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Abstract 22 

Background: Prognostic models are of high relevance in many medical application domains. However, many 23 

common machine learning methods have not been developed for direct applicability to right-censored outcome 24 

data. Recently there have been adaptations of these methods to make predictions based on only structured data 25 

(such as clinical data). Pseudo-observations has been suggested as a data pre-processing step to address right-26 

censoring in deep neural network. There is a theoretical backing for the use of pseudo-observations to replace the 27 

right-censored response outcome, and this allows for algorithms and loss functions designed for continuous, non-28 

censored data to be used. Medical images have been used to predict time-to-event outcomes applying deep 29 

convolutional neural network (CNN) methods using a Cox partial likelihood loss function under the assumption of 30 

proportional hazard. We propose a method to predict the cumulative incidence from images and structured clinical 31 

data by integrating (or combining) pseudo-observations and convolutional neural networks. 32 

Results: The performance of the proposed method is assessed in simulation studies and a real data example in 33 

breast cancer from The Cancer Genome Atlas (TCGA). The results are compared to the existing convolutional neural 34 

network with Cox loss. Our simulation results show that our proposed method performs similar to or even 35 

outperforms the comparator, particularly in settings where both the dependent censoring and the survival time do 36 

not follow proportional hazards in large sample sizes. The results found in the application in the TCGA data are 37 

consistent with the results found in the simulation for small sample settings, where both methods perform similarly.  38 

Conclusions: The proposed method facilitates the application of deep CNN methods to time-to-event data and 39 

allows for the use of simple and easy to modify loss functions thus contributing to modern image-based precision 40 

medicine. 41 

 42 

 43 
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Background 44 

It has recently been demonstrated that contemporary medical image analysis has the potential to improve the 45 

diagnostic and prognostic stratification of cancer patients [1-3]. Particularly the analysis of microscopic 46 

morphological patterns in histopathological tissue sections is a key component of routine care. For instance, in lung 47 

cancer, tumors with predominantly micro-papillary and solid patterns have been associated with a poorer prognosis 48 

[4]. With the advent of digital pathology, whole-slide-images (WSIs) of stained tissue sections are becoming 49 

increasingly available. This may provide the opportunity to accurately predict individual prognoses using image data 50 

paired with other clinical information at scale and provide clinicians with decision support that can guide clinical 51 

management decisions to enhance personalized treatment and thus improve patient care [1-2]. 52 

Deep convolutional neural network(s) (CNN) are currently at the forefront of image analysis and have become the 53 

state-of-the-art in image-based precision medicine [5-6]. Deep CNN models are neural networks with several layers, 54 

including convolutional layers that are suitable for modelling of image data. Deep CNNs learn hierarchical 55 

representations directly from raw image data given a large dataset of labeled examples.  56 

Few machine learning methods have been developed for survival outcomes originally, and thus, most existing 57 

machine learning for survival outcomes are adaptations. This is also true for image analysis methods. CNN methods 58 

have been used and adapted to address the task of predicting time-to-event outcomes from WSIs. Recent works [7-59 

11] have used WSIs with CNN for survival predictions. They applied convolutional layers to extract features of the 60 

images using convolutional kernels and pooling operations, followed by a sequence of fully connected layers where 61 

the terminal layer outputs a predicted risk associated with the image. These risks are plugged in the Cox partial 62 

likelihood and the network is trained using a back-propagation procedure and optimization algorithm. These prior 63 

works combined modern CNN models with Cox regression for prediction of time-to-event outcomes, keeping the 64 

assumption of proportional hazard. This stipulates no effect modification by time, which can be restrictive or even 65 

unrealistic [12]. Furthermore, the negative partial log-likelihood is a relatively complicated loss function that can be 66 

challenging to implement in existing CNN frameworks.  67 

Recent works in other areas of machine learning have suggested data pre-processing steps that can be used to adapt 68 

common classes of machine learning methods to time-to-event outcomes. Pseudo-observations [13] is one of such 69 
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methods that has been suggested to adapt random forests [14-15] and more generally all methods for continuous 70 

outcomes and ensembles of them [16]. [17] proposed the use of a modified version of pseudo-observations of [13], 71 

which they call conditional, to replace the observed survival times to make risk predictions in deep neural network. 72 

By using pseudo-observations, [17] avoided the sophisticated loss functions for censored data or the proportional 73 

hazard assumption from previous work that modeled survival data using deep neural network [18-22]. 74 

