buchan, 1989).

Shiozawa and Campbell Model
Shiozawa and Campbell (1991) recently proposed a bimodal

model, with PSD assumed to be a weighted sum of two log-
normal distributions: an upper mode and a lower (clay) mode.
They represented the cumulative mass fraction G(X) as

G(X) = e)F2(X) [5]
where F^X) and F2(X) are cumulative functions (Eq. [3]) cen-
tered in the clay fraction, and in the primary minerals (sand
and silt), respectively, and e is the mass fraction in the lower
mode. Through lack of data below 1.3 /un, Shiozawa and
Campbell (1991) arbitrarily set both ̂  and <r, as constants in
the lower mode. They chose /x, = —1.96, representing the
natural log of the geometric mean diameter (0.141 jum) for the
clay fraction, assumed to have a lower size limit of 0.01 fjan,
and arbitrarily set tr, = 1. They reported that this model gave
an improved fit to data for six soils, compared with a unimodal
(lognormal) model. As a fitting criterion, they used R2. How-
ever, note the following points: (i) the model imposes a log-
normal lower mode, with arbitrary choice of both ^ and er,;
(ii) with <TI = 1, this lower mode is very narrow, concentrated
well below 2 /im (± 2 SD limits are 0.02 and 1.04 /tin); (iii)
the same distribution is assumed for all soils, differing only in
its weighting, e; (iv) it presumes that we can quantify the clay
size distribution, despite the lack of clay (<2-/mi) PSD data.
The assumption of a lognormal distribution within the clay
fraction is not -testable for either their data or the data in this
study. While physical arguments support applicability of the
lognormal distribution to materials derived from fragmentation
processes, there is as yet no corresponding argument to support
its applicability to secondary (clay) minerals formed from
weathering, dissolution, and recrystallization processes. Shioz-
awa and Campbell (1991) analyzed only six soils in their study,
and so their approach requires further testing on a wider range
of soils.

Offset-Renormalized Lognormal Model
Reasoning that PSD may be approximately lognormal across

only part of the size range, Shiozawa and Campbell (1990,
personal communication) have proposed the following modi-
fication of the lognormal model by introducing an "offset" or
displacement parameter, e:

G(X) = (1 - e)F(X) + e

g(X) = (1 -

[6]

[7]

Here, G(X) is the modified cumulative function and g(X) its
corresponding mass distribution function. The parameter e has
a distinct physical interpretation: it indicates a residual fraction
of soil above which the distribution may be approximated as
a lognormal function. Inclusion of the factor (1 - e) to re-
normalize F(X) in Eq. [6] ensures that G(X) in that equation
has the asymptotic behavior G(X) —> 1 as X -» ». However,
strictly G(X) does not satisfy the zero-limit condition, i.e.,
G(X) -» 0 as diameter d -> 0. In fact, G(X) = e for d = 0,
implying a finite mass of soil of zero diameter. By contrast,
G(X) in Eq. [5] does satisfy the zero-limit condition. However,
taking a pragmatic viewpoint, one can justifiably match PSD
data only above the lower limit of measurement, here at ~ 1
/j,m. Thus, insistence on correct limiting behavior as d —* 0
becomes an artificial constraint, unjustified by the absence of
data below ~1 ;u,m.

Offset-Nonrenormalized Lognormal Model
For this model, they distribution functions were modified as

follows:

G(X) = F(X) + c

g(X) = f ( X )

[8]