We propose to combine classical pseudo-observations with CNN models in order to make risk predictions based on 75 

medical images and clinical covariates in a setting of right-censoring. Our proposed method can be applied to any 76 

CNN model, and thus, applies to all those publicly available in Pytorch [23] or TensorFlow [24], combining images 77 

and structured clinical data used in a deep neural network. After appropriate validation in clinical studies, this risk 78 

score could prove valuable for prognostic patient stratification. We demonstrate our method in simulations based 79 

on the CIFAR-10 images [25] and in our motivating data example in breast cancer from The Cancer Genome Atlas 80 

Breast Invasive Carcinoma data [26]. 81 

Methods 82 

Setup and notation 83 

Let 𝑇(𝑚) denote the true event-time for an individual m and 𝐶(𝑚) the censoring time, 84 

�̃�(𝑚) = min(𝑇(𝑚), 𝐶(𝑚)) the observed survival time and event indicator ∆(𝑚)= 1(𝑇(𝑚) ≤ 𝐶(𝑚)). In addition, for 85 

each individual we observe a p-dimensional vector of clinical covariates at baseline 𝑋(𝑚) and a three-dimensional 86 

image data denoted as 𝐼(𝑚) . Each image data is a 3D array of size w ×h×d, where w and h are spatial dimensions and 87 

d is the channel dimension, where color images have three channels (red, green and blue (RGB)). 88 

Without censoring, the sample data would be Ɗ𝑖𝑑𝑒𝑎𝑙 = {(𝐼(𝑚), 𝑋(𝑚), 𝑇(𝑚), 𝑦(𝑚)(𝜏))} for m = 1...N where 𝑦(𝑚)(𝜏) is 89 

the response variable for individual m indicating if the individual has experienced the event at a specific time 𝜏 , 90 𝑦(𝑚)(𝜏) = 1(𝑇(𝑚) ≤ 𝜏). The goal is to predict the individual risk of experiencing the main event before time τ given 91 

his or her information based on sample data Ɗ𝑖𝑑𝑒𝑎𝑙. However, in the presence of censoring, the response variable 92 𝑦(𝑚)(𝜏) is not observed for all m. Instead, we observe the sample data Ɗ = {(𝐼(𝑚), 𝑋(𝑚), 𝑇(𝑚), �̃�(𝑚)(𝜏))}  for m = 93 

1...N  where  �̃�(𝑚)(𝜏) = ∆(𝑚)1(�̃�(𝑚) ≤ 𝜏). 94 
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Pseudo-Observations 95 

[13] introduced a strategy to transform a censored problem into an uncensored one in order to be able to apply 96 

standard methods for complete data such as regression models. If 𝑦 (𝜏) were not subject to censoring, we could 97 

use it directly to model the cumulative incidence. In the presence of censoring, the pseudo-observation approach 98 

replaces the censored response variable 𝑦(𝑚)(𝜏) of each individual m by a jackknife pseudo-observation, which can 99 

be used as a new response variable to fit models. Pseudo-observations can be based on a number of estimators. We 100 

will focus on the nonparametric cumulative incidence estimator of failure before time 𝜏  . In the absence of 101 

competing risks, a nonparametic estimator of the cumulative incidence of the event of interest is given by θ(𝜏) =102 1 − 𝑆𝐾𝑀(𝜏) θ(τ ), where 𝑆𝐾𝑀 (𝜏) is the KaplanMeier (KM) survival function. The pseudo-observation (PO) cumulative 103 

incidence for individual m at time 𝜏 is computed as 104 

θ̂(𝑚)(𝜏) = 𝑁 × θ̂ (𝜏) − (𝑁 − 1) × θ̂(−𝑚)(𝜏) 105 

where θ̂ (𝜏) = 1 − �̂�𝐾𝑀(𝜏) and �̂�𝐾𝑀(𝜏) is the the KM estimator of the survival function based on all the examples 106 

and θ̂(−𝑚)(𝜏) = 1 − �̂�𝐾𝑀(−𝑚)(𝜏)  is obtained by eliminating individual m from the data. The PO are used as a 107 

replacement for the incompletely observed random variable 𝑦(𝑚)(𝜏)   for each individual. The asymptotic 108 

justification of the pseudo-observation approach requires that θ̂ (𝜏) to be a consistent estimator of θ(𝜏), and that 109 

the right-censoring be independent of the survival time and any covariates one intends to include in the model [27]. 110 

In cases where the censoring is potentially dependent on covariates, one can model the censoring and use inverse 111 

probability of censoring weighted (IPCW) methods to consistently estimate the survival function [28, 29]. In order to 112 

perform IPCW, one estimates the conditional censoring survival function at time  𝜏 ,  denoted by 𝐺(𝑚)(𝜏) =113 𝑃(𝐶(𝑚) > 𝜏|𝑋(𝑚)) and weights each individual by the inverse of their estimated probability. The IPCW estimator for 114 

the survival probability is �̂�𝑊(𝜏) = exp{Λ𝑊(𝜏)}, where Λ𝑊(𝜏) is the IPCW version of the Nelson-Aalen estimator 115 

for the cumulative hazard function [30]. Just like the non-parametric pseudo-observations, there is a large number 116 

of different ways to fit the IPCW pseudo-observations [31, 32]. 117 

The weighted pseudo-observation, IPCW-PO, cumulative incidence for individual m at time τ uses �̂�𝑊(𝜏) in Equation 118 

1. Appropriate procedures to estimate G(·) are the Cox proportional hazards model [33] and more flexible models 119 
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such as Aalen’s linear hazard model [34], boosted Cox regression [35] or random forest [36]. Once pseudo-120 

observations are obtained, the sample data for the analysis is given by Ɗ𝑃𝑂 =121 {(𝐼(1), 𝑋(1), θ̂(1)(𝜏)), … , (𝐼(𝑁), 𝑋(𝑁), θ̂(𝑁)(𝜏))} . Ɗ𝑃𝑂 can be used to train any CNN model to predict the individual 122 

risk of experiencing the main event before time τ , which would have been similar to basing our predictions on Ɗ𝑖𝑑𝑒𝑎𝑙  123 

if this sample data were available. 124 

Convolutional Neural Network 125 

Convolutional neural networks are a class of neural networks that can be applied to data that spatially encodes 126 

information in an evenly-spaced grid topology, such as images or time series. As compared to multi-layer 127 

perceptrons (MLPs), CNNs share weights between their kernels or filters to drastically reduce the number of model 128 

parameters, which is based on the assumption of translational invariance of these filters. Through a hierarchical 129 

structure of consecutive convolutional layers, CNNs can learn representations of increasing complexity, such that 130 

the first layers typically extract unspecific low-level features such as corners and edges, whereas the last layer 131 

encode more abstract concepts that are more specific to the training data. This structure of convolutional layers is 132 

typically followed by one or more fully connected layers, which are comparable to an MLP that weights the activation 133 

of the final convolutional layers, resulting in a model output. We refer the readers to [5, 37] for a more detailed 134 

exposition. 135 

Pseudo-Observation (PO) 136 

CNN Our proposed PO-CNN procedure enables a CNN to be fitted using a PO-based response to predict the 137 

cumulative incidence from images and structured clinical data. The pipeline of the proposed framework is shown in 138 

Figure 1 and Figure 2 and can be summarized as follows.  139 

i) For a finite number of time points, compute the PO (or IPCW-PO) cumulative incidence for each 140 

individual using D to construct DPO.  141 

ii) Choose a CNN model and add additional fully connected layers at the terminal layer of the CNN and 142 

the clinical data as intermediate input for multiple outputs (Figure 2.d) OR include the time points as 143 

input too for a single output implementation (Figure 2.c). 144 
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iii) Train the PO-CNN (or IPCW-PO-CNN) using a mean squared error (MSE) based loss function of your 145 

choice.  146 

The implementation that only includes the clinical data as intermediate input is a multi-output regression, which is 147 

related to multi-task supervised learning approach [38]. In Figure 2.d, each output at a different time point is 148 

regarded as a specific output and each of them have several task-specific layers while sharing all previous layers. 149 