[9]
Here, c is simply an extra "offset" parameter, adjustable to
give a better fit to the data. Equation [3] is normalized so that
P(X) —» 1 as X —» oo. However, soil fines (<2 mm) may
represent a truncated sample of the total size distribution. If a
lognormal model is appropriate to the whole soil (including
gravel and stones), then it will be better to fit a truncated
lognormal distribution to the fines. To achieve this, F(X) was
modified as in Eq. [8]. Strictly, Eq. [8] has the asymptotic
behavior G(X) —> (1 + c) as X —> ». However, the nonlinear
fitting procedure used (described below) is designed to optim-
ize the match between model and data, and hence should en-
sure G(2 mm) ~ 1.0. Further, a problem with use of Eq. [3]
for soils with large clay fraction is that the lognormal function
will tend to be distorted by the matching constraint F(2 /mi)
~ clay fraction. This will force a large tail in the distribution,
increasing cr, and losing some of the flexibility in fitting F(X,
f i , a) to the silt-sand mass distribution. In summary, the rea-
sons for introducing this ONL model are: (i) it allows a trun-
cated lognormal model, in case the soil PSD is approximately
lognormal across the whole size range, extending beyond d =
2 mm; and (ii) simultaneously, the effect of the offset c at d
= 2 /j.m will be to absorb some of the clay percentage, which
may be important for soils high in clay.

Estimation of Model Parameters
The method chosen to estimate parameters depends on whether

the model is linear or nonlinear in its parameters, and on the
statistical assumptions made concerning measurement errors.
Models that are linear (or linearizable) in their parameters are
amenable to direct solution. Nonlinear models require iterative
solution, by using a search algorithm to determine the mini-
mum of an objective function, and with starting values for the
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Table la. Coefficient of determination (R2) values for Set 1
(Canterbury) soils from the five models (p - number of
parameters). ORL and ONL are the offset renormalized and
offset nonrenormalized models. The Wakanui soils spans
four cultivation treatments: permanent grassland (PP),
continuous arable cultivation (AC), short-term pasture (SP),
and minimum tilled (MT).

Table Ib. Coefficient of determination (R2) values for Set 2
(Waikato) soils from the five models (p = number of
parameters). ORL and ONL are the offset renormalized and
offset nonrenormalized models.

Soil

Temuka

Depth
cm

3-15
40-55
40-55
89-92

Shiozawa
Jaky Lognormal ONL ORL and Campbell
p = l p = 2 p = 3 p = 3 p = 3

0.9742
0.9761
0.9274
0.9293

131-136 0.8949
Templeton

Wakanui
(PP)

Wakanui
(AC)

Wakanui
(SP)

Wakanui
(MT)

Cookson

Timpendean

0-5
5-10
10-15
15-20
20-25
0-5
5-10
10-15
15-20
20-25
0-5
5-10
10-15
15-20
20-25
0-5
5-10
10-15
15-20
20-25
0-5
10-15
15-20
20-25
5-10
17-22
35-40
55-60
70-75
5-10
12-17
55-60
90-95

0.9860
0.9841
0.9860
0.9841
0.9860
0.9863
0.9722
0.9722
0.9722
0.9663
0.9312
0.9351
0.9351
0.9351
0.9101
0.9761
0.9781
0.9781
0.9781
0.9781
0.9604
0.9624
0.9624
0.9604
0.9880
0.9900
0.9860
0.9920
0.9880
0.9900
0.9920
0.9683
0.9683

0.9801
0.9604
0.9880
0.9821
0.9940
0.9841
0.9821
0.9841
0.9821
0.9841
0.9821
0.9821
0.9821
0.9841
0.9821
0.9940
0.9920
0.9920
0.9920
0.9960
0.9801
0.9821
0.9801
0.9841
0.9860
0.9841
0.9841
0.9821
0.9860
0.9920
0.9920
0.9761
0.9761
0.9722
0.9742
0.9761
0.9487
0.9487

0.9841 0.9980
0.9761 0.9860
0.9900 1.0000
0.9900 0.9940
0.9960 1.0000
0.9920 0.9980
0.9900 0.9980
0.9900 0.9900
0.9880 0.9980
0.9920 0.9980
0.9880 0.9980
0.9980 0.9980
0.9880 0.9980
0.9980 0.9980
0.9880 0.9980
0.9960 1.0000
0.9920 1.0000
0.9940 0.9980
0.9920 0.9980
0.9960 1.0000
0.9880 0.9980
0.9880 0.9980
0.9880 0.9980
0.9900 0.9980
0.9920 0.9980
0.9880 1.0000
0.9880 1.0000
0.9860 1.0000
0.9880 1.0000
0.9940 1.0000
0.9960 0.9980
0.9841 1.0000
0.9880 0.9960
0.9821 0.9980
0.9860 0.9960
0.9880 0.9980
0.9624 0.9960
0.9604 0.9821

0.9980
0.9880
1.0000
0.9960
1.0000
0.9980
0.9980
0.9980
0.9980
0.9980
0.9980
0.9980
0.9980
0.9980
1.0000
1.0000
1.0000
0.9980
0.9980
1.0000
0.9980
1.0000
0.9980
1.0000
0.9980
1.0000
1.0000
1.0000
1.0000
1.0000
0.9980
1.0000
0.9960
0.9980
0.9980
0.9980
0.9980
0.9960

parameters. As all the above five models are nonlinear, a non-
linear estimation technique was used. The best-fit parameters
were determined using the MLP (Ross, 1980).

Model Comparison Techniques: Available Methods
Historically, several approaches have been reported for com-

parison of and selection from different models. The simplest
approach may be to find the "best" model, i.e., that which
minimizes some measure of aggregate discrepancy, such as
mean square error or raw R2 (see below). However, a better
approach is to seek an optimum model, by statistically mea-
suring the significance of extra parameters. By omitting pa-
rameters whose contribution to the fit is not significant, the
model selected will be optimum in the sense that it balances
minimization of discrepancy against removal of excess param-
eters. First, the statistical significance of an additional param-
eter may be determined using either Student's f-test or a Wald
test (Gallant, 1987). The following model comparison criteria
are available:

Mean Square Error

The lower the MSE, the better the model represents the data.
A lower bound to the MSE is set by experimental (random)

Soil

Horotiu

Te Kowhai

Hamilton

Otorhanga

Netherton

Depth
cm

0-6
6-17
17-31
31-55
55-73
73-91
91-107
107-130
0-9
9-22
32-39
80-93
97-100
0-9
9-19
19-29
29-46
46-73
73-88
88-97
97-120
0-8
8-23
23^»7
47-62
62-81
81-97
97-114
0-10

10-20
20-38
38-49
48-87

Shiozawa
Jaky Lognormal ONL ORL and Campbell

p = 1 p = 2 p = 3 p = 3 p = 3

0.9980
0.9960
0.9960
0.9624
0.9801
0.9370
0.9801
0.9960
0.9506
0.9565
0.9370
0.9565
0.9801
0.9860
0.9900
0.9880
0.9841
0.9643
0.9900
0.8372
0.9409
0.9742
0.9565
0.9781
0.9860
0.9683
0.9761
0.9841
0.9565
0.9467
0.8482
0.7832
0.8732

0.9940
0.9940
0.9920
0.9428
0.9624
0.9197
0.9663
0.9940
0.9960
0.9900
0.9960
0.9584
0.9702
0.9860
0.9920
0.9880
0.9920
0.9526
0.9920
0.9624
0.9900
0.9960
1.0000
0.9940
0.9860
0.9841
0.9960
0.9920
0.9880
0.9821
0.9604
0.9940
0.9860

0.9980 0.9960
0.9980 0.9960
0.9940 0.9920
0.9841 0.9920
0.9880 0.9900
0.9761 0.9900
0.9920 0.9880
0.9980 0.9980
0.9960 1.0000
0.9920 1.0000
0.9960 1.0000
0.9702 0.9920
0.9880 0.9821
0.9920 0.9980
0.9960 0.9980
0.9920 1.0000
0.9940 1.0000
0.9604 0.9940
0.9960 0.9980
0.9663 0.9643
0.8354 0.9900
0.9960 0.9980
1.0000 1.0000
0.9960 0.9960
0.9900 0.9980
0.9860 0.9980
0.9960 0.9980
0.9960 0.9980
0.9880 0.9900
0.9821 0.9860
0.9624 0.9604
0.9940 0.9980
0.9880 0.9880

0.9960
0.9960
0.9920
0.9920
0.9920
0.9900
0.9880
0.9980
1.0000
1.0000
1.0000
0.9940
0.9821
0.9980
0.9980
1.0000
1.0000
0.9920
1.0000
0.9643
0.9920
0.9980
1.0000
0.9960
0.9980
0.9980
0.9980
0.9980
0.9900
0.9841
0.9624
0.9980
0.9980

errors in the data: a model that reduces the MSE below this
lower bound is overparameterized.