Thus, there is no need to add the time points as intermediate predictors. We denote this implementation multi-150 

output. Unlike single output implementation, by default the multi-output minimizes the combined MSE of each 151 

output values together. Although we simply sum the different losses, this can be tailored as desired. The single 152 

output loss function can also be tailored as desired to more highly weight a particular time point, or can only use a 153 

single time point. Although we do not investigate this further, this simple modification of the loss function may be 154 

of great advantage over the existing Cox-loss methods. In what follows, we use the default average MSE over all 155 

included time points in both PO-CNN approaches. 156 

It is of note that although it is technically possible to use the image information in the fitting of the censoring model, 157 

we do not believe this is practical or necessary. Instead, fitting a model for the censoring distribution based solely 158 

on the set of available clinical covariates is likely sufficient and much more feasible in practice. Thus, we assume that 159 

it is sufficient to condition on the clinical covariates when modeling the censoring in the IPCW-PO. This is slightly 160 

more restrictive than a Cox based CNN as all inputs in the CNN are included in some way in the final layer and thus 161 

are accounting for censoring; we investigate this in the simulations. 162 

Results 163 

For all methods that follow we used a Residual Network model [39] with 18 layers (ResNet18), although any desired 164 

model could be used. The typical block of layer in ResNet is i) convolution; ii) non-linearity activation function; iii) 165 

batch normalization; iv) pooling and v) dropout. We used a pre-trained ResNet model on ImageNet [40, 41] to 166 

initialize the weights instead of random initialization. We added to the last terminal layer of ResNet a simple fully 167 

connected layer followed by tanh(·) as the activation function. We used Pytorch for the CNN implementation with 168 

Adam [42] as optimizer. To obtain the PO and IPCW-PO, we used the R packages prodlim [43] and eventglm [32], 169 
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respectively, where the IPC weights were estimated using a Cox regression model based on the set of clinical 170 

covariates. We compared our proposed procedures to an existing CNN modelling approach for survival prediction 171 

that uses the Cox partial likelihood as loss function to handle censored data. We denoted as Cox-CNN. An example 172 

of Cox-CNN is [7]. Cox-CNN is trained using the sample data D. For the Cox-CNN, we incorporated clinical data in the 173 

last terminal layer of the CNN model, just as in our proposed methods. Code containing details of all procedures are 174 

available at https://github.com/pablogonzalezginestet/POCNN. 175 

Simulations 176 

We used images from the CIFAR-10 dataset as the basis of our simulated data. The CIFAR-10 dataset consists of color 177 

images (32 × 32 × 3) in 10 classes. We denote the classes with y  where y𝑖 ∈  {0, . . . , 9}is the class for the image 178 

I𝑖 . We generated the true survival time based on the classes that each image represents as well as independent 179 

covariates. We generated nine independent covariates X1 , … , X9  from the standard normal distribution and one 180 

binary covariate X10. We presented six cases corresponding to different survival and censoring time models. For 181 

each case, we consider a sample size of N = 1000 and 5000. From each sample size, 80% of the observations were 182 

randomly sampled for training, while the remaining 20% were set aside as a test set. The simulations were repeated 183 

100 times each. The accuracy of the prediction of the cumulative incidence at the four percentiles observed times 184 

was assessed using the area under the ROC curve (AUC). The prediction at each time point were compared to the 185 

true binary outcome of having an event prior to a given time point of interest. This latter variable is no censored 186 

since we know the exact survival time. The pseudo-observations PO and IPCW-PO were computed for a grid of time 187 

points corresponding to 20th, 30th, 40th and 50th percentiles of the overall time distribution. We do not tune any 188 

hyper-parameter. All simulations were run using a learning rate of 0.0001. For each simulation, we applied both 189 

approaches: single output and multi-output to both IPCW-PO and unweighted PO.  190 

The six cases are as follow: 191 

Case 1. The true survival time was generated from a proportional hazard model. T was generated with hazard 192 

function: 193 

λ𝑇 (t|y, X) =  λ𝑇,0(t)exp{1.7y + (0.3 + 0.6cos(y))X10 + 0.2X1 } 194 

https://github.com/pablogonzalezginestet/POCNN
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 195 

where λ𝑇,0(t) = 2t. We randomly selected around 30% observations to be rightcensored at time C generated from 196 

a uniform distribution on (0, T). 197 

Case 2. The true survival time was generated under a proportional hazard model as Case 1 but the censoring time is 198 

generated from 199 

λ𝐶 (t|X) =  λ𝐶,0(t)exp{1.4X10 + 2.6X1 − 0.2X2 } 200 

 201 

where λ𝐶,0(t) = 12t . The censoring percentage is around 20%. 202 

Case 3. The true survival time was generated from a proportional hazard model where 203 