Coefficient of Determination
A larger R2 implies a better fit to the observed data, and so

a model with larger R2 is preferred over one with smaller R2.
When, however, comparison of models with differing numbers
of parameters is desired, an adjusted R2 is sometimes used,
although this statistic is not entirely free from defect (Snedecor
and Cochran, 1989).

F-Statistic
Green and Caroll (1978) suggested the F statistic, defined as

F = [(SSEr - SSEf)/SSEfpf/(dr - df)] [10]

Here SSEf and SSEr are, respectively, the sums of squared
errors of a full model, and a 'restricted' model with fewer
parameters; df and d, are the respective degrees of freedom.
The SSE is calculated as

SSEa) = [11]

where Y0 and Ye are observed and estimated data values, j =
r (restricted) or f (full) model, and n is the number of measured
data points.

If the F value for a restricted model does not exceed the F
value at the 0.05 significance level (obtainable from standard
tables, e.g., Snedecor and Cochran, 1989), the restricted model
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Table 2a. Statistical analysis of the particle-size distribution models for Set 1 (Canterbury) soils using F statistic and Mallow's Cp
test. ORL and ONL are the offset renormalized and offset nonrenormalized models. The Wakanui soil spans four cultivation
treatments: permanent grassland (PP), continuous arable cultivation (AC), short-term pasture (SP) and minimum tilled (MT).

Soil Depth, cm
Jaky Lognormal

ONL ORL
Shiozawa

and Campbell

Temuka

Templeton

Wakanui
(PP)

Wakanui
(AC)

Wakanui
(SP)

Wakanui
(MT)

Cookson

Timpendean

3-15
40-55
40-55
88-92
131-136
0-5
5-10
10-15
15-20
20-25
0-5
5-10
10-15
15-20
20-25
0-5
5-10
10-15
15-20
20-25
0-5
5-10
10-15
15-20
20-25
0-5
10-15
15-20
20-25
5-10
17-22
35-40
55-60
70-75
5-10
12-17
55-60
90-95

77.60**
3.75

865.07**
65.78**

1303.96**
49.07**
44.65**
43.17**
26.49**
55.65**
98.74**

102.42**
62.98**

109.03**
167.12**
781.06**
367.46**
287.13**
261.85**

1778.73**
86.93**

111.41**
79.75**

105.04**
95.65**

583.48**
356.71**
237.57**
353.45**
93.01**
51.03**

340.77**
3.42

19.01**
9.92**
8.16**
28.81**
4.21

154.20
6.49

1729.14
130.57

2606.91
97.13
88.29
85.34
51.98

110.30
196.49
203.84
124.97
217.06
333.24

1561.13
733.92
573.26
522.69

3556.45
172.85
221.83
158.51
209.09
190.30

1165.96
712.42
474.14
705.89
185.01
101.05
680.53

5.85
37.01
18.84
15.33
56.62
7.43

74.92**
13.63**

194.71**
25.74**
93.14**
68.36**
62.67**
60.61**
42.44**
71.55**
65.83**
83.21**
47.85**
83.84**