λ𝑇 (t|y, X) =  λ𝑇,0(t)exp{y − 1.6cos(y)X10 + 0.3X1 X10} 204 

and λ𝑇,0(t) = 0.7t. The censoring time was generated using a gamma distribution with shape parameter equal to 205 exp{−1.8X10 + 1.4X1 + 1.5X10X1 } and scale parameter equal to y. The censoring percentage is around 43%. 206 

Case 4. The true model for survival time was generated using a gamma distribution with shape parameter equal to 207 exp{0.5y + 0.2X10cos(y) + 1.5X1 + 1.2X10}. We randomly selected 30% observations to be right-censored at 208 

time C generated from a uniform distribution on (0, T). 209 

Case 5. The true survival times are non-proportional hazard as Case 4 and the censoring time was generated 210 

λ𝐶 (t|X) =  λ𝐶,0(t)exp{−3.4X10 + 0.6X1 − 2.2X2 } 211 

Where λ𝐶,0(t) = 0.01t. The censoring percentage is around 60%. 212 

Case 6. The true survival times and the censoring times are both generated using a gamma distribution. The shape 213 

parameter is exp{0.7y + 0.4X10y − 0.1X1 X10 + 0.1yX1 } and exp{3.8X10 + 5.2X1 − 3.3X10X1 } for the survival 214 

and censoring time, respectively. The shape parameter was set equal to y. The censoring percentage is around 65%. 215 
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Figure 3 and Figure 4 show the simulations results. When the sample size is small, Figure 3, IPCW-PO-CNN single 216 

output had the best performance across the different cases even in cases that they did not require IPC-weights, with 217 

a median AUC above of all other models. However, this method and the multi-output version tended to show high 218 

variability when the censoring time was generated from a non-proportional hazard model (Case 3 and Case 6). The 219 

latter behavior was expected since the censoring model is misspecified. The second best median performance was 220 

the unweighted PO-CNN single output. The Cox-CNN demonstrated similar results to PO-CNN, even in the non-221 

proportional hazard cases, something that was surprising and that we suspect is due to the sample size. 222 

Figure 4 depicts a clearer and more stable pattern, which we believe is due to the sample size increase, from N = 223 

1000 to N = 5000. Firstly, the prediction accuracy increased across all methods and time points. In the case where 224 

the censoring model is misspecified, Case 6, the impact on the performance of IPCW-PO-CNN was accentuated. 225 

However, except for this case, the PO-CNN and IPCW-PO-CNN performed similarly. The unweighted PO-CNN had the 226 

best median performance across the different cases and the single output performed better than multi-output, 227 

weighted or not. 228 

Over all sample sizes and time points we see minor improvements or similar results in predictive accuracy using 229 

unweighted single output PO-CNN as compared to the Cox-CNN. Except for when both the event time and the 230 

censoring time have large deviations from proportional hazards, Case 6, where the Cox-CNN does not perform well, 231 

the multi-output PO-CNN performs similarly to the Cox-CNN. Although IPC weighting seems to improve results 232 

slightly when the censoring is dependent and the censoring model is correct in larger sample sizes and overall in 233 

smaller sample sizes, the potential losses due to incorrect modelling, as demonstrated in Case 6 and sample size 234 

5000, likely makes chasing these minor improvements inadvisable. Therefore, based on the simulations, one would 235 

expect that there is little to lose using either the unweighted single output or multi-output PO-CNN over the Cox-236 

CNN, while there may be slight improvements in predictive accuracy. 237 

Real Data Application 238 

We illustrate the proposed method using whole-slide histopathology images of breast tumors and clinical structured 239 

data obtained from The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) [26]. The event of interest 240 

was time to death from first diagnosis of breast cancer at four time points: 2 year, 3.5 year, 5 year and 8 year. We 241 
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implement our proposed method by computing pseudo-observations for these four time points. We selected the 242 

following clinical predictors from the clinical data: race, ethnicity, age, pathologic stage and molecular subtype [44, 243 

45]. Table 3 in the appendix summarizes these variables. The breast histopathology image dataset are composed of 244 

710 WSIs and each of them was tiled into image patches that span 512 x 512 pixels at 20X magnification. Tiling WSIs 245 

into smaller image patches and assigning the patient-level label to each image patch is a common strategy in digital 246 

pathology due to current memory constraints. Models are then fitted to these image patches in a weakly supervised 247 

manner. In order to only predict risk scores from cancer tissue regions, we deployed a cancer detection model to 248 

exclude benign tissue. Each WSI, which is associated to a patient, is linked to the clinical data. Patients were divided 249 

randomly into training (64%), validation (16%) and test (20%) data sets, respectively. The number of tiles in the 250 

train/val/test was 4,494,472/1,061,601/1,417,900, respectively. Due to differences in tumor size and variations in 251 

the sectioning, patients have differing numbers of tiles. To sample equivalent numbers of tiles per patient, we 252 

decided to augment the original number of tiles of all patients to the extent of balancing the number of tiles per 253 

patient. 254 

We performed data augmentation as a form of regularization, including random horizontal flip and random rotation 255 

from -90º to 90º. For all models, we only tuned the learning rate using the package Ray Tune [46, 47] for a maximum 256 

of 30 epoch in each trial. The mean absolute error was used as evaluation metric in the validation set for PO-CNN 257 

and IPCW-PO-CNN, whereas the average of the AUC for each time point was used for the Cox-CNN. We trained the 258 

CNN model on per-tile basis. The final per-slide prediction, which is our interest, was obtained by applying a tile 259 

aggregation method. We considered the average and the 75th percentile of the per-tile scores across all tiles as a 260 

patient-level prediction. As for the evaluation for the test dataset, we used the time-dependent area under the ROC 261 

curve (AUC) for right-censored time-event data [48, 49]. The AUC is estimated at the four different time points of 262 

interest. 263 

Due to the superior performance of single output over multi-output shown in the simulations, we did not refer to 264 

the latter in this analysis. Instead, we included PO-CNN that uses as response variable a PO cumulative incidence 265 

computed only for one time point. We denoted PO-CNN one-time-point. This model is trained separately for each 266 

time point considered in the analysis and for this reason we only present the non-weighted version of it. This model 267 
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would act as a lower bound in terms of accuracy for the PO-CNN that is computed for a grid of time points. 268 

Theoretically, multiple time points should perform as well or better than single time points, due to the fact that 269 

information across the time points is shared. 270 

Comparative results are presented in Table 1 and Table 2. The results obtained using the averaging criteria are similar 271 

to those using the 75th percentile aggregation criteria. The unweighted PO-CNN and Cox-CNN had similar 272 

performance for the prediction at later years, while Cox-CNN resulted in better accuracy for the earliest year and 273 

PO-CNN for the middle two time points. PO-CNN resulted in better accuracy than its weighted version across all 274 

years except for year five. Lastly, POCNN one-time-point performed as expected, except for the earliest time. 275 

Discussion 276 

Improved prognostic models, including those based on routine histopathology image data, are of high clinical 277 

relevance as they can provide information that is important for clinical decision making. The proposed method, 278 

based on pseudo-observation, provides an efficient approach to fit deep CNN models to right-censored time-to-279 

event outcomes using standard loss functions, making implementation straight forward while providing comparable 280 

or improved model performance in comparison to alternative approaches. 281 

We showed over a large set of simulated scenarios that our proposed method of PO-CNN performed similar to or 282 

even outperformed the existing CNN for survival analysis that uses the Cox partial likelihood, while having a simpler 283 

and more easily modified loss function. We found this was particularly true in settings where both the dependent 284 

censoring and the survival time did not follow the assumption of proportional hazards in large sample size. Although 285 

in the real data example, the proposed PO-CNN that performed best in the simulations was outperformed by the 286 

Cox-CNN for one time point, it performed similarly or slightly better at all other time points. These results are also 287 

consistent with the results found in the simulation for a small sample size, where the Cox-CNN and the PO-CNN 288 

performed more similarly over all scenarios. The superior performance of the Cox-CNN for this time point paired 289 

with the best performance being obtained by the single time point PO-CNN, suggests that the model for this time 290 

point may differ from the other time points. 291 
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Despite the fact that training a CNN model requires a large amount of images, in the area of medical research it 292 

often happens that the real application dataset is based on a small number of whole slide images as training samples. 293 