121.15**
79.66**
58.63**
35.87**
41.28**

121.50**
93.31**

120.48**
91.74**
96.28**
76.37**

286.88**
189.42**
131.80**
157.55**
66.37**
39.53**

839.64**
27.79**
74.40**
49.48**
52.24**
87.50**
14.48**

75.92
14.63

195.71
26.74
94.14
69.36
63.67
61.61
43.44
72.55
66.83
84.21
48.85
84.84

122.15
80.66
59.63
36.87
42.28

122.50
94.31

121.48
92.74
97.27
77.37

287.88
190.42
132.80
158.55
67.37
40.53

840.64
28.79
75.40
50.48
53.24
88.50
15.48

55.46
8.11

162.79
17.28
79.82
36.35
36.33
33.40
23.89
39.65
45.87
56.37
32.84
60.51
84.79
69.79
51.35
31.63
36.19

104.23
58.03
74.35
56.88
58.16
46.09

218.57
144.86
101.61
120.86
35.86
17.76

520.16
12.46
42.58
25.96
24.40
62.01
11.11

3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00

2.13t
23S
2.28
230
233
231
2.20
233
237
233
238
219
236
232
2.03
237
2.51
232
2.60
236
235
237
214
217
234
T35
O4
230
133
230
213

-OM
216
2.00
O4rn
T33

-2.26
*, ** Significant at the 0.05 and 0.01 probability levels, respectively. Also indicates that model should be rejected in favor of a higher parameter

model.
t Using Cp as a discriminator, the best model is that with the lowest Cp value (underlined for each soil in the table).

can be used. In the opposite case, the full or reference model
should be used. Note that F does not permit intercomparison
of equiparameter models fitted to the same data, i.e., models
with the same number of parameters. In that case df = d, and
F is undefined. The F-statistic has been used recently by Ver-
eecken et al. (1989), who compared models fitted to soil mois-
ture characteristic data.

There are two important considerations concerning the F
statistic. First, for nonlinear models, Eq. [10] is approximate
because the numerator and denominator no longer contain in-
dependent x2 distributions (Beck and Arnold, 1977). Still it is
a useful criterion to judge the necessity of model parameters,
through the increase of SSE. Secondly, Eq. [10] can be used
only when the error term is normally independently distributed
with zero mean and constant variance. It is desirable to check
these conditions when fitting the model to the data. Violation
of these conditions is most frequently checked through visual
inspection of the residuals plotted against the independent var-
iable. Instead of this graphical inspection, one can also ex-
amine the so-called unit normal deviate of the residuals in an
overall plot. Using this latter test, no indication was found
here that the conditions regarding the error term were violated.

Mallows' Cp Test
The statistic Cp given by Mallows (1973) has been recom-

mended by Daniel and Wood (1971) as a simple criterion for
comparing the relative goodness (or badness) of fit of different

models. Snedecor and Cochran (1989) advocated the use of
Cp to overcome the inherent defects in raw #2 or adjusted R2

mentioned above. The Cp statistic measures the total squared
error in Y at all N data points, i.e., the sum of the squared
biases plus the squared random errors. It is a simple function
of the residual sum of squares from both the models being
compared:

[12]

where RSSP is the residual sum of squares (total squared error,
i.e., bias plus random) from a /^-parameter model. If the p-
parameter model contains no bias, then the RSS will reflect
only random error. The RMS, is the residual mean square error
from a full or ideal model and RMSt = RSSj/(JV - p), where
RSSf is the residual sum of squares from the full model, and
N is the number of data points. For the artificial comparison
of the full or reference model with itself, the Cp value equals
the number of parameters,/?. In contrast to the F statistic, Cp
allows comparison of equiparameter models, a key feature that
we exploit below. However, our use of Cp here is different
from the standard use: we use it as a relative measure between
nonideal models, rather than for comparison against some
"ideal" model, because an "ideal" model does not exist for
soil PSD.
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Table 2b. Statistical analysis of the particle-size distribution models for Set 2 (Waikato) soils using F statistic and Mallow's Cp
test. ORL and ONL are the offset renormalized and offset nonrenormalized models.

Jaky
Soil
Horotiu

Te Kowhai

Hamilton

Otorohanga

Netherton

Depth, cm
0-6
6-17
17-31
31-35
55-73
73-91
91-107
107-130
0-9
9-22
32-39
80-93
97-100
0-9
9-19
19-29
29-46
46-73
73-88
88-97
97-120
0-8
8-23
23—47
47-62
62-81
81-97
97-114
0-10
10-20
20-38
38-49
48-87

F
-1.81**

2.96
-0.70
16.11**
5.62*

24.25**
6.63*

10.28**
485.45**
771.95**
969.98**
29.19**

1.65
76.05**
56.84**

110.10**
186.33**
26.70**
35.41**
16.16**
31.21**
56.47**

388.61**
39.10**
71.78**

133.79**
94.95**
57.95**
21.72**
15.56**
14.28**

444.74**
672.19**

cp
-4.61f

T5I
-2.40
31.21
10.24
47.50
12.27
19.55

969.90
1542.90
1938.96

57.37
2.29

151.09
112.67
219.19
371.65
52.40
69.83
31.32
61.43

111.94
776.23
77.21

142.56
266.59
188.89
114.89
42.45
30.13
27.56

888.47
1343.37

Lognormal

F
4.74
6.64*
1.01

43.11**
26.02*
52.60*
16.12*
32.00*
36.12*

217.97*
84.58**
37.93**

4.41
74.33**
43.33**

107.79**
108.08**
55.21**
24.55**

0.79
0.74
0.40
0.36
4.01

70.76**
78.66**
16.04**
22.66**

1.63
2.12
0.24

11.03*
71.75**

Cp
5.74
7.64
2.01

44.11
27.02
53.60
17.12
33.00
37.12

218.97
85.58
38.93

5.41
75.33
44.33

108.79
109.08
56.21
25.55

1.79
TJ4no
136
5M

71.76
79.66
17.04
23.66
2.63
312
1.24

12^3
72.75

ONL

-1.16
0.69
027

-9.27
-5.21
11.73
0.10
L66

34.25
168.31
62.73
27.91
-0.01
44.99
20.39
63.90
69.90
44.29
7.48
2.21

131.92
2.52
2.81
2.64

40.98
64.47
9.30

11.80
4.60
5.10
2.61

12.66
65.68

ORL

3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00

Shiozawa
and Campbell

CP

2.73
2.71
2.90
2.13
2.49or
2^62
2.72
3.35
1.41
2.36
149
184
1.81
2.05
237
104
4.59

-0.72
2*6
1.78
3.08
3.04
3.04
1.23
Z53
2.60
2T7
331
4.44
3.03
2.79
2T7

*, ** Significant at the 0.05 and 0.01 probability levels, respectively. Also, indicates that model should be rejected in favor of a higher parameter
model.

t Using Cp as a discriminator, the best model is that with the lowest Cp value (underlined for each soil in the table).

MATERIALS AND METHODS
Two independent data sets from two regions of New

Zealand were used. Set 1 contains PSD data for 40 sam-
ples from five different texturally layered soils, collected
from depths in the range 0 to 136 cm (Table la) from
the Canterbury region in the South Island. The first three
soils are representative of dominant texture types (silt
and fine sandy loams) in the Canterbury Plains. The
Cookson and Timpendean soils, from the North Canter-
bury hill country, widen the range to include soils higher
in clay. Set 2 (Table Ib), containing 39 samples from
the Waikato area in the North Island, was selected from
the Soil Water Assessment and Measurement Pro-
gramme (SWAMP) completed by staff of the New Zea-
land Soil Bureau (Joe and Watt, 1986). This set covers
a wide range of textures, developed under different par-
ent materials, physiographic positions, and climates.