This fact may be a limitation of our approach. However, as shown in the simulations, this is not the case when using 294 

a large dataset. Additionally, the individual tiles used to train the model in the real application may not be 295 

discriminative and thus biasing the predictions [50]. This may be accommodated by modifying a loss function to 296 

more highly weight the earlier time point. 297 

Lastly, we have not investigated tuning hyper-parameters in great detail other than the learning rate. The CNN model 298 

as well as the two implementations (single output and multi-output) can be tuned and we think that with further 299 

hyper-parameter tuning, better performance might be achieved. In the multi-output implementation, the criteria 300 

used to combine the loss of the multiple outputs is an important hyper-parameter to tune. Our suspicion is that the 301 

poor performance seen there in the simulation is caused by a lack of tuning. Furthermore, the real application poses 302 

extra challenges. For instance, one should tune the aggregation procedure applied to get a per-slide prediction per 303 

individual. Also, one might consider weighting the loss function at each time point to take account for the 304 

heterogeneity across time points. When these later factors are tuned, a higher performance can potentially be 305 

achieved. Although this is a future line of work for the authors, this in no way detracts from the fact that the PO-306 

CNN is clearly a useful alternative to the Cox-CNN model that allows for simple and easier to modify loss function. 307 

Conclusions 308 

In this work, we proposed a method that uses classical pseudo-observations as the outcome in deep CNN methods 309 

to predict the cumulative incidence using images and structured clinical data. Compared with Cox regression based 310 

model, the proposed method is more flexible as it does not assume proportional hazards. The proposed method 311 

facilitates the application of deep CNN methods to time-to-event data with a simple and easily modified loss 312 

functions. This works contributes to modern image-based precision medicine be providing an alternative to Cox loss 313 

in CNN image analysis for prediction of cumulative incidence or risk before a given time point. 314 
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AUC: Area under the ROC curve  342 

CNN: Convolutional Neural Network  343 

Cox-CNN: CNN that uses the Cox partial likelihood as loss function  344 

IPCW: Inverse probability of censoring weighted  345 

IPCW-PO: Inverse probability of censoring weighted pseudo-observation  346 

KM: Kaplan-Meier  347 

MLP: Multi-layer perceptron  348 

MSE: Mean squared error  349 

PO: Pseudo-observation  350 

PO-CNN: Proposed method that integrates PO and CNN  351 

IPCW-PO-CNN: Proposed method that integrates IPCW-PO and CNN  352 

RGB: Red, green and blue color model  353 

ROC: Receiver operating curve  354 

TCGA: The Cancer Genome Atlas  355 

WSIs: Whole-slide-images  356 
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Figures Legends 469 

Figure 1. Pseudo-observations cumulative incidence are computed at a finite number of time points for each 470 

individual to be used as the new response variable. 471 

 472 

Figure 2. (b) Medical images are passed-through the CNN model chosen; (c) single output, and (d) multi-output. 473 

Figure 3. Boxplots of AUC values for the prediction of the cumulative incidence at 20th, 30th, 40th and 50th 474 

percentile of the overall time across 100 simulated datasets of sample size 1000 using different methods: cox, CNN 475 
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with Cox PH layer; po1, PO-CNN single output; po2, PO-CNN multi-output; po3, IPCW-PO-CNN single output, and 476 

po4, IPCW-PO-CNN multi-output. 477 

Figure 4. Boxplots of AUC values for the prediction of the cumulative incidence at 20th, 30th, 40th and 50th 478 

percentile of the overall time across 100 simulated datasets of sample size 5000 using different methods: cox, CNN 479 

with Cox PH layer; po1, PO-CNN single output; po2, PO-CNN multi-output; po3, IPCW-PO-CNN single output, and 480 

po4, IPCW-PO-CNN multi-output. 481 

 482 

 483 

 484 

 485 

 486 

 487 

 488 

 489 

 490 

 491 

 492 

 493 

 494 

 495 

 496 
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Tables 497 

Table 1. Estimated AUCs for predicting death at 2-year, 3.5-year, 5-year and 8-year, using the average. 498 

CNN model AUC(t=2) AUC(t=3.5) AUC(t=5) AUC(t=8) 

Proposed PO-CNN 

(one-time-point) 

0.802 0.630 0.688 0.674 

Proposed PO-CNN 

(single output) 

0.696 0.760 0.740 0.832 

Proposed IPCW-

PO-CNN (single 

output) 

0.685 0.693 0.750 0.678 

Cox-CNN 0.785 0.718 0.737 0.832 

 499 

 500 

Table 2. Estimated AUCs for predicting death at 2-year, 3.5-year, 5-year and 8-year, using the average. 501 

CNN model AUC(t=2) AUC(t=3.5) AUC(t=5) AUC(t=8) 

Proposed PO-CNN 

(one-time-point) 

0.806 0.623 0.725 0.691 

Proposed PO-CNN 

(single output) 