Detailed size analysis of Set 1 (Canterbury) samples
was carried out at Lincoln University. Pretreatments and
dispersion were identical to the methods used by DSIR
Soil Bureau, Wellington, New Zealand (similar to Day,
1965; Thomas, 1973). Hydrogen peroxide (30%) was
used for organic matter removal. Both chemical and
physical methods of dispersion were applied. Sodium
hexametaphosphate (4%) was added to the sample as a
dispersant. The sample was ultrasonicated for 5 min using
a 100-W probe, then washed through a 63-/wn-diam.
sieve. Size analysis of the >63-ju,m fraction was done
by dry sieving at 1000-, 500-, 250-, 1250-, and 63-jam

equivalent diameters. Material <63 /u,m was analyzed
first by sedigraph, and then by pipette measurements at
20-, 10-, 6-, and 2-pm equivalent diameters. The analy-
sis below is based on the pipette data, as the sedigraph
was found to systematically overestimate mass fractions.
For the Timpendean subsoil samples (depths 35-95 cm),
the suspensions showed thixotropic behavior. Thus for
these samples the suspension was diluted twofold, which
checked the gel formation during sampling. Particle-size
analysis of Set 2 (Waikato) soils was carried out by staff
of the New Zealand Soil Bureau, using the sedigraph
technique, and then adjusting the data points to their
equivalent pipette readings using a statistical algorithm
based on a separate comparison of sedigraph and pipette
methods. For full details of Set 2, see Joe and Watt
(1986).

Model fitting was done using the MLP and values of
R2, F, and C were computed using Minitab (Minitab,
1989).

RESULTS AND DISCUSSION
The five models described above were fitted to data

for all 79 Set 1 and Set 2 soils. The MLP algorithm
converged for all soils except for six in Set 2 and two
in Set 1, so these eight are omitted. The significance of
the estimated parameters for each model and depth was
tested using Student's /-test. Each parameter was found
to be significant at the 0.1% level, hence all five models
are compared in Tables 1 and 2. Values of/?2, for regres-
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sion of predicted on observed values of cumulative mass,
ranged from 0.7832 to 1.0000. See Tables la and Ib.
For the majority of the soils (47 of the 71), the lowest
values of R2 were, as expected, obtained with the Jaky
one-parameter model. For the other 24 soils, however,
the Jaky model gave an R2 value higher for 23 soils than
that of the two-parameter lognormal model, and for 10
soils higher than that for the three-parameter ONL model.
For all except seven of the soils (in Set 2, Table Ib),
the R2 value is higher for the ORL model than for the
Jaky, lognormal, or ONL models. An illustration of the
comparative fit of different models is shown in Fig. 1 to
4 for four different Set 2 soils, representing best fits for
the Jaky, lognormal, ONL, and ORL models, respec-
tively. Note that the ORL model gave a very good fit
for all four soils. The Shiozawa and Campbell (1991)
bimodal model yielded the same R2 value as the ORL
model for 55 of the 71 soils. The R2 values are slightly
improved for 14 soils by the bimodal model, while for
two soils they are slightly decreased.

Shiozawa and Campbell (1991) used R2 for compari-
son of their bimodal model with the lognormal model.
However, in most cases in Tables la and Ib, R2 > 0.90,
and for the majority of cases with the two- and three-
parameter models, R2 exceeded 0.98. Further, R2 usually
(but not always) increased as the number of model pa-
rameters (p) increased. One then needs to identify whether
a model with larger p significantly improves the fit to
the data, or if the increase in R2 is due merely to the
addition of parameters. In the latter case, the model is
overparameterized. Therefore, R2 is not a powerful tool
for relative discrimination of nonlinear models, although

it does measure the absolute amount of variability ac-
counted for by the model.

Thus we require better relative indicators of model
performance, capable of discriminating statistically sig-
nificant differences between models. The use of either
the Cp or F statistics solves this problem. Tables 2a and
2b summarize relative model performance using both Cp
and F, calculated with the ORL model (p = 3) as the
reference model. Compared with the ORL model, the
Cp values for Jaky and lognormal models are higher in
most cases, indicating that the ORL model significantly
improved representation of the data. Similarly, for most
cases, F for the Jaky and lognormal models is higher
than the F value corresponding to a 0.05 significance
level, again indicating that the three-parameter model
should be used. However, there are 9.9 and 15.5% of
the 71 cases where the Jaky or lognormal model F val-
ues, respectively, are not significant. For those soils,
these models are better than the ORL model. The Cp and
F tests agree for most (83.1%) soils when comparing the
Jaky (p = 1) and lognormal (p = 2) models, but dis-
agree for 16.9% of the soils. This is to be expected,
since both tests measure similar, but not identical, quan-
tities: both utilize SSE, but compounded in different ways.

The ONL (p = 3) and Shiozawa and Campbell (p =
3) models were compared with other models using only
Cp, as these models could not be compared with the ORL
model using F, which cannot be calculated for equipar-
ameter models. Tables 2a and 2b show that, in 58 (82%)
of the 71 samples, the ORL model has the lowest Cp
value compared with the Jaky, lognormal, and ONL
models and therefore, in a relative sense, best describes
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Fig. 1. Horotiu soil, 0—6 cm, one of the 18 soils for which the
Jaky one-parameter model (Eq. [1] gives a better fit to
particle-size distribution data than the standard lognormal
model. ORL and ONL are the offset renormalized (Eq. [6])
and offset nonrenormalized (Eq. [8]) lognormal models.
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Fig. 2. Netherton soil, 0-10 cm, one of the six soils for which
the two-parameter simple lognormal model (Eq. [3]) gives
the best fit to particle-size distribution data. ORL and ONL
are the offset renormallized (Eq. [6]) and offset
nonrenormalized (Eq. [8]) lognormal models.
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Fig. 3. Horotiu soil, 91-107 cm, one of the five soils for which
the ONL model (Eq. [8]) gives the best fit to particle-size
distribution data. ORL and ONL are the offset renormalized
(Eq. [6]) and offset nonrenormalized (Eq. [8]) lognonnal
models.
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Fig. 4. Hamilton soil, 46-73 cm, one of the 58 soils for which
the ORL model (Eq. [6]) gives the best fit to particle-size
distribution data. ORL and ONL are the offset renormalized
(Eq. [6]) and offset nonrenormalized (Eq. [8]) lognonnal
models.

the distribution of most of the soils studied. The ONL
model performed better (as measured by lower Cp) than
the simple lognormal model in 63 of the 71 cases, and
best of all models in five cases. This vindicates the test-
ing of this model: the PSD of some soils may approxi-
mate a lognormal distribution extending beyond 2 mm,
but truncated by the 2-mm cutoff. The Shiozawa and
Campbell (1991) bimodal model performed slightly bet-
ter than the ORL model for the majority of the soils, as
measured by Cp. However, the use of a narrow sub-clay
mode, imposing structure in the PSD curve well below
the limit of available data at ~ I /j,m, makes this model
unacceptable as a reference model.

CONCLUSIONS
We compared five models for soil PSD: the Jaky (1944)

one-parameter model (the sigmoid half of a Gaussian
distribution); the simple lognormal model; two new ad-
justed lognormal models, an ORL model, and an ONL
model; and a bimodal lognormal model. The results in-
dicate that all five models account for >90% of the var-
iance (R2) in the PSD of most soils. However, raw R2 is
a poor measure of relative model fit, and should not in
general be used for model selection. A more valid com-
parison is achieved with F and Cp statistics; however, F
cannot be used to compare equiparameter models. Thus,
we advocate the use of Cp as the best model selection
criterion: when compared with adjusted R2, it not only
represents an improvement over that statistic, but also
tends to choose the model with smaller p (Snedecor and
Cochran, 1989). The Cp statistic thus conforms well with

Occam's razor, in that it chooses the model with fewer
parameters.

Based on the R2 and C, tests, the ORL model per-
formed best of the first four models for the majority
(82%) of the soils studied. For 62 (87%) of the 71 soils,
the model ranking obtained with R2 agreed with the rank-
ing obtained with Cp. For the remaining 13% of the soils,
however, Cp is an essential discriminating statistic. The
simple Jaky one-parameter model gives a good fit to PSD
data for many of the soils, better than the simple log-
normal model for 18 of the soils. Other more complex
models used in sedimentology and geotechnics (e.g., log-
hyperbolic and log-skew Laplace) deserve further testing
for soils.
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