0.690 0.727 0.703 0.804 

Proposed IPCW-

PO-CNN (single 

output) 

0.696 0.714 0.753 0.729 

Cox-CNN 0.774 0.707 0.733 0.830 

 502 

 503 

 504 

 505 

 506 
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Appendix  507 

Description of the clinical information of the TCGA-BRCA dataset 508 

 The Cancer Genome Atlas (TCGA) Program provides publicly-available clinical data for different types of cancers. 509 

For this analysis, we use the Breast Cancer (BRCA) clinical dataset. From the entire dataset, we selected the 510 

following clinical predictors:  511 

• age: continuous variable  512 

• race: categorical variable that takes on three categories (’black’, ’white’ and ’other’).  513 

• ethnicity: categorical variable that takes on two categories (’not hispanic latino’ and ’other’)  514 

• pathologic stage: categorical variable that takes on four categories (Stage I’, ’Stage II’, ’Stage III’, ’StageX’). This is 515 

the classification of cancer stages based on tumor, lymph and metastasis.  516 

• molecular subtype: categorical variable that takes on five categories (’Basal’, ’HER2’, ’Luminal A’, ’Luminal B’, 517 

’Normal’)  518 

The next table summarizes the predictor variables as well as the time-to-event variable, time to death where time 519 

is measured by days, and the vital status of the patient, if it is alive/censored (status=0) or dead (status=1). 520 

Table 3: Summary of the clinical information of breast cancer patients included in the analysis 521 

 Overall 

Sample size 710 

Days to death (mean (SD)) 1351.32 (1267.36) 

Status (mean (SD)) 0.16 (0.37) 

Age (mean (SD)) 58.33 (12.97) 

Race  

Black 87 (12.3) 

white 567 (79.9) 

Other & 56 (7.9) 

Ethnicity = other (%) 87 (12.3) 

Pathologic stage (%)  

Stage I & 62 (8.7) 

Stage II 397 (55.9) 

Stage III 151 (21.3) 

StageX 

 

100 (14.1) 
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Molecular subtype (%)  

Basal 129 (18.2) 

Her2 57 (8.0) 

LumA 

 

369 (52.0) 

 

LumB 

 

132 (18.6) 

Normal 

 

23 (3.2) 

Image pre-processing 522 

 Each WSI was preprocessed before inclusion into this study. As a first step, tissue masks were generated. To this 523 

end, WSIs were down-sampled by a factor of 32 and converted to the HSV color space. Tissue masks were 524 

generated by applying a pixel-wise logical operation between a mask that was generated by applying the Otsu 525 

threshold [51] to the saturation channel and by applying a cutoff of 0.75 to the hue channel. We subsequently 526 

performed morphological opening and closing to remove salt-and-pepper noise from the binary masks. WSIs were 527 

then tiled with 50% overlap at 20X magnification into image patches spanning 598x598 pixels, where 598 pixels 528 

correspond to 271µm of tissue section, while discarding tiles with less than 50% tissue content. Tiles were then 529 

color-normalized using the method described by [52]. We subsequently applied a cancer detection CNN to identify 530 

cancer regions and excluded all tiles that were predicted to belong to a benign tissue region. Furthermore, out-of-531 

focus tiles with a low variance were excluded, which was computed by filtering each tile with a Laplacian. 532 

 533 

 534 

 535 



Figures

Figure 1

Pseudo-observations cumulative incidence are computed at a �nite number of time points for each
individual to be used as the new response variable.

Figure 2

(b) Medical images are passed-through the CNN model chosen; (c) single output, and (d) multi-output.



Figure 3

Boxplots of AUC values for the prediction of the cumulative incidence at 20th, 30th, 40th and 50th
percentile of the overall time across 100 simulated datasets of sample size 1000 using different
methods: cox, CNN with Cox PH layer; po1, PO-CNN single output; po2, PO-CNN multi-output; po3, IPCW-
PO-CNN single output, and po4, IPCW-PO-CNN multi-output.



Figure 4

Boxplots of AUC values for the prediction of the cumulative incidence at 20th, 30th, 40th and 50th
percentile of the overall time across 100 simulated datasets of sample size 5000 using different
methods: cox, CNN with Cox PH layer; po1, PO-CNN single output; po2, PO-CNN multi-output; po3, IPCW-
PO-CNN single output, and po4, IPCW-PO-CNN multi-output.


